File size: 46,122 Bytes
1aa6b2e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Sat Mar  4 21:14:41 2023       \n",
      "+---------------------------------------------------------------------------------------+\n",
      "| NVIDIA-SMI 531.18                 Driver Version: 531.18       CUDA Version: 12.1     |\n",
      "|-----------------------------------------+----------------------+----------------------+\n",
      "| GPU  Name                      TCC/WDDM | Bus-Id        Disp.A | Volatile Uncorr. ECC |\n",
      "| Fan  Temp  Perf            Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |\n",
      "|                                         |                      |               MIG M. |\n",
      "|=========================================+======================+======================|\n",
      "|   0  NVIDIA GeForce GTX 1080 Ti    WDDM | 00000000:B3:00.0  On |                  N/A |\n",
      "|100%   42C    P0               68W / 127W|   1980MiB / 11264MiB |      3%      Default |\n",
      "|                                         |                      |                  N/A |\n",
      "+-----------------------------------------+----------------------+----------------------+\n",
      "                                                                                         \n",
      "+---------------------------------------------------------------------------------------+\n",
      "| Processes:                                                                            |\n",
      "|  GPU   GI   CI        PID   Type   Process name                            GPU Memory |\n",
      "|        ID   ID                                                             Usage      |\n",
      "|=======================================================================================|\n",
      "|    0   N/A  N/A      1148    C+G   ... (x86)\\Audeze\\AudezeHQ\\AudezeHQ.exe    N/A      |\n",
      "|    0   N/A  N/A      2232    C+G   ...GeForce Experience\\NVIDIA Share.exe    N/A      |\n",
      "|    0   N/A  N/A      6208    C+G   ..._x64__rz1tebttyb220\\DolbyAccess.exe    N/A      |\n",
      "|    0   N/A  N/A      9096    C+G   ...CBS_cw5n1h2txyewy\\TextInputHost.exe    N/A      |\n",
      "|    0   N/A  N/A      9832    C+G   ...63.0_x86__zpdnekdrzrea0\\Spotify.exe    N/A      |\n",
      "|    0   N/A  N/A     10856    C+G   ....0_x64__8wekyb3d8bbwe\\HxOutlook.exe    N/A      |\n",
      "|    0   N/A  N/A     11512    C+G   ...2txyewy\\StartMenuExperienceHost.exe    N/A      |\n",
      "|    0   N/A  N/A     11596    C+G   ...GeForce Experience\\NVIDIA Share.exe    N/A      |\n",
      "|    0   N/A  N/A     12780    C+G   ...rPicker\\PowerToys.ColorPickerUI.exe    N/A      |\n",
      "|    0   N/A  N/A     14676    C+G   ...on\\110.0.1587.57\\msedgewebview2.exe    N/A      |\n",
      "|    0   N/A  N/A     14900    C+G   C:\\Windows\\explorer.exe                   N/A      |\n",
      "|    0   N/A  N/A     16116    C+G   ...FancyZones\\PowerToys.FancyZones.exe    N/A      |\n",
      "|    0   N/A  N/A     17548    C+G   ...5n1h2txyewy\\ShellExperienceHost.exe    N/A      |\n",
      "|    0   N/A  N/A     17848      C   ...al\\Discord\\app-1.0.9011\\Discord.exe    N/A      |\n",
      "|    0   N/A  N/A     18064    C+G   ...\\cef\\cef.win7x64\\steamwebhelper.exe    N/A      |\n",
      "|    0   N/A  N/A     20132    C+G   ...crosoft\\Edge\\Application\\msedge.exe    N/A      |\n",
      "|    0   N/A  N/A     20864    C+G   ...t.LockApp_cw5n1h2txyewy\\LockApp.exe    N/A      |\n",
      "|    0   N/A  N/A     20928    C+G   ...B\\system_tray\\lghub_system_tray.exe    N/A      |\n",
      "|    0   N/A  N/A     22896    C+G   ...Cloudflare WARP\\Cloudflare WARP.exe    N/A      |\n",
      "|    0   N/A  N/A     23784    C+G   ...__8wekyb3d8bbwe\\WindowsTerminal.exe    N/A      |\n",
      "|    0   N/A  N/A     24416    C+G   ...cal\\Microsoft\\OneDrive\\OneDrive.exe    N/A      |\n",
      "|    0   N/A  N/A     27532    C+G   ...auncher\\PowerToys.PowerLauncher.exe    N/A      |\n",
      "|    0   N/A  N/A     28696    C+G   ...siveControlPanel\\SystemSettings.exe    N/A      |\n",
      "|    0   N/A  N/A     29184    C+G   ...ekyb3d8bbwe\\PhoneExperienceHost.exe    N/A      |\n",
      "|    0   N/A  N/A     32684    C+G   ...nt.CBS_cw5n1h2txyewy\\SearchHost.exe    N/A      |\n",
      "|    0   N/A  N/A     34624    C+G   C:\\Program Files\\LGHUB\\lghub.exe          N/A      |\n",
      "|    0   N/A  N/A     34692    C+G   ...pdnekdrzrea0\\XboxGameBarSpotify.exe    N/A      |\n",
      "|    0   N/A  N/A     37692    C+G   ...4.0_x64__cv1g1gvanyjgm\\WhatsApp.exe    N/A      |\n",
      "+---------------------------------------------------------------------------------------+\n"
     ]
    }
   ],
   "source": [
    "!nvidia-smi"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "HOME = os.getcwd()\n",
    "print(HOME)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "C:\\Users\\Gyana\\AppData\\Local\\Programs\\Python\\Python310\\lib\\site-packages\\tqdm\\auto.py:22: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
      "  from .autonotebook import tqdm as notebook_tqdm\n"
     ]
    }
   ],
   "source": [
    "\n",
    "from IPython import display\n",
    "display.clear_output()\n",
    "\n",
    "from ultralytics import YOLOV8\n",
