pitt111 commited on
Commit
8ca0c5c
·
verified ·
1 Parent(s): c42cc4a

Upload 8 files

Browse files
README.md CHANGED
@@ -1,3 +1,82 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ language:
4
+ - code
5
+ library_name: peft
6
+ tags:
7
+ - llm2vec
8
+ - mntp
9
+ - decoder-only
10
+ - pre-training
11
+ - codegemma
12
+ ---
13
+
14
+ ## 📖 Are Decoder-Only Large Language Models the Silver Bullet for Code Search?
15
+
16
+ This model is an official artifact from our research paper: **"[Are Decoder-Only Large Language Models the Silver Bullet for Code Search?](https://arxiv.org/abs/2410.22240)"**.
17
+
18
+ In this work, we conduct a large-scale systematic evaluation of decoder-only Large Language Models for the task of code search and present a set of effective fine-tuning and optimization strategies.
19
+
20
+ For complete details on all our experiments, to reproduce the full training/evaluation pipeline, or to use other models from the paper, please visit our official GitHub repository:
21
+
22
+ ➡️ **[GitHub: Georgepitt/DecoderLLMs-CodeSearch](https://github.com/Georgepitt/DecoderLLMs-CodeSearch)**
23
+
24
+ ---
25
+
26
+ ## Model Card: CodeGemma-7B - MNTP Pre-trained Model
27
+
28
+ ### 📜 Model Description
29
+
30
+ This is a PEFT adapter for the **`bigcode/starcoder2-7b`** model, pre-trained with the **Masked Next Token Prediction (MNTP)** objective from the [llm2vec](https://github.com/McGill-NLP/llm2vec) framework.
31
+
32
+ **Important Note on its Role**:
33
+ This model is **not intended for direct downstream task evaluation**. Instead, it serves as a crucial **foundational prerequisite** for our supervised fine-tuned (SupCon) models. The MNTP pre-training enables the decoder-only model to learn bidirectional representations, which is an essential step before applying supervised contrastive learning.
34
+
35
+ ### 🚀 How to Use
36
+
37
+ #### Standalone Use (for Base Embeddings)
38
+
39
+ You can also use this MNTP model by itself to generate text or code embeddings.
40
+
41
+ ```python
42
+ from transformers import AutoTokenizer, AutoModel, AutoConfig
43
+ from peft import PeftModel
44
+ from llm2vec import LLM2Vec
45
+
46
+ base_model_id = "bigcode/starcoder2-7b"
47
+ mntp_model_id = "SYSUSELab/DCS-StarCoder2-7B-It-MNTP"
48
+
49
+ tokenizer = AutoTokenizer.from_pretrained(base_model_id)
50
+ config = AutoConfig.from_pretrained(base_model_id, trust_remote_code=True)
51
+ model = AutoModel.from_pretrained(base_model_id, trust_remote_code=True, config=config,
52
+ torch_dtype=torch.bfloat16, device_map="auto")
53
+ model = PeftModel.from_pretrained(model, mntp_model_id)
54
+
55
+ l2v = LLM2Vec(model, tokenizer, pooling_mode="mean", max_length=512)
56
+ embeddings = l2v.encode(["def hello_world():\n print('Hello, World!')"])
57
+ print("Embedding from MNTP model:", embeddings.shape)
58
+ ```
59
+
60
+ ### ⚙️ Training Methodology
61
+
62
+ This model was pre-trained using the **MNTP** objective as described in the `llm2vec` paper. If you wish to train your own MNTP model from scratch, please refer to the instructions in the `Fine-tuning/Fine-tuning_method/MNTP/` directory of our GitHub repository.
63
+
64
+ ### 📄 Citation
65
+
66
+ If you use this model, please cite both our paper and the foundational work of `llm2vec`.
