|
|
|
|
|
from typing import List, Union, Tuple |
|
|
|
from einops import rearrange, repeat |
|
from einops.layers.torch import Rearrange |
|
import torch |
|
from torch import nn |
|
from transformers import PreTrainedModel |
|
|
|
from .configuration_metom import MetomConfig |
|
|
|
|
|
try: |
|
from flash_attn import flash_attn_func |
|
FLASH_ATTENTION_2_AVAILABLE = True |
|
except ImportError: |
|
FLASH_ATTENTION_2_AVAILABLE = False |
|
|
|
|
|
def size_pair(t): |
|
return t if isinstance(t, tuple) else (t, t) |
|
|
|
|
|
class MetomFeedForward(nn.Module): |
|
def __init__(self, dim, hidden_dim, dropout): |
|
super().__init__() |
|
self.net = nn.Sequential( |
|
nn.LayerNorm(dim), |
|
nn.Linear(dim, hidden_dim), |
|
nn.GELU(), |
|
nn.Dropout(dropout), |
|
nn.Linear(hidden_dim, dim), |
|
nn.Dropout(dropout) |
|
) |
|
|
|
def forward(self, x): |
|
return self.net(x) |
|
|
|
|
|
class MetomAttention(nn.Module): |
|
def __init__(self, dim, heads, dim_head, dropout): |
|
super().__init__() |
|
inner_dim = dim_head * heads |
|
project_out = not (heads == 1 and dim_head == dim) |
|
self.heads = heads |
|
self.scale = dim_head ** -0.5 |
|
self.norm = nn.LayerNorm(dim) |
|
self.attend = nn.Softmax(dim = -1) |
|
self.dropout = nn.Dropout(dropout) |
|
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False) |
|
self.to_out = nn.Sequential( |
|
nn.Linear(inner_dim, dim), |
|
nn.Dropout(dropout) |
|
) if project_out else nn.Identity() |
|
|
|
def forward(self, x): |
|
x = self.norm(x) |
|
qkv = self.to_qkv(x).chunk(3, dim = -1) |
|
q, k, v = map(lambda t: rearrange(t, "b n (h d) -> b h n d", h = self.heads), qkv) |
|
dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale |
|
attn = self.attend(dots) |
|
attn = self.dropout(attn) |
|
out = torch.matmul(attn, v) |
|
out = rearrange(out, "b h n d -> b n (h d)") |
|
return self.to_out(out) |
|
|
|
|
|
class MetomSdpaAttention(MetomAttention): |
|
def forward(self, x): |
|
x = self.norm(x) |
|
qkv = self.to_qkv(x).chunk(3, dim = -1) |
|
q, k, v = map(lambda t: rearrange(t, "b n (h d) -> b h n d", h = self.heads), qkv) |
|
out = nn.functional.scaled_dot_product_attention(q, k, v, dropout_p=self.dropout.p if self.training else 0.0) |
|
out = rearrange(out, "b h n d -> b n (h d)") |
|
return self.to_out(out) |
|
|
|
|
|
class MetomFlashAttention2(MetomAttention): |
|
def forward(self, x): |
|
x = self.norm(x) |
|
qkv = self.to_qkv(x).chunk(3, dim = -1) |
|
q, k, v = map(lambda t: rearrange(t, "b n (h d) -> b h n d", h = self.heads), qkv) |
|
out = flash_attn_func(q, k, v, dropout_p=self.dropout.p if self.training else 0.0) |
|
out = rearrange(out, "b h n d -> b n (h d)") |
|
return self.to_out(out) |
|
|
|
|
|
class MetomTransformer(nn.Module): |
|
def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout, _attn_implementation = "eager"): |
|
super().__init__() |
|
if _attn_implementation == "flash_attention_2": |
|
assert FLASH_ATTENTION_2_AVAILABLE, "FlashAttention-2 is not available. Please install `flash-attn`." |
|
attn_cls = ( |
|
MetomAttention if _attn_implementation == "eager" else |
|
MetomSdpaAttention if _attn_implementation == "sdpa" else |
|
MetomFlashAttention2 if _attn_implementation == "flash_attention_2" else |
|
MetomAttention |
|
) |
|
self.norm = nn.LayerNorm(dim) |
|
self.layers = nn.ModuleList([]) |
|
for _ in range(depth): |