    "ultralytics.checks()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "!pip install roboflow\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [
    {
     "ename": "ModuleNotFoundError",
     "evalue": "No module named 'roboflow'",
     "output_type": "error",
     "traceback": [
      "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[1;31mModuleNotFoundError\u001b[0m                       Traceback (most recent call last)",
      "Cell \u001b[1;32mIn[2], line 1\u001b[0m\n\u001b[1;32m----> 1\u001b[0m \u001b[39mfrom\u001b[39;00m \u001b[39mroboflow\u001b[39;00m \u001b[39mimport\u001b[39;00m Roboflow\n\u001b[0;32m      2\u001b[0m rf \u001b[39m=\u001b[39m Roboflow(api_key\u001b[39m=\u001b[39m\u001b[39m\"\u001b[39m\u001b[39m2NdQm1ivtFCAYiOLVTwn\u001b[39m\u001b[39m\"\u001b[39m)\n\u001b[0;32m      3\u001b[0m project \u001b[39m=\u001b[39m rf\u001b[39m.\u001b[39mworkspace(\u001b[39m\"\u001b[39m\u001b[39mhackthethong\u001b[39m\u001b[39m\"\u001b[39m)\u001b[39m.\u001b[39mproject(\u001b[39m\"\u001b[39m\u001b[39mpothole-detection-gmnid\u001b[39m\u001b[39m\"\u001b[39m)\n",
      "\u001b[1;31mModuleNotFoundError\u001b[0m: No module named 'roboflow'"
     ]
    }
   ],
   "source": [
    "from roboflow import Roboflow\n",
    "rf = Roboflow(api_key=\"2NdQm1ivtFCAYiOLVTwn\")\n",
    "project = rf.workspace(\"hackthethong\").project(\"pothole-detection-gmnid\")\n",
    "dataset = project.version(3).download(\"yolov8\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {
    "_cell_guid": "b1076dfc-b9ad-4769-8c92-a6c4dae69d19",
    "_uuid": "8f2839f25d086af736a60e9eeb907d3b93b6e0e5",
    "execution": {
     "iopub.execute_input": "2023-03-04T11:06:34.982368Z",
     "iopub.status.busy": "2023-03-04T11:06:34.982065Z",
     "iopub.status.idle": "2023-03-04T11:06:36.155978Z",
     "shell.execute_reply": "2023-03-04T11:06:36.154454Z",
     "shell.execute_reply.started": "2023-03-04T11:06:34.982341Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Sat Mar  4 11:06:35 2023       \n",
      "+-----------------------------------------------------------------------------+\n",
      "| NVIDIA-SMI 470.82.01    Driver Version: 470.82.01    CUDA Version: 11.4     |\n",
      "|-------------------------------+----------------------+----------------------+\n",
      "| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |\n",
      "| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |\n",
      "|                               |                      |               MIG M. |\n",
      "|===============================+======================+======================|\n",
      "|   0  Tesla T4            Off  | 00000000:00:04.0 Off |                    0 |\n",
      "| N/A   36C    P8     9W /  70W |      0MiB / 15109MiB |      0%      Default |\n",
      "|                               |                      |                  N/A |\n",
      "+-------------------------------+----------------------+----------------------+\n",
      "|   1  Tesla T4            Off  | 00000000:00:05.0 Off |                    0 |\n",
      "| N/A   47C    P8    10W /  70W |      0MiB / 15109MiB |      0%      Default |\n",
      "|                               |                      |                  N/A |\n",
      "+-------------------------------+----------------------+----------------------+\n",
      "                                                                               \n",
      "+-----------------------------------------------------------------------------+\n",
      "| Processes:                                                                  |\n",
      "|  GPU   GI   CI        PID   Type   Process name                  GPU Memory |\n",
      "|        ID   ID                                                   Usage      |\n",
      "|=============================================================================|\n",
      "|  No running processes found                                                 |\n",
      "+-----------------------------------------------------------------------------+\n"
     ]
    }
   ],
   "source": [
    "!nvidia-smi"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {
    "execution": {
     "iopub.execute_input": "2023-03-04T11:06:36.165528Z",
     "iopub.status.busy": "2023-03-04T11:06:36.162799Z",
     "iopub.status.idle": "2023-03-04T11:06:36.175759Z",
     "shell.execute_reply": "2023-03-04T11:06:36.174308Z",
     "shell.execute_reply.started": "2023-03-04T11:06:36.165476Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "/kaggle/working\n"
     ]
    }
   ],
   "source": [
    "import os\n",
    "HOME = os.getcwd()\n",
    "print(HOME)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {
    "execution": {
     "iopub.execute_input": "2023-03-04T11:06:36.180607Z",
     "iopub.status.busy": "2023-03-04T11:06:36.179797Z",
     "iopub.status.idle": "2023-03-04T11:06:55.605740Z",
     "shell.execute_reply": "2023-03-04T11:06:55.604691Z",
     "shell.execute_reply.started": "2023-03-04T11:06:36.180564Z"
    }
   },
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Ultralytics YOLOv8.0.20 🚀 Python-3.7.12 torch-1.13.0 CUDA:0 (Tesla T4, 15110MiB)\n",
      "Setup complete ✅ (2 CPUs, 15.6 GB RAM, 4437.1/8062.4 GB disk)\n"
     ]
    }
   ],
   "source": [
    "# Pip install method (recommended)\n",
    "\n",
