Update README.md
Browse files
README.md
CHANGED
@@ -69,30 +69,30 @@ Measures are done with default STM32Cube.AI configuration with enabled input / o
|
|
69 |
### Reference **NPU** memory footprint based on COCO Person dataset (see Accuracy for details on dataset)
|
70 |
|Model | Dataset | Format | Resolution | Series | Internal RAM (KiB) | External RAM (KiB) | Weights Flash (KiB) | STM32Cube.AI version | STEdgeAI Core version |
|
71 |
|----------|------------------|--------|-------------|------------------|------------------|---------------------|-------|----------------------|-------------------------|
|
72 |
-
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_192/ssd_mobilenet_v2_fpnlite_035_192_int8.tflite) | COCO-Person | Int8 | 192x192x3 | STM32N6 | 606.49 | 0.0 | 1580.53 | 10.0.0 | 2.0.0 |
|
73 |
-
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_224/ssd_mobilenet_v2_fpnlite_035_224_int8.tflite) | COCO-Person | Int8 | 224x224x3 | STM32N6 | 1314.67 | 0.0 | 1607.41 | 10.0.0 | 2.0.0 |
|
74 |
-
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_256/ssd_mobilenet_v2_fpnlite_035_256_int8.tflite) | COCO-Person | Int8 | 256x256x3 | STM32N6 | 1959.06 | 0.0 | 1637.02 | 10.0.0 | 2.0.0 |
|
75 |
-
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_416/ssd_mobilenet_v2_fpnlite_035_416_int8.tflite) | COCO-Person | Int8 | 416x416x3 | STM32N6 | 4570.03 | 0.0 | 1837.8 | 10.0.0 | 2.0.0 |
|
76 |
|
77 |
### Reference **NPU** inference time based on COCO Person dataset (see Accuracy for details on dataset)
|
78 |
|
79 |
|
80 |
| Model | Dataset | Format | Resolution | Board | Execution Engine | Inference time (ms) | Inf / sec | STM32Cube.AI version | STEdgeAI Core version |
|
81 |
|--------|------------------|--------|-------------|------------------|------------------|---------------------|-------|----------------------|-------------------------|
|
82 |
-
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_192/ssd_mobilenet_v2_fpnlite_035_192_int8.tflite) | COCO-Person | Int8 | 192x192x3 | STM32N6570-DK | NPU/MCU | 14.37 | 69.57 | 10.0.0 | 2.0.0 |
|
83 |
-
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_224/ssd_mobilenet_v2_fpnlite_035_224_int8.tflite) | COCO-Person | Int8 | 224x224x3 | STM32N6570-DK | NPU/MCU | 18.15 | 55.10 | 10.0.0 | 2.0.0 |
|
84 |
-
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_256/ssd_mobilenet_v2_fpnlite_035_256_int8.tflite) | COCO-Person | Int8 | 256x256x3 | STM32N6570-DK | NPU/MCU | 21.73 | 46.03 | 10.0.0 | 2.0.0 |
|
85 |
-
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_416/ssd_mobilenet_v2_fpnlite_035_416_int8.tflite) | COCO-Person | Int8 | 416x416x3 | STM32N6570-DK | NPU/MCU | 114.12 | 8.76 | 10.0.0 | 2.0.0 |
|
86 |
|
87 |
### Reference **MCU** memory footprint based on COCO Person dataset (see Accuracy for details on dataset)
|
88 |
|
89 |
|
90 |
| Model | Format | Resolution | Series | Activation RAM (KiB) | Runtime RAM (KiB) | Weights Flash (KiB) | Code Flash (KiB) | Total RAM (KiB) | Total Flash (KiB) | STM32Cube.AI version |
|
91 |
|-------------------|--------|------------|---------|----------------|-------------|---------------|------------|-------------|-------------|-----------------------|
|
92 |
-
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_192/ssd_mobilenet_v2_fpnlite_035_192_int8.tflite) | Int8 | 192x192x3 | STM32H7 | 521.210.0.0 | 70.26 | 1098.76 | 192.69 | 591.46 | 1291.45 | 10.0.0 | |