|
self.layers.append(nn.ModuleList([ |
|
attn_cls(dim, heads = heads, dim_head = dim_head, dropout = dropout), |
|
MetomFeedForward(dim, mlp_dim, dropout = dropout) |
|
])) |
|
|
|
def forward(self, x): |
|
for attn, ff in self.layers: |
|
x = attn(x) + x |
|
x = ff(x) + x |
|
return self.norm(x) |
|
|
|
|
|
class MetomModel(PreTrainedModel): |
|
config_class = MetomConfig |
|
_supports_flash_attn_2 = True |
|
_supports_sdpa = True |
|
|
|
def __init__(self, config: MetomConfig): |
|
super().__init__(config) |
|
image_height, image_width = size_pair(config.image_size) |
|
patch_height, patch_width = size_pair(config.patch_size) |
|
assert image_height % patch_height == 0 and image_width % patch_width == 0, "Image dimensions must be divisible by the patch size." |
|
|
|
num_patches = (image_height // patch_height) * (image_width // patch_width) |
|
patch_dim = config.channels * patch_height * patch_width |
|
assert config.pool in {"cls", "mean"}, "pool type must be either cls (cls token) or mean (mean pooling)" |
|
assert len(config.labels) > 0, "labels must be composed of at least one label" |
|
assert config._attn_implementation in {"eager", "sdpa", "flash_attention_2"}, "Attention implementation must be either eager, sdpa or flash_attention_2" |
|
|
|
self.to_patch_embedding = nn.Sequential( |
|
Rearrange("b c (h p1) (w p2) -> b (h w) (p1 p2 c)", p1 = patch_height, p2 = patch_width), |
|
nn.LayerNorm(patch_dim), |
|
nn.Linear(patch_dim, config.dim), |
|
nn.LayerNorm(config.dim), |
|
) |
|
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, config.dim)) |
|
self.cls_token = nn.Parameter(torch.randn(1, 1, config.dim)) |
|
self.dropout = nn.Dropout(config.emb_dropout) |
|
self.transformer = MetomTransformer( |
|
config.dim, config.depth, config.heads, config.dim_head, config.mlp_dim, config.dropout, config._attn_implementation |
|
) |
|
self.pool = config.pool |
|
self.to_latent = nn.Identity() |
|
self.mlp_head = nn.Linear(config.dim, len(config.labels)) |
|
self.labels = config.labels |
|
|
|
def forward(self, processed_image): |
|
x = self.to_patch_embedding(processed_image) |
|
b, n, _ = x.shape |
|
cls_tokens = repeat(self.cls_token, "1 1 d -> b 1 d", b = b) |
|
x = torch.cat((cls_tokens, x), dim=1) |
|
x += self.pos_embedding[:, :(n + 1)] |
|
x = self.dropout(x) |
|
x = self.transformer(x) |
|
x = x.mean(dim = 1) if self.pool == "mean" else x[:, 0] |
|
x = self.to_latent(x) |
|
return self.mlp_head(x) |
|
|
|
def get_predictions(self, processed_image: torch.Tensor) -> List[str]: |
|
logits = self(processed_image) |
|
indices = torch.argmax(logits, dim=-1) |
|
return [self.labels[i] for i in indices] |
|
|
|
def get_topk_labels( |
|
self, processed_image: torch.Tensor, k: int = 5, return_probs: bool = False |
|
) -> Union[List[List[str]], List[List[Tuple[str, float]]]]: |
|
assert 0 < k <= len(self.labels), "k must be a positive integer less than or equal to the number of labels" |
|
logits = self(processed_image) |
|
probs = torch.softmax(logits, dim=-1) |
|
topk_probs, topk_indices = torch.topk(probs, k, dim=-1) |
|
topk_labels = [[self.labels[i] for i in ti] for ti in topk_indices] |
|
if return_probs: |
|
return [ |
|
[(label, prob.item()) for label, prob in zip(labels, probs)] |
|
for labels, probs in zip(topk_labels, topk_probs) |
|
] |
|
return topk_labels |
|
|