    "!pip install ultralytics==8.0.20\n",
    "\n",
    "from IPython import display\n",
    "display.clear_output()\n",
    "\n",
    "import ultralytics\n",
    "ultralytics.checks()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {
    "execution": {
     "iopub.execute_input": "2023-03-04T11:06:55.608863Z",
     "iopub.status.busy": "2023-03-04T11:06:55.608358Z",
     "iopub.status.idle": "2023-03-04T11:06:55.615639Z",
     "shell.execute_reply": "2023-03-04T11:06:55.613293Z",
     "shell.execute_reply.started": "2023-03-04T11:06:55.608820Z"
    }
   },
   "outputs": [],
   "source": [
    "from ultralytics import YOLO\n",
    "\n",
    "from IPython.display import display, Image"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "execution": {
     "iopub.execute_input": "2023-03-04T11:06:55.618151Z",
     "iopub.status.busy": "2023-03-04T11:06:55.617309Z",
     "iopub.status.idle": "2023-03-04T11:07:53.787811Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "/kaggle/working/datasets\n",
      "Collecting roboflow\n",
      "  Downloading roboflow-0.2.32-py3-none-any.whl (50 kB)\n",
      "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m50.2/50.2 kB\u001b[0m \u001b[31m2.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
      "\u001b[?25hRequirement already satisfied: opencv-python>=4.1.2 in /opt/conda/lib/python3.7/site-packages (from roboflow) (4.7.0.72)\n",
      "Collecting wget\n",
      "  Downloading wget-3.2.zip (10 kB)\n",
      "  Preparing metadata (setup.py) ... \u001b[?25ldone\n",
      "\u001b[?25hRequirement already satisfied: urllib3>=1.26.6 in /opt/conda/lib/python3.7/site-packages (from roboflow) (1.26.14)\n",
      "Requirement already satisfied: python-dotenv in /opt/conda/lib/python3.7/site-packages (from roboflow) (0.21.1)\n",
      "Requirement already satisfied: Pillow>=7.1.2 in /opt/conda/lib/python3.7/site-packages (from roboflow) (9.4.0)\n",
      "Collecting chardet==4.0.0\n",
      "  Downloading chardet-4.0.0-py2.py3-none-any.whl (178 kB)\n",
      "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m178.7/178.7 kB\u001b[0m \u001b[31m8.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
      "\u001b[?25hRequirement already satisfied: tqdm>=4.41.0 in /opt/conda/lib/python3.7/site-packages (from roboflow) (4.64.1)\n",
      "Collecting idna==2.10\n",
      "  Downloading idna-2.10-py2.py3-none-any.whl (58 kB)\n",
      "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m58.8/58.8 kB\u001b[0m \u001b[31m6.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
      "\u001b[?25hRequirement already satisfied: matplotlib in /opt/conda/lib/python3.7/site-packages (from roboflow) (3.5.3)\n",
      "Collecting cycler==0.10.0\n",
      "  Downloading cycler-0.10.0-py2.py3-none-any.whl (6.5 kB)\n",
      "Collecting requests-toolbelt\n",
      "  Downloading requests_toolbelt-0.10.1-py2.py3-none-any.whl (54 kB)\n",
      "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m54.5/54.5 kB\u001b[0m \u001b[31m6.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
      "\u001b[?25hRequirement already satisfied: python-dateutil in /opt/conda/lib/python3.7/site-packages (from roboflow) (2.8.2)\n",
      "Requirement already satisfied: certifi==2022.12.7 in /opt/conda/lib/python3.7/site-packages (from roboflow) (2022.12.7)\n",
      "Requirement already satisfied: numpy>=1.18.5 in /opt/conda/lib/python3.7/site-packages (from roboflow) (1.21.6)\n",
      "Requirement already satisfied: PyYAML>=5.3.1 in /opt/conda/lib/python3.7/site-packages (from roboflow) (6.0)\n",
      "Requirement already satisfied: requests in /opt/conda/lib/python3.7/site-packages (from roboflow) (2.28.2)\n",
      "Requirement already satisfied: six in /opt/conda/lib/python3.7/site-packages (from roboflow) (1.16.0)\n",
      "Collecting pyparsing==2.4.7\n",
      "  Downloading pyparsing-2.4.7-py2.py3-none-any.whl (67 kB)\n",
      "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m67.8/67.8 kB\u001b[0m \u001b[31m8.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
      "\u001b[?25hRequirement already satisfied: kiwisolver>=1.3.1 in /opt/conda/lib/python3.7/site-packages (from roboflow) (1.4.4)\n",
      "Requirement already satisfied: typing-extensions in /opt/conda/lib/python3.7/site-packages (from kiwisolver>=1.3.1->roboflow) (4.4.0)\n",
      "Requirement already satisfied: fonttools>=4.22.0 in /opt/conda/lib/python3.7/site-packages (from matplotlib->roboflow) (4.38.0)\n",
      "Requirement already satisfied: packaging>=20.0 in /opt/conda/lib/python3.7/site-packages (from matplotlib->roboflow) (23.0)\n",
      "Requirement already satisfied: charset-normalizer<4,>=2 in /opt/conda/lib/python3.7/site-packages (from requests->roboflow) (2.1.1)\n",
      "Building wheels for collected packages: wget\n",
      "  Building wheel for wget (setup.py) ... \u001b[?25ldone\n",
      "\u001b[?25h  Created wheel for wget: filename=wget-3.2-py3-none-any.whl size=9674 sha256=c21353920025ab2a7acd6c41f94a830e3de43131a8eb128b751e9613559978c7\n",
      "  Stored in directory: /root/.cache/pip/wheels/e1/e8/db/ebe4dcd7d7d11208c1e4e4ef246cea4fcc8d463c93405a6555\n",
      "Successfully built wget\n",
      "Installing collected packages: wget, pyparsing, idna, cycler, chardet, requests-toolbelt, roboflow\n",
      "  Attempting uninstall: pyparsing\n",
