Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,79 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
pipeline_tag: depth-estimation
|
4 |
+
---
|
5 |
+
# FastDepth
|
6 |
+
|
7 |
+
## **Use case** : `Depth Estimation`
|
8 |
+
|
9 |
+
# Model description
|
10 |
+
|
11 |
+
FastDepth is a lightweight encoder-decoder network designed for real-time monocular depth estimation, optimized for edge devices. This implementation is based on model number 146 from [PINTO's model zoo](https://github.com/PINTO0309/PINTO_model_zoo), which builds upon a MobileNetV1 based feature extractor and a fast decoder.
|
12 |
+
|
13 |
+
Although the original training dataset is not explicitly provided, it is most likely **NYU Depth V2**, a standard benchmark dataset for indoor depth estimation.
|
14 |
+
|
15 |
+
## Network information
|
16 |
+
|
17 |
+
|
18 |
+
| Network Information | Value |
|
19 |
+
|-------------------------|----------------------------------------------------------------|
|
20 |
+
| Framework | TensorFlowLite |
|
21 |
+
| Quantization | int8 |
|
22 |
+
| Provenance | PINTO Model Zoo #146 |
|
23 |
+
| Paper | [Link to Paper](https://arxiv.org/pdf/1903.03273)|
|
24 |
+
|
25 |
+
The models are quantized using tensorflow lite converter.
|
26 |
+
|
27 |
+
|
28 |
+
## Network inputs / outputs
|
29 |
+
|
30 |
+
| Input Shape | Description |
|
31 |
+
|--------------|-----------------------------------------------------|
|
32 |
+
| (1, H, W, 3) | Single RGB image (int8) |
|
33 |
+
|
34 |
+
| Output Shape | Description |
|
35 |
+
|---------------|-------------------------------------------------|
|
36 |
+
| (1, H, W, 1) | Single-channel depth prediction (int8)|
|
37 |
+
|
38 |
+
|
39 |
+
## Recommended platforms
|
40 |
+
|
41 |
+
|
42 |
+
| Platform | Supported | Recommended |
|
43 |
+
|----------|--------|-----------|
|
44 |
+
| STM32L0 |[]|[]|
|
45 |
+
| STM32L4 |[]|[]|
|
46 |
+
| STM32U5 |[]|[]|
|
47 |
+
| STM32H7 |[]|[]|
|
48 |
+
| STM32MP1 |[]|[]|
|
49 |
+
| STM32MP2 |[x]|[x]|
|
50 |
+
| STM32N6 |[x]|[x]|
|
51 |
+
|
52 |
+
|
53 |
+
# Performances
|
54 |
+
|
55 |
+
## Metrics
|
56 |
+
|
57 |
+
Measures are done with default STM32Cube.AI configuration with enabled input / output allocated option.
|
58 |
+
|
59 |
+
### Reference **NPU** memory footprint
|
60 |
+
|
61 |
+
| Model | Dataset | Format | Resolution | Series | Internal RAM (KiB) | External RAM (KiB) | Weights Flash (KiB) | STM32Cube.AI version | STEdgeAI Core version |
|
62 |
+
|------------|---------------|----------|------------|-----------|--------------|--------------|---------------|----------------------|-----------------------|
|
63 |
+
| [Fast Depth](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/pose_estimation/fast_depth/Public_pretrainedmodel_public_dataset/nyu_depth_v2/fast_depth_224/fast_depth_224_int8_pc.tflite) | NYU depth v2 | Int8 | 224x224x3 | STM32N6 | 2365.98 | 0.0 | 1505.19 | 10.2.0 | 2.2.0 |
|
64 |
+
| [Fast Depth](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/pose_estimation/fast_depth/Public_pretrainedmodel_public_dataset/nyu_depth_v2/fast_depth_224/fast_depth_224_int8_pc.tflite) | NYU depth v2 | Int8 | 256x256x3 | STM32N6 | 2688 | 1024.0 | 1505.19 | 10.2.0 | 2.2.0 |
|
65 |
+
| [Fast Depth](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/pose_estimation/fast_depth/Public_pretrainedmodel_public_dataset/nyu_depth_v2/fast_depth_320/fast_depth_320_int8_pc.tflite) | NYU depth v2 | Int8 | 224x224x3 | STM32N6 | 2800 | 1600 | 1505.17 | 10.2.0 | 2.2.0 |
|
66 |
+
|
67 |
+
|
68 |
+
### Reference **NPU** inference time
|
69 |
+
|
70 |
+
|
71 |
+
| Model | Dataset | Format | Resolution | Board | Execution Engine | Inference time (ms) | Inf / sec | STM32Cube.AI version | STEdgeAI Core version |
|
72 |
+
|------------|---------------|----------|------------|------------------|------------------|---------------------|-------------|----------------------|-------------------------|
|
73 |
+
| [Fast Depth](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/pose_estimation/fast_depth/Public_pretrainedmodel_public_dataset/nyu_depth_v2/fast_depth_224/fast_depth_224_int8_pc.tflite) | NYU depth v2 | Int8 | 224x224x3 | STM32N6570-DK | NPU/MCU | 24.43 | 40.93 | 10.2.0 | 2.2.0 |
|
74 |
+
| [Fast Depth](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/pose_estimation/fast_depth/Public_pretrainedmodel_public_dataset/nyu_depth_v2/fast_depth_224/fast_depth_224_int8_pc.tflite) | NYU depth v2 | Int8 | 256x256x3 | STM32N6570-DK | NPU/MCU | 55.51 | 18.01 | 10.2.0 | 2.2.0 |
|
75 |
+
| [Fast Depth](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/pose_estimation/fast_depth/Public_pretrainedmodel_public_dataset/nyu_depth_v2/fast_depth_320/fast_depth_320_int8_pc.tflite) | NYU depth v2 | Int8 | 320x320x3 | STM32N6570-DK | NPU/MCU | 56.07 | 17.83 | 10.2.0 | 2.2.0 |
|
76 |
+
|
77 |
+
|
78 |
+
|
79 |
+
Please refer to the stm32ai-modelzoo-services GitHub [here](https://github.com/STMicroelectronics/stm32ai-modelzoo-services)
|