Depth Estimation
FBAGSTM commited on
Commit
b4d8c38
·
verified ·
1 Parent(s): 6b9221a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +79 -3
README.md CHANGED
@@ -1,3 +1,79 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ pipeline_tag: depth-estimation
4
+ ---
5
+ # FastDepth
6
+
7
+ ## **Use case** : `Depth Estimation`
8
+
9
+ # Model description
10
+
11
+ FastDepth is a lightweight encoder-decoder network designed for real-time monocular depth estimation, optimized for edge devices. This implementation is based on model number 146 from [PINTO's model zoo](https://github.com/PINTO0309/PINTO_model_zoo), which builds upon a MobileNetV1 based feature extractor and a fast decoder.
12
+
13
+ Although the original training dataset is not explicitly provided, it is most likely **NYU Depth V2**, a standard benchmark dataset for indoor depth estimation.
14
+
15
+ ## Network information
16
+
17
+
18
+ | Network Information | Value |
19
+ |-------------------------|----------------------------------------------------------------|
20
+ | Framework | TensorFlowLite |
21
+ | Quantization | int8 |
22
+ | Provenance | PINTO Model Zoo #146 |
23
+ | Paper | [Link to Paper](https://arxiv.org/pdf/1903.03273)|
24
+
25
+ The models are quantized using tensorflow lite converter.
26
+
27
+
28
+ ## Network inputs / outputs
29
+
30
+ | Input Shape | Description |
31
+ |--------------|-----------------------------------------------------|
32
+ | (1, H, W, 3) | Single RGB image (int8) |
33
+
34
+ | Output Shape | Description |
35
+ |---------------|-------------------------------------------------|
36
+ | (1, H, W, 1) | Single-channel depth prediction (int8)|
37
+
38
+
39
+ ## Recommended platforms
40
+
41
+
42
+ | Platform | Supported | Recommended |
43
+ |----------|--------|-----------|
44
+ | STM32L0 |[]|[]|
45
+ | STM32L4 |[]|[]|
46
+ | STM32U5 |[]|[]|
47
+ | STM32H7 |[]|[]|
48
+ | STM32MP1 |[]|[]|
49
+ | STM32MP2 |[x]|[x]|
50
+ | STM32N6 |[x]|[x]|
51
+
52
+
53
+ # Performances
54
+
55
+ ## Metrics
56
+
57
+ Measures are done with default STM32Cube.AI configuration with enabled input / output allocated option.
58
+
59
+ ### Reference **NPU** memory footprint
60
+
61
+ | Model | Dataset | Format | Resolution | Series | Internal RAM (KiB) | External RAM (KiB) | Weights Flash (KiB) | STM32Cube.AI version | STEdgeAI Core version |
62
+ |------------|---------------|----------|------------|-----------|--------------|--------------|---------------|----------------------|-----------------------|
63
+ | [Fast Depth](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/pose_estimation/fast_depth/Public_pretrainedmodel_public_dataset/nyu_depth_v2/fast_depth_224/fast_depth_224_int8_pc.tflite) | NYU depth v2 | Int8 | 224x224x3 | STM32N6 | 2365.98 | 0.0 | 1505.19 | 10.2.0 | 2.2.0 |
64
+ | [Fast Depth](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/pose_estimation/fast_depth/Public_pretrainedmodel_public_dataset/nyu_depth_v2/fast_depth_224/fast_depth_224_int8_pc.tflite) | NYU depth v2 | Int8 | 256x256x3 | STM32N6 | 2688 | 1024.0 | 1505.19 | 10.2.0 | 2.2.0 |
65
+ | [Fast Depth](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/pose_estimation/fast_depth/Public_pretrainedmodel_public_dataset/nyu_depth_v2/fast_depth_320/fast_depth_320_int8_pc.tflite) | NYU depth v2 | Int8 | 224x224x3 | STM32N6 | 2800 | 1600 | 1505.17 | 10.2.0 | 2.2.0 |
66
+
67
+
68
+ ### Reference **NPU** inference time
69
+
70
+
71
+ | Model | Dataset | Format | Resolution | Board | Execution Engine | Inference time (ms) | Inf / sec | STM32Cube.AI version | STEdgeAI Core version |
72
+ |------------|---------------|----------|------------|------------------|------------------|---------------------|-------------|----------------------|-------------------------|
73
+ | [Fast Depth](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/pose_estimation/fast_depth/Public_pretrainedmodel_public_dataset/nyu_depth_v2/fast_depth_224/fast_depth_224_int8_pc.tflite) | NYU depth v2 | Int8 | 224x224x3 | STM32N6570-DK | NPU/MCU | 24.43 | 40.93 | 10.2.0 | 2.2.0 |
74
+ | [Fast Depth](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/pose_estimation/fast_depth/Public_pretrainedmodel_public_dataset/nyu_depth_v2/fast_depth_224/fast_depth_224_int8_pc.tflite) | NYU depth v2 | Int8 | 256x256x3 | STM32N6570-DK | NPU/MCU | 55.51 | 18.01 | 10.2.0 | 2.2.0 |
75
+ | [Fast Depth](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/pose_estimation/fast_depth/Public_pretrainedmodel_public_dataset/nyu_depth_v2/fast_depth_320/fast_depth_320_int8_pc.tflite) | NYU depth v2 | Int8 | 320x320x3 | STM32N6570-DK | NPU/MCU | 56.07 | 17.83 | 10.2.0 | 2.2.0 |
76
+
77
+
78
+
79
+ Please refer to the stm32ai-modelzoo-services GitHub [here](https://github.com/STMicroelectronics/stm32ai-modelzoo-services)