      "    Found existing installation: pyparsing 3.0.9\n",
      "    Uninstalling pyparsing-3.0.9:\n",
      "      Successfully uninstalled pyparsing-3.0.9\n",
      "  Attempting uninstall: idna\n",
      "    Found existing installation: idna 3.4\n",
      "    Uninstalling idna-3.4:\n",
      "      Successfully uninstalled idna-3.4\n",
      "  Attempting uninstall: cycler\n",
      "    Found existing installation: cycler 0.11.0\n",
      "    Uninstalling cycler-0.11.0:\n",
      "      Successfully uninstalled cycler-0.11.0\n",
      "\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n",
      "librosa 0.10.0 requires soundfile>=0.12.1, but you have soundfile 0.11.0 which is incompatible.\n",
      "cloud-tpu-client 0.10 requires google-api-python-client==1.8.0, but you have google-api-python-client 2.79.0 which is incompatible.\n",
      "apache-beam 2.44.0 requires dill<0.3.2,>=0.3.1.1, but you have dill 0.3.6 which is incompatible.\u001b[0m\u001b[31m\n",
      "\u001b[0mSuccessfully installed chardet-4.0.0 cycler-0.10.0 idna-2.10 pyparsing-2.4.7 requests-toolbelt-0.10.1 roboflow-0.2.32 wget-3.2\n",
      "\u001b[33mWARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv\u001b[0m\u001b[33m\n",
      "loading Roboflow workspace...\n",
      "loading Roboflow project...\n",
      "Downloading Dataset Version Zip in Pothole-detection-1 to yolov8: 97% [254164992 / 260273386] bytes"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "IOPub message rate exceeded.\n",
      "The notebook server will temporarily stop sending output\n",
      "to the client in order to avoid crashing it.\n",
      "To change this limit, set the config variable\n",
      "`--NotebookApp.iopub_msg_rate_limit`.\n",
      "\n",
      "Current values:\n",
      "NotebookApp.iopub_msg_rate_limit=1000.0 (msgs/sec)\n",
      "NotebookApp.rate_limit_window=3.0 (secs)\n",
      "\n"
     ]
    }
   ],
   "source": [
    "!mkdir {HOME}/datasets\n",
    "%cd {HOME}/datasets\n",
    "\n",
    "!pip install roboflow\n",
    "\n",
    "from roboflow import Roboflow\n",
    "rf = Roboflow(api_key=\"2NdQm1ivtFCAYiOLVTwn\")\n",
    "project = rf.workspace(\"hackthethong\").project(\"pothole-detection-gmnid\")\n",
    "dataset = project.version(1).download(\"yolov8\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {
    "execution": {
     "iopub.execute_input": "2023-03-04T11:16:50.287812Z",
     "iopub.status.busy": "2023-03-04T11:16:50.287079Z",
     "iopub.status.idle": "2023-03-04T12:12:27.477858Z",
     "shell.execute_reply": "2023-03-04T12:12:27.476221Z",
     "shell.execute_reply.started": "2023-03-04T11:16:50.287774Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "/kaggle/working\n",
      "Ultralytics YOLOv8.0.20 🚀 Python-3.7.12 torch-1.13.0 CUDA:0 (Tesla T4, 15110MiB)\n",
      "                                                      CUDA:1 (Tesla T4, 15110MiB)\n",
      "\u001b[34m\u001b[1myolo/engine/trainer: \u001b[0mtask=detect, mode=train, model=yolov8s.yaml, data=/kaggle/working/datasets/Pothole-detection-1/data.yaml, epochs=215, patience=50, batch=24, imgsz=800, save=True, cache=False, device=(0, 1), workers=8, project=None, name=None, exist_ok=False, pretrained=False, optimizer=SGD, verbose=True, seed=0, deterministic=True, single_cls=False, image_weights=False, rect=False, cos_lr=False, close_mosaic=10, resume=False, overlap_mask=True, mask_ratio=4, dropout=False, val=True, save_json=False, save_hybrid=False, conf=0.001, iou=0.7, max_det=300, half=False, dnn=False, plots=True, source=ultralytics/assets/, show=False, save_txt=False, save_conf=False, save_crop=False, hide_labels=False, hide_conf=False, vid_stride=1, line_thickness=3, visualize=False, augment=False, agnostic_nms=False, classes=None, retina_masks=False, boxes=True, format=torchscript, keras=False, optimize=False, int8=False, dynamic=False, simplify=False, opset=17, workspace=4, nms=False, lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.001, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=7.5, cls=0.5, dfl=1.5, fl_gamma=0.0, label_smoothing=0.0, nbs=64, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0, cfg=None, v5loader=False, save_dir=runs/detect/train3\n",
      "Overriding model.yaml nc=80 with nc=1\n",
      "\n",
      "                   from  n    params  module                                       arguments                     \n",
      "  0                  -1  1       928  ultralytics.nn.modules.Conv                  [3, 32, 3, 2]                 \n",
      "  1                  -1  1     18560  ultralytics.nn.modules.Conv                  [32, 64, 3, 2]                \n",
      "  2                  -1  1     29056  ultralytics.nn.modules.C2f                   [64, 64, 1, True]             \n",
      "  3                  -1  1     73984  ultralytics.nn.modules.Conv                  [64, 128, 3, 2]               \n",
      "  4                  -1  2    197632  ultralytics.nn.modules.C2f                   [128, 128, 2, True]           \n",
      "  5                  -1  1    295424  ultralytics.nn.modules.Conv                  [128, 256, 3, 2]              \n",
      "  6                  -1  2    788480  ultralytics.nn.modules.C2f                   [256, 256, 2, True]           \n",
      "  7                  -1  1   1180672  ultralytics.nn.modules.Conv                  [256, 512, 3, 2]              \n",