67
+
68
+ ```bibtex
69
+ @article{chen2024decoder,
70
+ title={Are Decoder-Only Large Language Models the Silver Bullet for Code Search?},
71
+ author={Chen, Yuxuan and Liu, Mingwei and Ou, Guangsheng and Li, Anji and Dai, Dekun and Wang, Yanlin and Zheng, Zibin},
72
+ journal={arXiv preprint arXiv:2410.22240},
73
+ year={2024}
74
+ }
75
+
76
+ @article{vaishaal2024llm2vec,
77
+ title={LLM2Vec: Large Language Models Are Good Contextual Text Encoders},
78
+ author={Vaishaal, Shankar and Bansal, Mohit and Arora, Simran},
79
+ journal={arXiv preprint arXiv:2404.05961},
80
+ year={2024}
81
+ }
82
+ ```
adapter_config.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": {
4
+ "base_model_class": "Starcoder2BiModel",
5
+ "parent_library": "llm2vec.models.bidirectional_starcoder2"
6
+ },
7
+ "base_model_name_or_path": "bigcode/starcoder2-7b",
8
+ "bias": "none",
9
+ "fan_in_fan_out": false,
10
+ "inference_mode": true,
11
+ "init_lora_weights": true,
12
+ "layer_replication": null,
13
+ "layers_pattern": null,
14
+ "layers_to_transform": null,
15
+ "loftq_config": {},
16
+ "lora_alpha": 32,
17
+ "lora_dropout": 0.05,
18
+ "megatron_config": null,
19
+ "megatron_core": "megatron.core",
20
+ "modules_to_save": null,
21
+ "peft_type": "LORA",
22
+ "r": 16,
23
+ "rank_pattern": {},
24
+ "revision": null,
25
+ "target_modules": [
26
+ "q_proj",
27
+ "k_proj",
28
+ "up_proj",
29
+ "gate_proj",
30
+ "o_proj",
31
+ "down_proj",
32
+ "v_proj"
33
+ ],
34
+ "task_type": null,
35
+ "use_dora": false,
36
+ "use_rslora": false
37
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5f636ce572c9fc39247b4b8c180048483face91237732d05a635f122f793c6e1
3
+ size 29393112
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
special_tokens_map.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|endoftext|>",
4
+ "<fim_prefix>",
5
+ "<fim_middle>",
6
+ "<fim_suffix>",
7
+ "<fim_pad>",
8
+ "<repo_name>",
9
+ "<file_sep>",
10
+ "<issue_start>",
11
+ "<issue_comment>",
12
+ "<issue_closed>",
13
+ "<jupyter_start>",
14
+ "<jupyter_text>",
15
+ "<jupyter_code>",
16
+ "<jupyter_output>",
17
+ "<jupyter_script>",
18
+ "<empty_output>",
19
+ "<code_to_intermediate>",
20
+ "<intermediate_to_code>",
21
+ "<pr>",
22
+ "<pr_status>",
23
+ "<pr_is_merged>",
24
+ "<pr_base>",
25
+ "<pr_file>",
26
+ "<pr_base_code>",
27
+ "<pr_diff>",
28
+ "<pr_diff_hunk>",
29
+ "<pr_comment>",
30
+ "<pr_event_id>",
31
+ "<pr_review>",
32
+ "<pr_review_state>",
33
+ "<pr_review_comment>",
34
+ "<pr_in_reply_to_review_id>",
35
+ "<pr_in_reply_to_comment_id>",
36
+ "<pr_diff_hunk_comment_line>",
37
+ "<NAME>",
38
+ "<EMAIL>",
39
+ "<KEY>",
40
+ "<PASSWORD>"
41
+ ],
42
+ "bos_token": {
43
+ "content": "<|endoftext|>",
44
+ "lstrip": false,
45
+ "normalized": false,
46
+ "rstrip": false,
47
+ "single_word": false
48
+ },
49
+ "eos_token": {
50
+ "content": "<|endoftext|>",
51
+ "lstrip": false,
52
+ "normalized": false,
53
+ "rstrip": false,
54
+ "single_word": false
55
+ },
56
+ "mask_token": "_",
57
+ "pad_token": "<|endoftext|>",
58
+ "unk_token": {
59
+ "content": "<|endoftext|>",
60
+ "lstrip": false,
61
+ "normalized": false,
62
+ "rstrip": false,
63
+ "single_word": false
64
+ }
65
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,358 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "0": {
5
+ "content": "<|endoftext|>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "1": {
13
+ "content": "<fim_prefix>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "2": {
21
+ "content": "<fim_middle>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "3": {
29
+ "content": "<fim_suffix>",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "4": {
