Rustamshry commited on
Commit
9d10ab9
·
verified ·
1 Parent(s): 7d53d7d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +42 -150
README.md CHANGED
@@ -17,192 +17,84 @@ tags:
17
 
18
  ## Model Details
19
 
20
- ### Model Description
21
-
22
- <!-- Provide a longer summary of what this model is. -->
23
-
24
-
25
 
26
- - **Developed by:** [More Information Needed]
27
- - **Funded by [optional]:** [More Information Needed]
28
- - **Shared by [optional]:** [More Information Needed]
29
- - **Model type:** [More Information Needed]
30
- - **Language(s) (NLP):** [More Information Needed]
31
- - **License:** [More Information Needed]
32
- - **Finetuned from model [optional]:** [More Information Needed]
33
-
34
- ### Model Sources [optional]
35
 
36
- <!-- Provide the basic links for the model. -->
37
 
38
- - **Repository:** [More Information Needed]
39
- - **Paper [optional]:** [More Information Needed]
40
- - **Demo [optional]:** [More Information Needed]
 
 
41
 
42
  ## Uses
43
 
44
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
45
-
46
  ### Direct Use
47
 
48
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
49
-
50
- [More Information Needed]
51
-
52
- ### Downstream Use [optional]
53
-
54
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
55
-
56
- [More Information Needed]
57
 
58
  ### Out-of-Scope Use
59
 
60
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
61
-
62
- [More Information Needed]
63
-
64
- ## Bias, Risks, and Limitations
65
-
66
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
67
-
68
- [More Information Needed]
69
-
70
- ### Recommendations
71
 
72
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
73
-
74
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
75
 
76
  ## How to Get Started with the Model
77
 
78
  Use the code below to get started with the model.
79
 
80
- [More Information Needed]
81
-
82
- ## Training Details
83
-
84
- ### Training Data
85
-
86
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
87
-
88
- [More Information Needed]
89
-
90
- ### Training Procedure
91
-
92
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
93
-
94
- #### Preprocessing [optional]
95
-
96
- [More Information Needed]
97
-
98
-
99
- #### Training Hyperparameters
100
-
101
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
102
-
103
- #### Speeds, Sizes, Times [optional]
104
-
105
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
106
-
107
- [More Information Needed]
108
-
109
- ## Evaluation
110
-
111
- <!-- This section describes the evaluation protocols and provides the results. -->
112
-
113
- ### Testing Data, Factors & Metrics
114
-
115
- #### Testing Data
116
-
117
- <!-- This should link to a Dataset Card if possible. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Factors
122
-
123
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
124
-
125
- [More Information Needed]
126
-
127
- #### Metrics
128
-
129
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
130
-
131
- [More Information Needed]
132
-
133
- ### Results
134
-
135
- [More Information Needed]
136
-
137
- #### Summary
138
 
 
 
 
139
 
 
140
 
141
- ## Model Examination [optional]
 
 
 
 
142
 
143
- <!-- Relevant interpretability work for the model goes here -->
144
 
145
- [More Information Needed]
146
 
147
- ## Environmental Impact
148
 
149
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
150
 
151
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
 
 
 
 
152
 
153
- - **Hardware Type:** [More Information Needed]
154
- - **Hours used:** [More Information Needed]
155
- - **Cloud Provider:** [More Information Needed]
156
- - **Compute Region:** [More Information Needed]
157
- - **Carbon Emitted:** [More Information Needed]
158
 
159
- ## Technical Specifications [optional]
160
 
161
- ### Model Architecture and Objective
 
 
 
162
 
163
- [More Information Needed]
 
164
 
165
- ### Compute Infrastructure
166
 
167
- [More Information Needed]
168
 
169
- #### Hardware
170
 
171
- [More Information Needed]
172
-
173
- #### Software
174
-
175
- [More Information Needed]
176
-
177
- ## Citation [optional]
178
-
179
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
180
-
181
- **BibTeX:**
182
-
183
- [More Information Needed]
184
-
185
- **APA:**
186
-
187
- [More Information Needed]
188
-
189
- ## Glossary [optional]
190
-
191
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
192
-
193
- [More Information Needed]
194
-
195
- ## More Information [optional]
196
-
197
- [More Information Needed]
198
-
199
- ## Model Card Authors [optional]
200
 