      "  8                  -1  1   1838080  ultralytics.nn.modules.C2f                   [512, 512, 1, True]           \n",
      "  9                  -1  1    656896  ultralytics.nn.modules.SPPF                  [512, 512, 5]                 \n",
      " 10                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          \n",
      " 11             [-1, 6]  1         0  ultralytics.nn.modules.Concat                [1]                           \n",
      " 12                  -1  1    591360  ultralytics.nn.modules.C2f                   [768, 256, 1]                 \n",
      " 13                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          \n",
      " 14             [-1, 4]  1         0  ultralytics.nn.modules.Concat                [1]                           \n",
      " 15                  -1  1    148224  ultralytics.nn.modules.C2f                   [384, 128, 1]                 \n",
      " 16                  -1  1    147712  ultralytics.nn.modules.Conv                  [128, 128, 3, 2]              \n",
      " 17            [-1, 12]  1         0  ultralytics.nn.modules.Concat                [1]                           \n",
      " 18                  -1  1    493056  ultralytics.nn.modules.C2f                   [384, 256, 1]                 \n",
      " 19                  -1  1    590336  ultralytics.nn.modules.Conv                  [256, 256, 3, 2]              \n",
      " 20             [-1, 9]  1         0  ultralytics.nn.modules.Concat                [1]                           \n",
      " 21                  -1  1   1969152  ultralytics.nn.modules.C2f                   [768, 512, 1]                 \n",
      " 22        [15, 18, 21]  1   2116435  ultralytics.nn.modules.Detect                [1, [128, 256, 512]]          \n",
      "Model summary: 225 layers, 11135987 parameters, 11135971 gradients, 28.6 GFLOPs\n",
      "\n",
      "Transferred 349/355 items from pretrained weights\n",
      "DDP settings: RANK 0, WORLD_SIZE 2, DEVICE cuda:0\n",
      "Overriding model.yaml nc=80 with nc=1\n",
      "\n",
      "                   from  n    params  module                                       arguments                     \n",
      "  0                  -1  1       928  ultralytics.nn.modules.Conv                  [3, 32, 3, 2]                 \n",
      "  1                  -1  1     18560  ultralytics.nn.modules.Conv                  [32, 64, 3, 2]                \n",
      "  2                  -1  1     29056  ultralytics.nn.modules.C2f                   [64, 64, 1, True]             \n",
      "  3                  -1  1     73984  ultralytics.nn.modules.Conv                  [64, 128, 3, 2]               \n",
      "  4                  -1  2    197632  ultralytics.nn.modules.C2f                   [128, 128, 2, True]           \n",
      "  5                  -1  1    295424  ultralytics.nn.modules.Conv                  [128, 256, 3, 2]              \n",
      "  6                  -1  2    788480  ultralytics.nn.modules.C2f                   [256, 256, 2, True]           \n",
      "  7                  -1  1   1180672  ultralytics.nn.modules.Conv                  [256, 512, 3, 2]              \n",
      "  8                  -1  1   1838080  ultralytics.nn.modules.C2f                   [512, 512, 1, True]           \n",
      "  9                  -1  1    656896  ultralytics.nn.modules.SPPF                  [512, 512, 5]                 \n",
      " 10                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          \n",
      " 11             [-1, 6]  1         0  ultralytics.nn.modules.Concat                [1]                           \n",
      " 12                  -1  1    591360  ultralytics.nn.modules.C2f                   [768, 256, 1]                 \n",
      " 13                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          \n",
      " 14             [-1, 4]  1         0  ultralytics.nn.modules.Concat                [1]                           \n",
      " 15                  -1  1    148224  ultralytics.nn.modules.C2f                   [384, 128, 1]                 \n",
      " 16                  -1  1    147712  ultralytics.nn.modules.Conv                  [128, 128, 3, 2]              \n",
      " 17            [-1, 12]  1         0  ultralytics.nn.modules.Concat                [1]                           \n",
      " 18                  -1  1    493056  ultralytics.nn.modules.C2f                   [384, 256, 1]                 \n",
      " 19                  -1  1    590336  ultralytics.nn.modules.Conv                  [256, 256, 3, 2]              \n",
      " 20             [-1, 9]  1         0  ultralytics.nn.modules.Concat                [1]                           \n",
      " 21                  -1  1   1969152  ultralytics.nn.modules.C2f                   [768, 512, 1]                 \n",
      " 22        [15, 18, 21]  1   2116435  ultralytics.nn.modules.Detect                [1, [128, 256, 512]]          \n",
      "YOLOv8s summary: 225 layers, 11135987 parameters, 11135971 gradients, 28.6 GFLOPs\n",
      "\n",
      "\u001b[34m\u001b[1moptimizer:\u001b[0m SGD(lr=0.01) with parameter groups 57 weight(decay=0.0), 64 weight(decay=0.0011250000000000001), 63 bias\n",