|
93 |
-
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_224/ssd_mobilenet_v2_fpnlite_035_224_int8.tflite) | Int8 | 224x224x3 | STM32H7 | 956.82 | 70.3 | 1120.63 | 192.84 | 1027.12 | 1313.47 | 10.0.0 |
|
94 |
-
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_256/ssd_mobilenet_v2_fpnlite_035_256_int8.tflite) | Int8 | 256x256x3 | STM32H7 | 1238.29 | 70.3 | 1145.24 | 192.81 | 1308.59 | 1338.05 | 10.0.0 |
|
95 |
-
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_416/ssd_mobilenet_v2_fpnlite_035_416_int8.tflite) | Int8 | 416x416x3 | STM32H7 | 2869.05 | 70.3 | 1321.02 | 193.23 | 2939.35 | 1514.25 | 10.0.0 |
|
96 |
|
97 |
|
98 |
### Reference **MCU** inference time based on COCO Person dataset (see Accuracy for details on dataset)
|
@@ -100,40 +100,40 @@ Measures are done with default STM32Cube.AI configuration with enabled input / o
|
|
100 |
|
101 |
| Model | Format | Resolution | Board | Execution Engine | Frequency | Inference time (ms) | STM32Cube.AI version |
|
102 |
|-------------------|--------|------------|------------------|------------------|-------------|---------------------|-----------------------|
|
103 |
-
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_192/ssd_mobilenet_v2_fpnlite_035_192_int8.tflite) | Int8 | 192x192x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 511.16 ms | 10.0.0 |
|
104 |
-
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_224/ssd_mobilenet_v2_fpnlite_035_224_int8.tflite) | Int8 | 224x224x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 673.19 ms | 10.0.0 |
|
105 |
-
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_256/ssd_mobilenet_v2_fpnlite_035_256_int8.tflite) | Int8 | 256x256x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 898.32 ms | 10.0.0 |
|
106 |
-
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_416/ssd_mobilenet_v2_fpnlite_035_416_int8.tflite) | Int8 | 416x416x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 2684.93 ms | 10.0.0 |
|
107 |
|
108 |
|
109 |
### Reference **MPU** inference time based on COCO Person dataset (see Accuracy for details on dataset)
|
110 |
|
111 |
| Model | Format | Resolution | Quantization | Board | Execution Engine | Frequency | Inference time (ms) | %NPU | %GPU | %CPU | X-LINUX-AI version | Framework |
|
112 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------|---------------|-------------------|------------------|-----------|---------------------|-------|-------|------|--------------------|-----------------------|
|
113 |
-
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_192/ssd_mobilenet_v2_fpnlite_035_192_int8.tflite) | Int8 | 192x192x3 | per-channel** | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 35.08 ms | 6.20 | 93.80 |0 | v5.1.0 | OpenVX |
|
114 |
-
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_224/ssd_mobilenet_v2_fpnlite_035_224_int8.tflite) | Int8 | 224x224x3 | per-channel** | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 48.92 ms | 6.19 | 93.81 |0 | v5.1.0 | OpenVX |
|
115 |
-
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_256/ssd_mobilenet_v2_fpnlite_035_256_int8.tflite) | Int8 | 256x256x3 | per-channel** | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 40.66 ms | 7.07 | 92.93 |0 | v5.1.0 | OpenVX |
|
116 |
-
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_416/ssd_mobilenet_v2_fpnlite_035_416_int8.tflite) | Int8 | 416x416x3 | per-channel** | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 110.4 ms | 4.47 | 95.53 |0 | v5.1.0 | OpenVX |
