Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: en
|
3 |
+
tags:
|
4 |
+
- vad
|
5 |
+
- emotion
|
6 |
+
- bert
|
7 |
+
license: mit
|
8 |
+
model-index:
|
9 |
+
- name: vad-bert
|
10 |
+
results: []
|
11 |
+
datasets:
|
12 |
+
- reallycarlaost/emobank
|
13 |
+
base_model:
|
14 |
+
- google-bert/bert-base-uncased
|
15 |
+
---
|
16 |
+
|
17 |
+
# vad-bert
|
18 |
+
|
19 |
+
A BERT-based model fine-tuned to predict **Valence, Arousal, and Dominance (VAD)** values from text.
|
20 |
+
|
21 |
+
## Intended use
|
22 |
+
|
23 |
+
This model is intended for regression tasks on emotional dimensions. It outputs 3 float values corresponding to:
|
24 |
+
|
25 |
+
- Valence (pleasant vs unpleasant)
|
26 |
+
- Arousal (calm vs excited)
|
27 |
+
- Dominance (controlled vs in control)
|
28 |
+
|
29 |
+
## Example
|
30 |
+
|
31 |
+
```python
|
32 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
33 |
+
|
34 |
+
tokenizer = AutoTokenizer.from_pretrained("RobroKools/vad-bert")
|
35 |
+
model = AutoModelForSequenceClassification.from_pretrained("RobroKools/vad-bert")
|
36 |
+
|
37 |
+
inputs = tokenizer("I'm feeling great!", return_tensors="pt")
|
38 |
+
outputs = model(**inputs)
|
39 |
+
|
40 |
+
vad = outputs.logits.detach().squeeze().tolist()
|
41 |
+
print(vad) # [valence, arousal, dominance]
|