      "\u001b[34m\u001b[1mtrain: \u001b[0mScanning /kaggle/working/datasets/Pothole-detection-1/train/labels.cache.\u001b[0m\n",
      "\u001b[34m\u001b[1malbumentations: \u001b[0mBlur(p=0.01, blur_limit=(3, 7)), MedianBlur(p=0.01, blur_limit=(3, 7)), ToGray(p=0.01), CLAHE(p=0.01, clip_limit=(1, 4.0), tile_grid_size=(8, 8))\n",
      "\u001b[34m\u001b[1mval: \u001b[0mScanning /kaggle/working/datasets/Pothole-detection-1/valid/labels.cache...\u001b[0m\n",
      "Image sizes 800 train, 800 val\n",
      "Using 2 dataloader workers\n",
      "Logging results to \u001b[1mruns/detect/train3\u001b[0m\n",
      "Starting training for 215 epochs...\n",
      "\n",
      "      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size\n",
      "      1/215      5.86G      3.481      4.528       4.09          7        800: 1\n",
      "                 Class     Images  Instances      Box(P          R      mAP50  m\n",
      "                   all        357        941   0.000902     0.0967   0.000495   0.000148\n",
      "\n",
      "      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size\n",
      "      2/215      6.96G      3.266      3.481      3.476          2        800: 1\n",
      "                 Class     Images  Instances      Box(P          R      mAP50  m\n",
      "                   all        357        941   0.000937     0.0786   0.000536   0.000168\n",
      "\n",
      "      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size\n",
      "      3/215      6.96G       2.43      2.349      2.433          7        800: 1\n",
      "                 Class     Images  Instances      Box(P          R      mAP50  m\n",
      "                   all        357        941    0.00105    0.00213    0.00035   0.000101\n",
      "\n",
      "      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size\n",
      "      4/215      6.96G      1.867       1.71       1.77          8        800: 1\n",
      "                 Class     Images  Instances      Box(P          R      mAP50  m\n",
      "                   all        357        941    0.00488     0.0117     0.0025    0.00104\n",
      "\n",
      "      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size\n",
      "      5/215      6.96G      1.549      1.331       1.48          3        800: 1\n",
      "                 Class     Images  Instances      Box(P          R      mAP50  m\n",
      "                   all        357        941      0.023     0.0266    0.00589     0.0015\n",
      "\n",
      "      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size\n",
      "      6/215      6.96G      1.341      1.113       1.34         17        800: 1\n",
      "                 Class     Images  Instances      Box(P          R      mAP50  m\n",
      "                   all        357        941    0.00154    0.00531   0.000551   0.000166\n",
      "\n",
      "      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size\n",
      "      7/215      6.96G      1.187     0.9461      1.234         14        800: 1\n",
      "                 Class     Images  Instances      Box(P          R      mAP50  m\n",
      "                   all        357        941    0.00854     0.0298    0.00488    0.00147\n",
      "\n",
      "      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size\n",
      "      8/215      6.96G       1.08     0.8943      1.175          8        800: 1\n",
      "                 Class     Images  Instances      Box(P          R      mAP50  m\n",
      "                   all        357        941     0.0174     0.0765     0.0116    0.00329\n",
      "\n",
      "      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size\n",
      "      9/215      6.96G      1.012     0.8116      1.133          5        800: 1\n",
      "                 Class     Images  Instances      Box(P          R      mAP50  m\n",
      "                   all        357        941     0.0058     0.0085    0.00295    0.00103\n",
      "\n",
      "      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size\n",
      "     10/215      6.96G     0.9529      0.756      1.114          6        800: 1\n",
      "                 Class     Images  Instances      Box(P          R      mAP50  m\n",
      "                   all        357        941     0.0551     0.0351     0.0156    0.00493\n",
      "\n",
      "      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size\n",
      "     11/215      6.96G     0.8946     0.7085      1.069          3        800: 1\n",
      "                 Class     Images  Instances      Box(P          R      mAP50  m\n",
      "                   all        357        941    0.00808      0.051    0.00986    0.00449\n",
      "\n",
      "      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size\n",
      "     12/215      6.96G     0.8897     0.7045      1.057          4        800: 1\n",
      "                 Class     Images  Instances      Box(P          R      mAP50  m\n",
      "                   all        357        941     0.0929     0.0244     0.0159    0.00461\n",
      "\n",
      "      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size\n",
      "     13/215      6.96G     0.8399     0.6641      1.048          5        800: 1\n",
      "                 Class     Images  Instances      Box(P          R      mAP50  m\n",