201
- [More Information Needed]
202
 
203
- ## Model Card Contact
204
 
205
- [More Information Needed]
206
  ### Framework versions
207
 
208
  - PEFT 0.15.2
 
17
 
18
  ## Model Details
19
 
20
+ This model is a fine-tuned version of Qwen2.5-1.5B-Instruct for medical reasoning in Turkish. The model was trained on ituperceptron/turkish_medical_reasoning dataset, which contains
21
+ instruction-tuned examples focused on clinical reasoning, diagnosis, patient care, and medical decision-making.
 
 
 
22
 
23
+ ### Model Description
 
 
 
 
 
 
 
 
24
 
 
25
 
26
+ - **Developed by:** Rustam Shiriyev
27
+ - **Language(s) (NLP):** Turkish
28
+ - **License:** MIT
29
+ - **Finetuned from model:** unsloth/Qwen2.5-1.5B-Instruct
30
+
31
 
32
  ## Uses
33
 
 
 
34
  ### Direct Use
35
 
36
+ - Medical Q&A in Turkish
37
+ - Clinical reasoning tasks (educational or non-diagnostic)
38
+ - Research on medical domain adaptation and multilingual LLMs
 
 
 
 
 
 
39
 
40
  ### Out-of-Scope Use
41
 
42
+ This model is intended for research and educational purposes only. It should not be used for real-world medical decision-making or patient care.
 
 
 
 
 
 
 
 
 
 
43
 
 
 
 
44
 
45
  ## How to Get Started with the Model
46
 
47
  Use the code below to get started with the model.
48
 
49
+ ```python
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50
 
51
+ from huggingface_hub import login
52
+ from transformers import AutoTokenizer, AutoModelForCausalLM
53
+ from peft import PeftModel
54
 
55
+ login(token="")
56
 
57
+ tokenizer = AutoTokenizer.from_pretrained("unsloth/Qwen2.5-1.5B-Instruct",)
58
+ base_model = AutoModelForCausalLM.from_pretrained(
59
+ "unsloth/Qwen2.5-1.5B-Instruct",
60
+ device_map={"": 0}, token=""
61
+ )
62
 
63
+ model = PeftModel.from_pretrained(base_model,"Rustamshry/Qwen2.5-1.5B-turkish-medical-R1")
64
 
 
65
 
66
+ question = "Medüller tiroid karsinomu örneklerinin elektron mikroskopisinde gözlemlenen spesifik özellik nedir?"
67
 
68
+ prompt = (
69
 
70
+ "### Talimat:\n"
71
+ "Siz bir tıbb alanında uzmanlaşmış yapay zeka asistanısınız. Gelen soruları yalnızca Türkçe olarak, "
72
+ "açıklayıcı bir şekilde yanıtlayın.\n\n"
73
+ f"### Soru:\n{question.strip()}\n\n"
74
+ f"### Cevap:\n"
75
 
76
+ )
 
 
 
 
77
 
78
+ input_ids = tokenizer(prompt, return_tensors="pt").to(model.device)
79
 
80
+ outputs = model.generate(
81
+ **input_ids,
82
+ max_new_tokens=2048,
83
+ )
84
 
85
+ print(tokenizer.decode(outputs[0]))
86
+ ```
87
 
88
+ ## Training Data
89
 
90
+ - Dataset: ituperceptron/turkish_medical_reasoning; Translated version of FreedomIntelligence/medical-o1-reasoning-SFT (Turkish, ~7K examples)
91
 
 
92
 
93
+ ## Evaluation
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94
 
95
+ No formal quantitative evaluation yet.
96
 
 
97
 
 
98
  ### Framework versions
99
 
100
  - PEFT 0.15.2