|
117 |
-
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_192/ssd_mobilenet_v2_fpnlite_035_192_int8.tflite) | Int8 | 192x192x3 | per-channel | STM32MP157F-DK2 | 2 CPU | 800 MHz | 193.70 ms | NA | NA |100 | v5.1.0 | TensorFlowLite 2.11.0 |
|
118 |
-
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_224/ssd_mobilenet_v2_fpnlite_035_224_int8.tflite) | Int8 | 224x224x3 | per-channel | STM32MP157F-DK2 | 2 CPU | 800 MHz | 263.60 ms | NA | NA |100 | v5.1.0 | TensorFlowLite 2.11.0 |
|
119 |
-
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_256/ssd_mobilenet_v2_fpnlite_035_256_int8.tflite) | Int8 | 256x256x3 | per-channel | STM32MP157F-DK2 | 2 CPU | 800 MHz | 339.40 ms | NA | NA |100 | v5.1.0 | TensorFlowLite 2.11.0 |
|
120 |
-
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_416/ssd_mobilenet_v2_fpnlite_035_416_int8.tflite) | Int8 | 416x416x3 | per-channel | STM32MP157F-DK2 | 2 CPU | 800 MHz | 894.00 ms | NA | NA |100 | v5.1.0 | TensorFlowLite 2.11.0 |
|
121 |
-
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_192/ssd_mobilenet_v2_fpnlite_035_192_int8.tflite) | Int8 | 192x192x3 | per-channel | STM32MP135F-DK2 | 1 CPU | 1000 MHz | 287.40 ms | NA | NA |100 | v5.1.0 | TensorFlowLite 2.11.0 |
|
122 |
-
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_224/ssd_mobilenet_v2_fpnlite_035_224_int8.tflite) | Int8 | 224x224x3 | per-channel | STM32MP135F-DK2 | 1 CPU | 1000 MHz | 383.40 ms | NA | NA |100 | v5.1.0 | TensorFlowLite 2.11.0 |
|
123 |
-
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_256/ssd_mobilenet_v2_fpnlite_035_256_int8.tflite) | Int8 | 256x256x3 | per-channel | STM32MP135F-DK2 | 1 CPU | 1000 MHz | 498.90 ms | NA | NA |100 | v5.1.0 | TensorFlowLite 2.11.0 |
|
124 |
-
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_416/ssd_mobilenet_v2_fpnlite_035_416_int8.tflite) | Int8 | 416x416x3 | per-channel | STM32MP135F-DK2 | 1 CPU | 1000 MHz | 1348.00 ms | NA | NA |100 | v5.1.0 | TensorFlowLite 2.11.0 |
|
125 |
|
126 |
|
127 |
### Reference **MPU** inference time based on COCO 80 classes dataset (see Accuracy for details on dataset)
|
128 |
|
129 |
| Model | Format | Resolution | Quantization | Board | Execution Engine | Frequency | Inference time (ms) | %NPU | %GPU | %CPU | X-LINUX-AI version | Framework |
|
130 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------|---------------|-------------------|------------------|-----------|---------------------|-------|-------|------|--------------------|-----------------------|
|
131 |
-
| [SSD Mobilenet v2 1.0 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_80_classes/ssd_mobilenet_v2_fpnlite_100_256/ssd_mobilenet_v2_fpnlite_100_256_int8.tflite) | Int8 | 256x256x3 | per-channel** | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 100.90 ms | 8.86 | 91.14 |0 | v5.1.0 | OpenVX |
|
132 |
-
| [SSD Mobilenet v2 1.0 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_80_classes/ssd_mobilenet_v2_fpnlite_100_416/ssd_mobilenet_v2_fpnlite_100_416_int8.tflite) | Int8 | 416x416x3 | per-channel** | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 280.00 ms | 8.68 | 91.32 |0 | v5.1.0 | OpenVX |
|
133 |
-
| [SSD Mobilenet v2 1.0 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_80_classes/ssd_mobilenet_v2_fpnlite_100_256/ssd_mobilenet_v2_fpnlite_100_256_int8.tflite) | Int8 | 256x256x3 | per-channel | STM32MP157F-DK2 | 2 CPU | 800 MHz | 742.90 ms | NA | NA |100 | v5.1.0 | TensorFlowLite 2.11.0 |