      "                   all        357        941     0.0321     0.0893     0.0204    0.00543\n",
      "\n",
      "      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size\n",
      "     14/215      6.96G     0.8033     0.6374       1.02         10        800: 1\n",
      "                 Class     Images  Instances      Box(P          R      mAP50  m\n",
      "                   all        357        941     0.0161     0.0298    0.00856      0.003\n",
      "\n",
      "      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size\n",
      "     15/215      6.96G     0.7915     0.6248      1.019         19        800: 1\n",
      "                 Class     Images  Instances      Box(P          R      mAP50  m\n",
      "                   all        357        941     0.0149      0.117       0.01    0.00296\n",
      "\n",
      "      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size\n",
      "     16/215      6.96G     0.7849     0.6106      1.012          2        800: 1\n",
      "                 Class     Images  Instances      Box(P          R      mAP50  m\n",
      "                   all        357        941     0.0118     0.0298     0.0039    0.00128\n",
      "\n",
      "      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size\n",
      "     17/215      6.96G     0.7422     0.5916     0.9887         44        800:  ^C\n",
      "     17/215      6.96G     0.7432     0.5909     0.9886         49        800:  Traceback (most recent call last):\n",
      "  File \"/root/.config/Ultralytics/DDP/_temp_f6tt1q5n139889764186704.py\", line 6, in <module>\n",
      "    trainer.train()\n",
      "  File \"/opt/conda/lib/python3.7/site-packages/ultralytics/yolo/engine/trainer.py\", line 183, in train\n",
      "    self._do_train(int(os.getenv(\"RANK\", -1)), world_size)\n",
      "  File \"/opt/conda/lib/python3.7/site-packages/ultralytics/yolo/engine/trainer.py\", line 284, in _do_train\n",
      "    for i, batch in pbar:\n",
      "  File \"/opt/conda/lib/python3.7/site-packages/torch/utils/data/dataloader.py\", line 628, in __next__\n",
      "    data = self._next_data()\n",
      "  File \"/opt/conda/lib/python3.7/site-packages/torch/utils/data/dataloader.py\", line 1316, in _next_data\n",
      "    idx, data = self._get_data()\n",
      "  File \"/opt/conda/lib/python3.7/site-packages/torch/utils/data/dataloader.py\", line 1272, in _get_data\n",
      "    success, data = self._try_get_data()\n",
      "  File \"/opt/conda/lib/python3.7/site-packages/torch/utils/data/dataloader.py\", line 1120, in _try_get_data\n",
      "Traceback (most recent call last):\n",
      "  File \"/opt/conda/lib/python3.7/site-packages/tqdm/std.py\", line 1195, in __iter__\n",
      "    data = self._data_queue.get(timeout=timeout)\n",
      "  File \"/opt/conda/lib/python3.7/queue.py\", line 179, in get\n",
      "    self.not_empty.wait(remaining)\n",
      "  File \"/opt/conda/lib/python3.7/threading.py\", line 300, in wait\n",
      "    gotit = waiter.acquire(True, timeout)\n",
      "KeyboardInterrupt\n",
      "    for obj in iterable:\n",
      "  File \"/opt/conda/lib/python3.7/site-packages/torch/utils/data/dataloader.py\", line 628, in __next__\n",
      "    data = self._next_data()\n",
      "  File \"/opt/conda/lib/python3.7/site-packages/torch/utils/data/dataloader.py\", line 1316, in _next_data\n",
      "    idx, data = self._get_data()\n",
      "  File \"/opt/conda/lib/python3.7/site-packages/torch/utils/data/dataloader.py\", line 1272, in _get_data\n",
      "    success, data = self._try_get_data()\n",
      "  File \"/opt/conda/lib/python3.7/site-packages/torch/utils/data/dataloader.py\", line 1120, in _try_get_data\n",
      "    data = self._data_queue.get(timeout=timeout)\n",
      "  File \"/opt/conda/lib/python3.7/queue.py\", line 179, in get\n",
      "    self.not_empty.wait(remaining)\n",
      "  File \"/opt/conda/lib/python3.7/threading.py\", line 300, in wait\n",
      "    gotit = waiter.acquire(True, timeout)\n",
      "KeyboardInterrupt\n",
      "\n",
      "During handling of the above exception, another exception occurred:\n",
      "\n",
      "Traceback (most recent call last):\n",
      "  File \"/root/.config/Ultralytics/DDP/_temp_f6tt1q5n139889764186704.py\", line 6, in <module>\n",
      "    trainer.train()\n",
      "  File \"/opt/conda/lib/python3.7/site-packages/ultralytics/yolo/engine/trainer.py\", line 183, in train\n",
      "    self._do_train(int(os.getenv(\"RANK\", -1)), world_size)\n",
      "  File \"/opt/conda/lib/python3.7/site-packages/ultralytics/yolo/engine/trainer.py\", line 284, in _do_train\n",
      "    for i, batch in pbar:\n",
      "  File \"/opt/conda/lib/python3.7/site-packages/tqdm/std.py\", line 1210, in __iter__\n",
      "    self.close()\n",
      "  File \"/opt/conda/lib/python3.7/site-packages/tqdm/std.py\", line 1316, in close\n",
      "    self.display(pos=0)\n",
      "  File \"/opt/conda/lib/python3.7/site-packages/tqdm/std.py\", line 1509, in display\n",
      "    self.sp(self.__str__() if msg is None else msg)\n",
      "  File \"/opt/conda/lib/python3.7/site-packages/tqdm/std.py\", line 350, in print_status\n",
      "    fp_write('\\r' + s + (' ' * max(last_len[0] - len_s, 0)))\n",
      "  File \"/opt/conda/lib/python3.7/site-packages/tqdm/std.py\", line 343, in fp_write\n",
