--- language: en tags: - vad - emotion - bert license: mit model-index: - name: vad-bert results: [] datasets: - reallycarlaost/emobank base_model: - google-bert/bert-base-uncased --- # vad-bert A BERT-based model fine-tuned to predict **Valence, Arousal, and Dominance (VAD)** values from text. ## Intended use This model is intended for regression tasks on emotional dimensions. It outputs 3 float values corresponding to: - Valence (pleasant vs unpleasant) - Arousal (calm vs excited) - Dominance (controlled vs in control) ## Example ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("RobroKools/vad-bert") model = AutoModelForSequenceClassification.from_pretrained("RobroKools/vad-bert") inputs = tokenizer("I'm feeling great!", return_tensors="pt") outputs = model(**inputs) vad = outputs.logits.detach().squeeze().tolist() print(vad) # [valence, arousal, dominance]