|
134 |
-
| [SSD Mobilenet v2 1.0 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_80_classes/ssd_mobilenet_v2_fpnlite_100_416/ssd_mobilenet_v2_fpnlite_100_416_int8.tflite) | Int8 | 416x416x3 | per-channel | STM32MP157F-DK2 | 2 CPU | 800 MHz | 2000 ms | NA | NA |100 | v5.1.0 | TensorFlowLite 2.11.0 |
|
135 |
-
| [SSD Mobilenet v2 1.0 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_80_classes/ssd_mobilenet_v2_fpnlite_100_256/ssd_mobilenet_v2_fpnlite_100_256_int8.tflite) | Int8 | 256x256x3 | per-channel | STM32MP135F-DK2 | 1 CPU | 1000 MHz | 1112.00 ms | NA | NA |100 | v5.1.0 | TensorFlowLite 2.11.0 |
|
136 |
-
| [SSD Mobilenet v2 1.0 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_80_classes/ssd_mobilenet_v2_fpnlite_100_416/ssd_mobilenet_v2_fpnlite_100_416_int8.tflite) | Int8 | 416x416x3 | per-channel | STM32MP135F-DK2 | 1 CPU | 1000 MHz | 2986 ms | NA | NA |100 | v5.1.0 | TensorFlowLite 2.11.0 |
|
137 |
|
138 |
|
139 |
|
@@ -146,14 +146,14 @@ Dataset details: [link](https://cocodataset.org/#download) , License [CC BY 4.0]
|
|
146 |
|
147 |
| Model | Format | Resolution | AP* |
|
148 |
|-------|--------|------------|----------------|
|
149 |
-
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_192/ssd_mobilenet_v2_fpnlite_035_192_int8.tflite) | Int8 | 192x192x3 | 40.7 % |
|
150 |
-
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_192/ssd_mobilenet_v2_fpnlite_035_192.h5) | Float | 192x192x3 | 40.8 % |
|
151 |
-
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_224/ssd_mobilenet_v2_fpnlite_035_224_int8.tflite) | Int8 | 224x224x3 | 51.1 % |
|
152 |
-
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_224/ssd_mobilenet_v2_fpnlite_035_224.h5) | Float | 224x224x3 | 51.7 % |
|
153 |
-
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_256/ssd_mobilenet_v2_fpnlite_035_256_int8.tflite) | Int8 | 256x256x3 | 58.3 % |
|
154 |
-
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_256/ssd_mobilenet_v2_fpnlite_035_256.h5) | Float | 256x256x3 | 58.8 % |
|
155 |
-
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_416/ssd_mobilenet_v2_fpnlite_035_416_int8.tflite) | Int8 | 416x416x3 | 61.9 % |
|
156 |
-
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_416/ssd_mobilenet_v2_fpnlite_035_416.h5) | Float | 416x416x3 | 62.6 % |
|
157 |
|
158 |
|
159 |
\* EVAL_IOU = 0.4, NMS_THRESH = 0.5, SCORE_THRESH =0.001
|
@@ -166,10 +166,10 @@ Dataset details: [link](https://cocodataset.org/#download) , License [CC BY 4.0]
|
|
166 |
|
167 |
| Model | Format | Resolution | AP* |
|
168 |
|-------|--------|------------|----------------|
|
169 |
-
| [SSD Mobilenet v2 1.0 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_80_classes/ssd_mobilenet_v2_fpnlite_100_256/ssd_mobilenet_v2_fpnlite_100_256_int8.tflite) | Int8 | 256x256x3 | 32.2 % |
|
170 |
-
| [SSD Mobilenet v2 1.0 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_80_classes/ssd_mobilenet_v2_fpnlite_100_256/ssd_mobilenet_v2_fpnlite_100_256.h5) | Float | 256x256x3 | 32.6 % |
|
171 |
-
| [SSD Mobilenet v2 1.0 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_80_classes/ssd_mobilenet_v2_fpnlite_100_416/ssd_mobilenet_v2_fpnlite_100_416_int8.tflite) | Int8 | 416x416x3 | 32.3 % |
|
172 |
-
| [SSD Mobilenet v2 1.0 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_80_classes/ssd_mobilenet_v2_fpnlite_100_416/ssd_mobilenet_v2_fpnlite_100_416.h5) | Float | 416x416x3 | 34.8 % |