      "    fp.write(_unicode(s))\n",
      "  File \"/opt/conda/lib/python3.7/site-packages/tqdm/utils.py\", line 145, in inner\n",
      "    return func(*args, **kwargs)\n",
      "KeyboardInterrupt\n"
     ]
    }
   ],
   "source": [
    "%cd {HOME}\n",
    "\n",
    "!yolo task=detect mode=train model=yolov8s.pt data={dataset.location}/data.yaml device = '0,1' epochs=215 imgsz=800 plots=True device=0,1 batch = 24\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "execution": {
     "iopub.status.busy": "2023-03-04T12:12:29.081618Z",
     "iopub.status.idle": "2023-03-04T12:12:29.082487Z",
     "shell.execute_reply": "2023-03-04T12:12:29.082244Z",
     "shell.execute_reply.started": "2023-03-04T12:12:29.082201Z"
    }
   },
   "outputs": [],
   "source": [
    "!ls {HOME}/runs/detect/train/    "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "execution": {
     "iopub.status.busy": "2023-03-04T12:12:29.083867Z",
     "iopub.status.idle": "2023-03-04T12:12:29.084678Z",
     "shell.execute_reply": "2023-03-04T12:12:29.084440Z",
     "shell.execute_reply.started": "2023-03-04T12:12:29.084414Z"
    }
   },
   "outputs": [],
   "source": [
    "%cd {HOME}\n",
    "Image(filename=f'{HOME}/runs/detect/train/confusion_matrix.png', width=600)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "execution": {
     "iopub.status.busy": "2023-03-04T12:12:29.086107Z",
     "iopub.status.idle": "2023-03-04T12:12:29.086926Z",
     "shell.execute_reply": "2023-03-04T12:12:29.086690Z",
     "shell.execute_reply.started": "2023-03-04T12:12:29.086663Z"
    }
   },
   "outputs": [],
   "source": [
    "%cd {HOME}\n",
    "Image(filename=f'{HOME}/runs/detect/train/results.png', width=600)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "execution": {
     "iopub.status.busy": "2023-03-04T12:12:29.088406Z",
     "iopub.status.idle": "2023-03-04T12:12:29.089394Z",
     "shell.execute_reply": "2023-03-04T12:12:29.089118Z",
     "shell.execute_reply.started": "2023-03-04T12:12:29.089088Z"
    }
   },
   "outputs": [],
   "source": [
    "%cd {HOME}\n",
    "Image(filename=f'{HOME}/runs/detect/train/val_batch0_pred.jpg', width=600)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "execution": {
     "iopub.status.busy": "2023-03-04T12:12:29.090791Z",
     "iopub.status.idle": "2023-03-04T12:12:29.091614Z",
     "shell.execute_reply": "2023-03-04T12:12:29.091379Z",
     "shell.execute_reply.started": "2023-03-04T12:12:29.091353Z"
    }
   },
   "outputs": [],
   "source": [
    "%cd {HOME}\n",
    "\n",
    "!yolo task=detect mode=val model={HOME}/runs/detect/train/weights/best.pt data={dataset.location}/data.yaml"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "execution": {
     "iopub.status.busy": "2023-03-04T12:12:29.093044Z",
     "iopub.status.idle": "2023-03-04T12:12:29.093872Z",
     "shell.execute_reply": "2023-03-04T12:12:29.093627Z",
     "shell.execute_reply.started": "2023-03-04T12:12:29.093602Z"
    }
   },
   "outputs": [],
   "source": [
    "%cd {HOME}\n",
    "!yolo task=detect mode=predict model={HOME}/runs/detect/train/weights/best.pt conf=0.25 source={dataset.location}/test/images save=True"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "execution": {
     "iopub.status.busy": "2023-03-04T12:12:29.095308Z",
     "iopub.status.idle": "2023-03-04T12:12:29.096145Z",
     "shell.execute_reply": "2023-03-04T12:12:29.095908Z",
     "shell.execute_reply.started": "2023-03-04T12:12:29.095881Z"
    }
   },
   "outputs": [],
   "source": [
    "import glob\n",
    "from IPython.display import Image, display\n",
    "\n",
    "for image_path in glob.glob(f'{HOME}/runs/detect/predict3/*.jpg')[:3]:\n",
    "      display(Image(filename=image_path, width=600))\n",
    "      print(\"\\n\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "execution": {
     "iopub.status.busy": "2023-03-04T12:12:29.097602Z",
     "iopub.status.idle": "2023-03-04T12:12:29.098464Z",
     "shell.execute_reply": "2023-03-04T12:12:29.098204Z",
     "shell.execute_reply.started": "2023-03-04T12:12:29.098177Z"
    }
   },
   "outputs": [],
   "source": [
    "project.version(dataset.version).deploy(model_type=\"yolov8\", model_path=f\"{HOME}/runs/detect/train/\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "execution": {
     "iopub.status.busy": "2023-03-04T12:12:29.099771Z",
     "iopub.status.idle": "2023-03-04T12:12:29.100632Z",
     "shell.execute_reply": "2023-03-04T12:12:29.100401Z",
     "shell.execute_reply.started": "2023-03-04T12:12:29.100374Z"
    }
   },
   "outputs": [],
   "source": [
    "#Run inference on your model on a persistant, auto-scaling, cloud API\n",
    "\n",
    "#load model\n",
    "model = project.version(dataset.version).model\n",
    "\n",
    "#choose random test set image\n",
    "import os, random\n",
    "test_set_loc = dataset.location + \"/test/images/\"\n",
    "random_test_image = random.choice(os.listdir(test_set_loc))\n",
    "print(\"running inference on \" + random_test_image)\n",
    "\n",
    "pred = model.predict(test_set_loc + random_test_image, confidence=40, overlap=30).json()\n",
    "pred"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.6"
  },
  "vscode": {
   "interpreter": {
    "hash": "909e94fa6c232d7c724ea0272d1d960c187d26acecb731545632ac2dfd18735f"
   }
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}