Commit
·
ff1bb39
1
Parent(s):
edd1ae8
Update README.md
Browse files
README.md
CHANGED
|
@@ -1,2 +1,99 @@
|
|
| 1 |
-
|
| 2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
### How to use
|
| 2 |
+
#### Requirements
|
| 3 |
+
|
| 4 |
+
Transformers require `transformers` and `sentencepiece`, both of which can be
|
| 5 |
+
installed using `pip`.
|
| 6 |
+
|
| 7 |
+
```sh
|
| 8 |
+
pip install transformers sentencepiece
|
| 9 |
+
```
|
| 10 |
+
|
| 11 |
+
#### Pipelines 🚀
|
| 12 |
+
|
| 13 |
+
In case you are not familiar with Transformers, you can use pipelines instead.
|
| 14 |
+
|
| 15 |
+
Note that, pipelines can't have _no answer_ for the questions.
|
| 16 |
+
|
| 17 |
+
```python
|
| 18 |
+
from transformers import pipeline
|
| 19 |
+
|
| 20 |
+
model_name = "SajjadAyoubi/bert-base-fa-qa"
|
| 21 |
+
qa_pipeline = pipeline("question-answering", model=model_name, tokenizer=model_name)
|
| 22 |
+
|
| 23 |
+
text = "سلام من سجاد ایوبی هستم ۲۰ سالمه و به پردازش زبان طبیعی علاقه دارم"
|
| 24 |
+
questions = ["اسمم چیه؟", "چند سالمه؟", "به چی علاقه دارم؟"]
|
| 25 |
+
|
| 26 |
+
for question in questions:
|
| 27 |
+
print(qa_pipeline({"context": text, "question": question}))
|
| 28 |
+
|
| 29 |
+
>>> {'score': 0.4839823544025421, 'start': 8, 'end': 18, 'answer': 'سجاد ایوبی'}
|
| 30 |
+
>>> {'score': 0.3747948706150055, 'start': 24, 'end': 32, 'answer': '۲۰ سالمه'}
|
| 31 |
+
>>> {'score': 0.5945395827293396, 'start': 38, 'end': 55, 'answer': 'پردازش زبان طبیعی'}
|
| 32 |
+
```
|
| 33 |
+
|
| 34 |
+
#### Manual approach 🔥
|
| 35 |
+
|
| 36 |
+
Using the Manual approach, it is possible to have _no answer_ with even better
|
| 37 |
+
performance.
|
| 38 |
+
|
| 39 |
+
- PyTorch
|
| 40 |
+
|
| 41 |
+
```python
|
| 42 |
+
from transformers import AutoTokenizer, AutoModelForQuestionAnswering
|
| 43 |
+
from src.utils import AnswerPredictor
|
| 44 |
+
|
| 45 |
+
model_name = "SajjadAyoubi/bert-base-fa-qa"
|
| 46 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 47 |
+
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
|
| 48 |
+
|
| 49 |
+
text = "سلام من سجاد ایوبی هستم ۲۰ سالمه و به پردازش زبان طبیعی علاقه دارم"
|
| 50 |
+
questions = ["اسمم چیه؟", "چند سالمه؟", "به چی علاقه دارم؟"]
|
| 51 |
+
|
| 52 |
+
# this class is from src/utils.py and you can read more about it
|
| 53 |
+
predictor = AnswerPredictor(model, tokenizer, device="cpu", n_best=10)
|
| 54 |
+
preds = predictor(questions, [text] * 3, batch_size=3)
|
| 55 |
+
|
| 56 |
+
for k, v in preds.items():
|
| 57 |
+
print(v)
|
| 58 |
+
```
|
| 59 |
+
|
| 60 |
+
Produces an output such below:
|
| 61 |
+
```
|
| 62 |
+
100%|██████████| 1/1 [00:00<00:00, 3.56it/s]
|
| 63 |
+
{'score': 8.040637016296387, 'text': 'سجاد ایوبی'}
|
| 64 |
+
{'score': 9.901972770690918, 'text': '۲۰'}
|
| 65 |
+
{'score': 12.117212295532227, 'text': 'پردازش زبان طبیعی'}
|
| 66 |
+
```
|
| 67 |
+
|
| 68 |
+
- TensorFlow 2.X
|
| 69 |
+
|
| 70 |
+
```python
|
| 71 |
+
from transformers import AutoTokenizer, TFAutoModelForQuestionAnswering
|
| 72 |
+
from src.utils import TFAnswerPredictor
|
| 73 |
+
|
| 74 |
+
model_name = "SajjadAyoubi/bert-base-fa-qa"
|
| 75 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 76 |
+
model = TFAutoModelForQuestionAnswering.from_pretrained(model_name)
|
| 77 |
+
|
| 78 |
+
text = "سلام من سجاد ایوبی هستم ۲۰ سالمه و به پردازش زبان طبیعی علاقه دارم"
|
| 79 |
+
questions = ["اسمم چیه؟", "چند سالمه؟", "به چی علاقه دارم؟"]
|
| 80 |
+
|
| 81 |
+
# this class is from src/utils.py, you can read more about it
|
| 82 |
+
predictor = TFAnswerPredictor(model, tokenizer, n_best=10)
|
| 83 |
+
preds = predictor(questions, [text] * 3, batch_size=3)
|
| 84 |
+
|
| 85 |
+
for k, v in preds.items():
|
| 86 |
+
print(v)
|
| 87 |
+
```
|
| 88 |
+
|
| 89 |
+
Produces an output such below:
|
| 90 |
+
|
| 91 |
+
```text
|
| 92 |
+
100%|██████████| 1/1 [00:00<00:00, 3.56it/s]
|
| 93 |
+
{'score': 8.040637016296387, 'text': 'سجاد ایوبی'}
|
| 94 |
+
{'score': 9.901972770690918, 'text': '۲۰'}
|
| 95 |
+
{'score': 12.117212295532227, 'text': 'پردازش زبان طبیعی'}
|
| 96 |
+
```
|
| 97 |
+
|
| 98 |
+
Or you can access the whole demonstration using [HowToUse iPython Notebook on Google Colab](https://colab.research.google.com/github/sajjjadayobi/PersianQA/blob/main/notebooks/HowToUse.ipynb)
|
| 99 |
+
|