|
173 |
|
174 |
\* EVAL_IOU = 0.4, NMS_THRESH = 0.5, SCORE_THRESH =0.001
|
175 |
|
|
|
69 |
### Reference **NPU** memory footprint based on COCO Person dataset (see Accuracy for details on dataset)
|
70 |
|Model | Dataset | Format | Resolution | Series | Internal RAM (KiB) | External RAM (KiB) | Weights Flash (KiB) | STM32Cube.AI version | STEdgeAI Core version |
|
71 |
|----------|------------------|--------|-------------|------------------|------------------|---------------------|-------|----------------------|-------------------------|
|
72 |
+
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_192/ssd_mobilenet_v2_fpnlite_035_192_int8.tflite) | COCO-Person | Int8 | 192x192x3 | STM32N6 | 606.49 | 0.0 | 1580.53 | 10.0.0 | 2.0.0 |
|
73 |
+
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_224/ssd_mobilenet_v2_fpnlite_035_224_int8.tflite) | COCO-Person | Int8 | 224x224x3 | STM32N6 | 1314.67 | 0.0 | 1607.41 | 10.0.0 | 2.0.0 |
|
74 |
+
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_256/ssd_mobilenet_v2_fpnlite_035_256_int8.tflite) | COCO-Person | Int8 | 256x256x3 | STM32N6 | 1959.06 | 0.0 | 1637.02 | 10.0.0 | 2.0.0 |
|
75 |
+
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_416/ssd_mobilenet_v2_fpnlite_035_416_int8.tflite) | COCO-Person | Int8 | 416x416x3 | STM32N6 | 4570.03 | 0.0 | 1837.8 | 10.0.0 | 2.0.0 |
|
76 |
|
77 |
### Reference **NPU** inference time based on COCO Person dataset (see Accuracy for details on dataset)
|
78 |
|
79 |
|
80 |
| Model | Dataset | Format | Resolution | Board | Execution Engine | Inference time (ms) | Inf / sec | STM32Cube.AI version | STEdgeAI Core version |
|
81 |
|--------|------------------|--------|-------------|------------------|------------------|---------------------|-------|----------------------|-------------------------|
|
82 |
+
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_192/ssd_mobilenet_v2_fpnlite_035_192_int8.tflite) | COCO-Person | Int8 | 192x192x3 | STM32N6570-DK | NPU/MCU | 14.37 | 69.57 | 10.0.0 | 2.0.0 |
|
83 |
+
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_224/ssd_mobilenet_v2_fpnlite_035_224_int8.tflite) | COCO-Person | Int8 | 224x224x3 | STM32N6570-DK | NPU/MCU | 18.15 | 55.10 | 10.0.0 | 2.0.0 |
|
84 |
+
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_256/ssd_mobilenet_v2_fpnlite_035_256_int8.tflite) | COCO-Person | Int8 | 256x256x3 | STM32N6570-DK | NPU/MCU | 21.73 | 46.03 | 10.0.0 | 2.0.0 |
|
85 |
+
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_416/ssd_mobilenet_v2_fpnlite_035_416_int8.tflite) | COCO-Person | Int8 | 416x416x3 | STM32N6570-DK | NPU/MCU | 114.12 | 8.76 | 10.0.0 | 2.0.0 |
|
86 |
|
87 |
### Reference **MCU** memory footprint based on COCO Person dataset (see Accuracy for details on dataset)
|
88 |
|
89 |
|
90 |
| Model | Format | Resolution | Series | Activation RAM (KiB) | Runtime RAM (KiB) | Weights Flash (KiB) | Code Flash (KiB) | Total RAM (KiB) | Total Flash (KiB) | STM32Cube.AI version |
|
91 |
|-------------------|--------|------------|---------|----------------|-------------|---------------|------------|-------------|-------------|-----------------------|
|
92 |
+
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_192/ssd_mobilenet_v2_fpnlite_035_192_int8.tflite) | Int8 | 192x192x3 | STM32H7 | 521.210.0.0 | 70.26 | 1098.76 | 192.69 | 591.46 | 1291.45 | 10.0.0 | |