37
+ "content": "<fim_pad>",
38
+ "lstrip": false,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ },
44
+ "5": {
45
+ "content": "<repo_name>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false,
50
+ "special": true
51
+ },
52
+ "6": {
53
+ "content": "<file_sep>",
54
+ "lstrip": false,
55
+ "normalized": false,
56
+ "rstrip": false,
57
+ "single_word": false,
58
+ "special": true
59
+ },
60
+ "7": {
61
+ "content": "<issue_start>",
62
+ "lstrip": false,
63
+ "normalized": false,
64
+ "rstrip": false,
65
+ "single_word": false,
66
+ "special": true
67
+ },
68
+ "8": {
69
+ "content": "<issue_comment>",
70
+ "lstrip": false,
71
+ "normalized": false,
72
+ "rstrip": false,
73
+ "single_word": false,
74
+ "special": true
75
+ },
76
+ "9": {
77
+ "content": "<issue_closed>",
78
+ "lstrip": false,
79
+ "normalized": false,
80
+ "rstrip": false,
81
+ "single_word": false,
82
+ "special": true
83
+ },
84
+ "10": {
85
+ "content": "<jupyter_start>",
86
+ "lstrip": false,
87
+ "normalized": false,
88
+ "rstrip": false,
89
+ "single_word": false,
90
+ "special": true
91
+ },
92
+ "11": {
93
+ "content": "<jupyter_text>",
94
+ "lstrip": false,
95
+ "normalized": false,
96
+ "rstrip": false,
97
+ "single_word": false,
98
+ "special": true
99
+ },
100
+ "12": {
101
+ "content": "<jupyter_code>",
102
+ "lstrip": false,
103
+ "normalized": false,
104
+ "rstrip": false,
105
+ "single_word": false,
106
+ "special": true
107
+ },
108
+ "13": {
109
+ "content": "<jupyter_output>",
110
+ "lstrip": false,
111
+ "normalized": false,
112
+ "rstrip": false,
113
+ "single_word": false,
114
+ "special": true
115
+ },
116
+ "14": {
117
+ "content": "<jupyter_script>",
118
+ "lstrip": false,
119
+ "normalized": false,
120
+ "rstrip": false,
121
+ "single_word": false,
122
+ "special": true
123
+ },
124
+ "15": {
125
+ "content": "<empty_output>",
126
+ "lstrip": false,
127
+ "normalized": false,
128
+ "rstrip": false,
129
+ "single_word": false,
130
+ "special": true
131
+ },
132
+ "16": {
133
+ "content": "<code_to_intermediate>",
134
+ "lstrip": false,
135
+ "normalized": false,
136
+ "rstrip": false,
137
+ "single_word": false,
138
+ "special": true
139
+ },
140
+ "17": {
141
+ "content": "<intermediate_to_code>",
142
+ "lstrip": false,
143
+ "normalized": false,
144
+ "rstrip": false,
145
+ "single_word": false,
146
+ "special": true
147
+ },
148
+ "18": {
149
+ "content": "<pr>",
150
+ "lstrip": false,
151
+ "normalized": false,
152
+ "rstrip": false,
153
+ "single_word": false,
154
+ "special": true
155
+ },
156
+ "19": {
157
+ "content": "<pr_status>",
158
+ "lstrip": false,
159
+ "normalized": false,
160
+ "rstrip": false,
161
+ "single_word": false,
162
+ "special": true
163
+ },
164
+ "20": {
165
+ "content": "<pr_is_merged>",
166
+ "lstrip": false,
167
+ "normalized": false,
168
+ "rstrip": false,
169
+ "single_word": false,
170
+ "special": true
171
+ },
172
+ "21": {
173
+ "content": "<pr_base>",
174
+ "lstrip": false,
175
+ "normalized": false,
176
+ "rstrip": false,
177
+ "single_word": false,
178
+ "special": true
179
+ },
180
+ "22": {
181
+ "content": "<pr_file>",
182
+ "lstrip": false,
183
+ "normalized": false,
184
+ "rstrip": false,
185
+ "single_word": false,
186
+ "special": true
187
+ },
188
+ "23": {
189
+ "content": "<pr_base_code>",
190
+ "lstrip": false,
191
+ "normalized": false,
192
+ "rstrip": false,
193
+ "single_word": false,
194
+ "special": true
195
+ },
196
+ "24": {
197
+ "content": "<pr_diff>",
198
+ "lstrip": false,
199
+ "normalized": false,
200
+ "rstrip": false,
201
+ "single_word": false,
202
+ "special": true
203
+ },
204
+ "25": {
205
+ "content": "<pr_diff_hunk>",
206