|
93 |
+
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_224/ssd_mobilenet_v2_fpnlite_035_224_int8.tflite) | Int8 | 224x224x3 | STM32H7 | 956.82 | 70.3 | 1120.63 | 192.84 | 1027.12 | 1313.47 | 10.0.0 |
|
94 |
+
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_256/ssd_mobilenet_v2_fpnlite_035_256_int8.tflite) | Int8 | 256x256x3 | STM32H7 | 1238.29 | 70.3 | 1145.24 | 192.81 | 1308.59 | 1338.05 | 10.0.0 |
|
95 |
+
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_416/ssd_mobilenet_v2_fpnlite_035_416_int8.tflite) | Int8 | 416x416x3 | STM32H7 | 2869.05 | 70.3 | 1321.02 | 193.23 | 2939.35 | 1514.25 | 10.0.0 |
|
96 |
|
97 |
|
98 |
### Reference **MCU** inference time based on COCO Person dataset (see Accuracy for details on dataset)
|
|
|
100 |
|
101 |
| Model | Format | Resolution | Board | Execution Engine | Frequency | Inference time (ms) | STM32Cube.AI version |
|
102 |
|-------------------|--------|------------|------------------|------------------|-------------|---------------------|-----------------------|
|
103 |
+
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_192/ssd_mobilenet_v2_fpnlite_035_192_int8.tflite) | Int8 | 192x192x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 511.16 ms | 10.0.0 |
|
104 |
+
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_224/ssd_mobilenet_v2_fpnlite_035_224_int8.tflite) | Int8 | 224x224x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 673.19 ms | 10.0.0 |
|
105 |
+
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_256/ssd_mobilenet_v2_fpnlite_035_256_int8.tflite) | Int8 | 256x256x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 898.32 ms | 10.0.0 |
|
106 |
+
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_416/ssd_mobilenet_v2_fpnlite_035_416_int8.tflite) | Int8 | 416x416x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 2684.93 ms | 10.0.0 |
|
107 |
|
108 |
|
109 |
### Reference **MPU** inference time based on COCO Person dataset (see Accuracy for details on dataset)
|
110 |
|
111 |
| Model | Format | Resolution | Quantization | Board | Execution Engine | Frequency | Inference time (ms) | %NPU | %GPU | %CPU | X-LINUX-AI version | Framework |
|
112 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------|---------------|-------------------|------------------|-----------|---------------------|-------|-------|------|--------------------|-----------------------|
|
113 |
+
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_192/ssd_mobilenet_v2_fpnlite_035_192_int8.tflite) | Int8 | 192x192x3 | per-channel** | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 35.08 ms | 6.20 | 93.80 |0 | v5.1.0 | OpenVX |
|
114 |
+
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_224/ssd_mobilenet_v2_fpnlite_035_224_int8.tflite) | Int8 | 224x224x3 | per-channel** | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 48.92 ms | 6.19 | 93.81 |0 | v5.1.0 | OpenVX |
|
115 |
+
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_256/ssd_mobilenet_v2_fpnlite_035_256_int8.tflite) | Int8 | 256x256x3 | per-channel** | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 40.66 ms | 7.07 | 92.93 |0 | v5.1.0 | OpenVX |
|
116 |
+
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_416/ssd_mobilenet_v2_fpnlite_035_416_int8.tflite) | Int8 | 416x416x3 | per-channel** | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 110.4 ms | 4.47 | 95.53 |0 | v5.1.0 | OpenVX |
|
117 |
+
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_192/ssd_mobilenet_v2_fpnlite_035_192_int8.tflite) | Int8 | 192x192x3 | per-channel | STM32MP157F-DK2 | 2 CPU | 800 MHz | 193.70 ms | NA | NA |100 | v5.1.0 | TensorFlowLite 2.11.0 |
|
118 |
+
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_224/ssd_mobilenet_v2_fpnlite_035_224_int8.tflite) | Int8 | 224x224x3 | per-channel | STM32MP157F-DK2 | 2 CPU | 800 MHz | 263.60 ms | NA | NA |100 | v5.1.0 | TensorFlowLite 2.11.0 |
|
119 |
+
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_256/ssd_mobilenet_v2_fpnlite_035_256_int8.tflite) | Int8 | 256x256x3 | per-channel | STM32MP157F-DK2 | 2 CPU | 800 MHz | 339.40 ms | NA | NA |100 | v5.1.0 | TensorFlowLite 2.11.0 |
|
120 |
+
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_416/ssd_mobilenet_v2_fpnlite_035_416_int8.tflite) | Int8 | 416x416x3 | per-channel | STM32MP157F-DK2 | 2 CPU | 800 MHz | 894.00 ms | NA | NA |100 | v5.1.0 | TensorFlowLite 2.11.0 |
|
121 |
+
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_192/ssd_mobilenet_v2_fpnlite_035_192_int8.tflite) | Int8 | 192x192x3 | per-channel | STM32MP135F-DK2 | 1 CPU | 1000 MHz | 287.40 ms | NA | NA |100 | v5.1.0 | TensorFlowLite 2.11.0 |
|
122 |
+
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_224/ssd_mobilenet_v2_fpnlite_035_224_int8.tflite) | Int8 | 224x224x3 | per-channel | STM32MP135F-DK2 | 1 CPU | 1000 MHz | 383.40 ms | NA | NA |100 | v5.1.0 | TensorFlowLite 2.11.0 |
|
123 |
+
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_256/ssd_mobilenet_v2_fpnlite_035_256_int8.tflite) | Int8 | 256x256x3 | per-channel | STM32MP135F-DK2 | 1 CPU | 1000 MHz | 498.90 ms | NA | NA |100 | v5.1.0 | TensorFlowLite 2.11.0 |
|
124 |
+
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_416/ssd_mobilenet_v2_fpnlite_035_416_int8.tflite) | Int8 | 416x416x3 | per-channel | STM32MP135F-DK2 | 1 CPU | 1000 MHz | 1348.00 ms | NA | NA |100 | v5.1.0 | TensorFlowLite 2.11.0 |
|
125 |
|
126 |
|
127 |
### Reference **MPU** inference time based on COCO 80 classes dataset (see Accuracy for details on dataset)
|
128 |
|
129 |
| Model | Format | Resolution | Quantization | Board | Execution Engine | Frequency | Inference time (ms) | %NPU | %GPU | %CPU | X-LINUX-AI version | Framework |
|
130 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------|---------------|-------------------|------------------|-----------|---------------------|-------|-------|------|--------------------|-----------------------|
|
131 |
+
| [SSD Mobilenet v2 1.0 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_80_classes/ssd_mobilenet_v2_fpnlite_100_256/ssd_mobilenet_v2_fpnlite_100_256_int8.tflite) | Int8 | 256x256x3 | per-channel** | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 100.90 ms | 8.86 | 91.14 |0 | v5.1.0 | OpenVX |
|
132 |
+
| [SSD Mobilenet v2 1.0 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_80_classes/ssd_mobilenet_v2_fpnlite_100_416/ssd_mobilenet_v2_fpnlite_100_416_int8.tflite) | Int8 | 416x416x3 | per-channel** | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 280.00 ms | 8.68 | 91.32 |0 | v5.1.0 | OpenVX |
|
133 |
+
| [SSD Mobilenet v2 1.0 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_80_classes/ssd_mobilenet_v2_fpnlite_100_256/ssd_mobilenet_v2_fpnlite_100_256_int8.tflite) | Int8 | 256x256x3 | per-channel | STM32MP157F-DK2 | 2 CPU | 800 MHz | 742.90 ms | NA | NA |100 | v5.1.0 | TensorFlowLite 2.11.0 |
|
134 |
+
| [SSD Mobilenet v2 1.0 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_80_classes/ssd_mobilenet_v2_fpnlite_100_416/ssd_mobilenet_v2_fpnlite_100_416_int8.tflite) | Int8 | 416x416x3 | per-channel | STM32MP157F-DK2 | 2 CPU | 800 MHz | 2000 ms | NA | NA |100 | v5.1.0 | TensorFlowLite 2.11.0 |
|
135 |
+
| [SSD Mobilenet v2 1.0 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_80_classes/ssd_mobilenet_v2_fpnlite_100_256/ssd_mobilenet_v2_fpnlite_100_256_int8.tflite) | Int8 | 256x256x3 | per-channel | STM32MP135F-DK2 | 1 CPU | 1000 MHz | 1112.00 ms | NA | NA |100 | v5.1.0 | TensorFlowLite 2.11.0 |
|
136 |
+
| [SSD Mobilenet v2 1.0 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_80_classes/ssd_mobilenet_v2_fpnlite_100_416/ssd_mobilenet_v2_fpnlite_100_416_int8.tflite) | Int8 | 416x416x3 | per-channel | STM32MP135F-DK2 | 1 CPU | 1000 MHz | 2986 ms | NA | NA |100 | v5.1.0 | TensorFlowLite 2.11.0 |
|
137 |
|
138 |
|
139 |
|
|
|
146 |
|
147 |
| Model | Format | Resolution | AP* |
|
148 |
|-------|--------|------------|----------------|
|
149 |
+
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_192/ssd_mobilenet_v2_fpnlite_035_192_int8.tflite) | Int8 | 192x192x3 | 40.7 % |
|
150 |
+
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_192/ssd_mobilenet_v2_fpnlite_035_192.h5) | Float | 192x192x3 | 40.8 % |
|
151 |
+
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_224/ssd_mobilenet_v2_fpnlite_035_224_int8.tflite) | Int8 | 224x224x3 | 51.1 % |
|
152 |
+
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_224/ssd_mobilenet_v2_fpnlite_035_224.h5) | Float | 224x224x3 | 51.7 % |
|
153 |
+
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_256/ssd_mobilenet_v2_fpnlite_035_256_int8.tflite) | Int8 | 256x256x3 | 58.3 % |
|
154 |
+
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_256/ssd_mobilenet_v2_fpnlite_035_256.h5) | Float | 256x256x3 | 58.8 % |
|
155 |
+
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_416/ssd_mobilenet_v2_fpnlite_035_416_int8.tflite) | Int8 | 416x416x3 | 61.9 % |
|
156 |
+
| [SSD Mobilenet v2 0.35 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_person/ssd_mobilenet_v2_fpnlite_035_416/ssd_mobilenet_v2_fpnlite_035_416.h5) | Float | 416x416x3 | 62.6 % |
|
157 |
|
158 |
|
159 |
\* EVAL_IOU = 0.4, NMS_THRESH = 0.5, SCORE_THRESH =0.001
|
|
|
166 |
|
167 |
| Model | Format | Resolution | AP* |
|
168 |
|-------|--------|------------|----------------|
|
169 |
+
| [SSD Mobilenet v2 1.0 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_80_classes/ssd_mobilenet_v2_fpnlite_100_256/ssd_mobilenet_v2_fpnlite_100_256_int8.tflite) | Int8 | 256x256x3 | 32.2 % |
|
170 |
+
| [SSD Mobilenet v2 1.0 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_80_classes/ssd_mobilenet_v2_fpnlite_100_256/ssd_mobilenet_v2_fpnlite_100_256.h5) | Float | 256x256x3 | 32.6 % |
|
171 |
+
| [SSD Mobilenet v2 1.0 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_80_classes/ssd_mobilenet_v2_fpnlite_100_416/ssd_mobilenet_v2_fpnlite_100_416_int8.tflite) | Int8 | 416x416x3 | 32.3 % |
|
172 |
+
| [SSD Mobilenet v2 1.0 FPN-lite](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/ssd_mobilenet_v2_fpnlite/ST_pretrainedmodel_public_dataset/coco_2017_80_classes/ssd_mobilenet_v2_fpnlite_100_416/ssd_mobilenet_v2_fpnlite_100_416.h5) | Float | 416x416x3 | 34.8 % |
|
173 |
|
174 |
\* EVAL_IOU = 0.4, NMS_THRESH = 0.5, SCORE_THRESH =0.001
|
175 |
|