+ "lstrip": false,
207
+ "normalized": false,
208
+ "rstrip": false,
209
+ "single_word": false,
210
+ "special": true
211
+ },
212
+ "26": {
213
+ "content": "<pr_comment>",
214
+ "lstrip": false,
215
+ "normalized": false,
216
+ "rstrip": false,
217
+ "single_word": false,
218
+ "special": true
219
+ },
220
+ "27": {
221
+ "content": "<pr_event_id>",
222
+ "lstrip": false,
223
+ "normalized": false,
224
+ "rstrip": false,
225
+ "single_word": false,
226
+ "special": true
227
+ },
228
+ "28": {
229
+ "content": "<pr_review>",
230
+ "lstrip": false,
231
+ "normalized": false,
232
+ "rstrip": false,
233
+ "single_word": false,
234
+ "special": true
235
+ },
236
+ "29": {
237
+ "content": "<pr_review_state>",
238
+ "lstrip": false,
239
+ "normalized": false,
240
+ "rstrip": false,
241
+ "single_word": false,
242
+ "special": true
243
+ },
244
+ "30": {
245
+ "content": "<pr_review_comment>",
246
+ "lstrip": false,
247
+ "normalized": false,
248
+ "rstrip": false,
249
+ "single_word": false,
250
+ "special": true
251
+ },
252
+ "31": {
253
+ "content": "<pr_in_reply_to_review_id>",
254
+ "lstrip": false,
255
+ "normalized": false,
256
+ "rstrip": false,
257
+ "single_word": false,
258
+ "special": true
259
+ },
260
+ "32": {
261
+ "content": "<pr_in_reply_to_comment_id>",
262
+ "lstrip": false,
263
+ "normalized": false,
264
+ "rstrip": false,
265
+ "single_word": false,
266
+ "special": true
267
+ },
268
+ "33": {
269
+ "content": "<pr_diff_hunk_comment_line>",
270
+ "lstrip": false,
271
+ "normalized": false,
272
+ "rstrip": false,
273
+ "single_word": false,
274
+ "special": true
275
+ },
276
+ "34": {
277
+ "content": "<NAME>",
278
+ "lstrip": false,
279
+ "normalized": false,
280
+ "rstrip": false,
281
+ "single_word": false,
282
+ "special": true
283
+ },
284
+ "35": {
285
+ "content": "<EMAIL>",
286
+ "lstrip": false,
287
+ "normalized": false,
288
+ "rstrip": false,
289
+ "single_word": false,
290
+ "special": true
291
+ },
292
+ "36": {
293
+ "content": "<KEY>",
294
+ "lstrip": false,
295
+ "normalized": false,
296
+ "rstrip": false,
297
+ "single_word": false,
298
+ "special": true
299
+ },
300
+ "37": {
301
+ "content": "<PASSWORD>",
302
+ "lstrip": false,
303
+ "normalized": false,
304
+ "rstrip": false,
305
+ "single_word": false,
306
+ "special": true
307
+ }
308
+ },
309
+ "additional_special_tokens": [
310
+ "<|endoftext|>",
311
+ "<fim_prefix>",
312
+ "<fim_middle>",
313
+ "<fim_suffix>",
314
+ "<fim_pad>",
315
+ "<repo_name>",
316
+ "<file_sep>",
317
+ "<issue_start>",
318
+ "<issue_comment>",
319
+ "<issue_closed>",
320
+ "<jupyter_start>",
321
+ "<jupyter_text>",
322
+ "<jupyter_code>",
323
+ "<jupyter_output>",
324
+ "<jupyter_script>",
325
+ "<empty_output>",
326
+ "<code_to_intermediate>",
327
+ "<intermediate_to_code>",
328
+ "<pr>",
329
+ "<pr_status>",
330
+ "<pr_is_merged>",
331
+ "<pr_base>",
332
+ "<pr_file>",
333
+ "<pr_base_code>",
334
+ "<pr_diff>",
335
+ "<pr_diff_hunk>",
336
+ "<pr_comment>",
337
+ "<pr_event_id>",
338
+ "<pr_review>",
339
+ "<pr_review_state>",
340
+ "<pr_review_comment>",
341
+ "<pr_in_reply_to_review_id>",
342
+ "<pr_in_reply_to_comment_id>",
343
+ "<pr_diff_hunk_comment_line>",
344
+ "<NAME>",
345
+ "<EMAIL>",
346
+ "<KEY>",
347
+ "<PASSWORD>"
348
+ ],
349
+ "bos_token": "<|endoftext|>",
350
+ "clean_up_tokenization_spaces": true,
351
+ "eos_token": "<|endoftext|>",
352
+ "mask_token": "_",
353
+ "model_max_length": 1000000000000000019884624838656,
354
+ "pad_token": "<|endoftext|>",
355
+ "tokenizer_class": "GPT2Tokenizer",
356
+ "unk_token": "<|endoftext|>",
357
+ "vocab_size": 49152
358
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff