File size: 20,558 Bytes
2a5fb5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
# Copyright 2023 Baichuan Inc. All Rights Reserved.

# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging
from transformers import WhisperConfig
from transformers import CLIPVisionConfig
from typing import List
from transformers import PretrainedConfig


logger = logging.get_logger(__name__)


class BaichuanConfig(PretrainedConfig):
    model_type = "baichuan"
    keys_to_ignore_at_inference = ["past_key_values"]

    def __init__(
        self,
        vocab_size=125696,
        hidden_size=4096,
        intermediate_size=11008,
        num_hidden_layers=32,
        num_attention_heads=32,
        num_key_value_heads=None,
        sparse_attention_heads=None,
        sparse_attention_layers=[],
        head_dim=None,
        attention_qkv_pack=True,
        attention_qkv_bias=False,
        use_norm_head=True,
        hidden_act="silu",
        max_position_embeddings=4096,
        position_embedding_type="rope",
        initializer_range=0.02,
        rms_norm_eps=1e-6,
        use_cache=True,
        pad_token_id=0,
        bos_token_id=1,
        eos_token_id=2,
        tie_word_embeddings=False,
        audio_config=None,
        visual_config=None,
        video_config=None,
        **kwargs,
    ):
        self.vocab_size = vocab_size
        self.max_position_embeddings = max_position_embeddings
        self.hidden_size = hidden_size
        self.intermediate_size = intermediate_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.num_key_value_heads = num_key_value_heads or self.num_attention_heads
        self.sparse_attention_heads = sparse_attention_heads
        self.sparse_attention_layers = sparse_attention_layers
        self.head_dim = head_dim or self.hidden_size // self.num_attention_heads
        self.attention_qkv_pack = attention_qkv_pack
        self.attention_qkv_bias = attention_qkv_bias
        self.use_norm_head = use_norm_head
        self.hidden_act = hidden_act
        self.position_embedding_type = position_embedding_type
        self.initializer_range = initializer_range
        self.rms_norm_eps = rms_norm_eps
        self.use_cache = use_cache
        assert self.position_embedding_type.lower() in ("rope", "alibi")
        super().__init__(
            pad_token_id=pad_token_id,
            bos_token_id=bos_token_id,
            eos_token_id=eos_token_id,
            tie_word_embeddings=tie_word_embeddings,
            **kwargs,
        )
        if audio_config is not None:
            self.audio_config = WhisperConfig(**audio_config)
        if visual_config is not None:
            self.visual_config = RQVAESIGLIPTransformerConfig(**visual_config)
        if video_config is not None:
            self.video_config = CLIPVisionConfig(**video_config)


    def to_diff_dict(self):
        data = super().to_diff_dict()
        data["model_type"] = self.model_type
        return data

    def get_rotary_base(self):
        if hasattr(self, "rotary_emb_base"):
            return self.rotary_emb_base
        else:
            return self.rope_theta


class RQVAESiglipConfig(PretrainedConfig):
    model_type = "rqvaesiglip_model"
    def __init__(
        self,
        embed_dim=None,
        hidden_size=None,
        n_embed_visual=None,
        n_embed_semantic=None,
        latent_shape=None,
        code_shape_visual=None,
        code_shape_semantic=None,
        shared_codebook=None,
        restart_unused_codes=None,
        ddconfig=None,
        decay=0.99,
        latent_loss_weight=0.25,
        architectures=None,
        decoder_latent_shape=None,
        pretrained_model="google/siglip-large-patch16-256",
        last_n_layer_recon=22,
        last_n_layer_sem=2,
        **kwargs,
    ):
        super().__init__()
        
        self.embed_dim = embed_dim
        self.hidden_size = hidden_size
        self.n_embed_visual = n_embed_visual
        self.n_embed_semantic = n_embed_semantic
        self.latent_shape = latent_shape
        self.code_shape_visual = code_shape_visual
        self.code_shape_semantic = code_shape_semantic
        self.shared_codebook = shared_codebook
        self.restart_unused_codes = restart_unused_codes
        self.ddconfig = ddconfig
        self.decay = decay
        self.latent_loss_weight = latent_loss_weight
        self.architectures = architectures
        self.decoder_latent_shape = decoder_latent_shape
        self.pretrained_model = pretrained_model
        self.last_n_layer_recon = int(last_n_layer_recon)
        self.last_n_layer_sem = int(last_n_layer_sem)


class AttentionBlockConfig:
    def __init__(self, embed_dim=2560, n_head=40, mlp_bias=True, attn_bias=True, attn_pdrop=0.0, resid_pdrop=0.1):
        self.embed_dim = embed_dim
        self.n_head = n_head
        self.mlp_bias = mlp_bias
        self.attn_bias = attn_bias
        self.attn_pdrop = attn_pdrop
        self.resid_pdrop = resid_pdrop

class AttentionStackConfig:
    def __init__(self, n_layer=6, block=AttentionBlockConfig()):
        self.n_layer = n_layer
        self.block = block


class RQTransformerConfig(PretrainedConfig):
    model_type = "rqtransformer_model"
    def __init__(
        self,
        block_size=None,
        input_embed_dim_1=None,
        input_embed_dim_2=None,
        embed_dim=None,
        vocab_size=None,
        head=None,
        architectures=None,
        **kwargs,
    ):
        super().__init__()

        self.block_size = block_size
        self.input_embed_dim_1 = input_embed_dim_1
        self.input_embed_dim_2 = input_embed_dim_2
        self.embed_dim = embed_dim
        self.vocab_size = vocab_size
        self.head = head
        self.architectures = architectures  


class RQVAESIGLIPTransformerConfig(PretrainedConfig):
    model_type = "rqvaesigliptransformer_model"
    def __init__(
        self,
        rqvaesiglip=None,
        rqtransformer_visual=None,
        rqtransformer_semantic=None,
        hidden_size=None,
        architectures=None,
        **kwargs,
    ):
        super().__init__(**kwargs)

        self.rqvaesiglip = rqvaesiglip
        self.rqtransformer_visual = rqtransformer_visual
        self.rqtransformer_semantic = rqtransformer_semantic
        self.hidden_size = hidden_size
        self.architectures = architectures
        
        
""" Siglip model configuration"""

import os
from typing import Union

from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging


logger = logging.get_logger(__name__)

SIGLIP_PRETRAINED_CONFIG_ARCHIVE_MAP = {
    "google/siglip-base-patch16-224": "https://huggingface.co/google/siglip-base-patch16-224/resolve/main/config.json",
}


class SiglipTextConfig(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a [`SiglipTextModel`]. It is used to instantiate a
    Siglip text encoder according to the specified arguments, defining the model architecture. Instantiating a
    configuration with the defaults will yield a similar configuration to that of the text encoder of the Siglip
    [google/siglip-base-patch16-224](https://huggingface.co/google/siglip-base-patch16-224) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        vocab_size (`int`, *optional*, defaults to 32000):
            Vocabulary size of the Siglip text model. Defines the number of different tokens that can be represented by
            the `inputs_ids` passed when calling [`SiglipModel`].
        hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the encoder layers and the pooler layer.
        intermediate_size (`int`, *optional*, defaults to 3072):
            Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        max_position_embeddings (`int`, *optional*, defaults to 64):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
        layer_norm_eps (`float`, *optional*, defaults to 1e-06):
            The epsilon used by the layer normalization layers.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        pad_token_id (`int`, *optional*, defaults to 1):
            The id of the padding token in the vocabulary.
        bos_token_id (`int`, *optional*, defaults to 49406):
            The id of the beginning-of-sequence token in the vocabulary.
        eos_token_id (`int`, *optional*, defaults to 49407):
            The id of the end-of-sequence token in the vocabulary.

    Example:

    ```python
    >>> from transformers import SiglipTextConfig, SiglipTextModel

    >>> # Initializing a SiglipTextConfig with google/siglip-base-patch16-224 style configuration
    >>> configuration = SiglipTextConfig()

    >>> # Initializing a SiglipTextModel (with random weights) from the google/siglip-base-patch16-224 style configuration
    >>> model = SiglipTextModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```"""

    model_type = "siglip_text_model"

    def __init__(
        self,
        vocab_size=32000,
        hidden_size=768,
        intermediate_size=3072,
        num_hidden_layers=12,
        num_attention_heads=12,
        max_position_embeddings=64,
        hidden_act="gelu_pytorch_tanh",
        layer_norm_eps=1e-6,
        attention_dropout=0.0,
        # This differs from `CLIPTokenizer`'s default and from openai/siglip
        # See https://github.com/huggingface/transformers/pull/24773#issuecomment-1632287538
        pad_token_id=1,
        bos_token_id=49406,
        eos_token_id=49407,
        **kwargs,
    ):
        super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)

        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.intermediate_size = intermediate_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.max_position_embeddings = max_position_embeddings
        self.layer_norm_eps = layer_norm_eps
        self.hidden_act = hidden_act
        self.attention_dropout = attention_dropout

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
        # cls._set_token_in_kwargs(kwargs)

        config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)

        # get the text config dict if we are loading from SiglipConfig
        if config_dict.get("model_type") == "siglip":
            config_dict = config_dict["text_config"]

        if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
            logger.warning(
                f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
                f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
            )

        return cls.from_dict(config_dict, **kwargs)


class SiglipVisionConfig(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a [`SiglipVisionModel`]. It is used to instantiate a
    Siglip vision encoder according to the specified arguments, defining the model architecture. Instantiating a
    configuration with the defaults will yield a similar configuration to that of the vision encoder of the Siglip
    [google/siglip-base-patch16-224](https://huggingface.co/google/siglip-base-patch16-224) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the encoder layers and the pooler layer.
        intermediate_size (`int`, *optional*, defaults to 3072):
            Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        num_channels (`int`, *optional*, defaults to 3):
            Number of channels in the input images.
        image_size (`int`, *optional*, defaults to 224):
            The size (resolution) of each image.
        patch_size (`int`, *optional*, defaults to 16):
            The size (resolution) of each patch.
        hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported.
        layer_norm_eps (`float`, *optional*, defaults to 1e-06):
            The epsilon used by the layer normalization layers.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.

    Example:

    ```python
    >>> from transformers import SiglipVisionConfig, SiglipVisionModel

    >>> # Initializing a SiglipVisionConfig with google/siglip-base-patch16-224 style configuration
    >>> configuration = SiglipVisionConfig()

    >>> # Initializing a SiglipVisionModel (with random weights) from the google/siglip-base-patch16-224 style configuration
    >>> model = SiglipVisionModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```"""

    model_type = "siglip_vision_model"

    def __init__(
        self,
        hidden_size=768,
        intermediate_size=3072,
        num_hidden_layers=12,
        num_attention_heads=12,
        num_channels=3,
        image_size=224,
        patch_size=16,
        hidden_act="gelu_pytorch_tanh",
        layer_norm_eps=1e-6,
        attention_dropout=0.0,
        **kwargs,
    ):
        super().__init__(**kwargs)

        self.hidden_size = hidden_size
        self.intermediate_size = intermediate_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.num_channels = num_channels
        self.patch_size = patch_size
        self.image_size = image_size
        self.attention_dropout = attention_dropout
        self.layer_norm_eps = layer_norm_eps
        self.hidden_act = hidden_act

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
        # cls._set_token_in_kwargs(kwargs)

        config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)

        # get the vision config dict if we are loading from SiglipConfig
        if config_dict.get("model_type") == "siglip":
            config_dict = config_dict["vision_config"]

        if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
            logger.warning(
                f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
                f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
            )

        return cls.from_dict(config_dict, **kwargs)


class SiglipConfig(PretrainedConfig):
    r"""
    [`SiglipConfig`] is the configuration class to store the configuration of a [`SiglipModel`]. It is used to
    instantiate a Siglip model according to the specified arguments, defining the text model and vision model configs.
    Instantiating a configuration with the defaults will yield a similar configuration to that of the Siglip
    [google/siglip-base-patch16-224](https://huggingface.co/google/siglip-base-patch16-224) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        text_config (`dict`, *optional*):
            Dictionary of configuration options used to initialize [`SiglipTextConfig`].
        vision_config (`dict`, *optional*):
            Dictionary of configuration options used to initialize [`SiglipVisionConfig`].
        kwargs (*optional*):
            Dictionary of keyword arguments.

    Example:

    ```python
    >>> from transformers import SiglipConfig, SiglipModel

    >>> # Initializing a SiglipConfig with google/siglip-base-patch16-224 style configuration
    >>> configuration = SiglipConfig()

    >>> # Initializing a SiglipModel (with random weights) from the google/siglip-base-patch16-224 style configuration
    >>> model = SiglipModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config

    >>> # We can also initialize a SiglipConfig from a SiglipTextConfig and a SiglipVisionConfig
    >>> from transformers import SiglipTextConfig, SiglipVisionConfig

    >>> # Initializing a SiglipText and SiglipVision configuration
    >>> config_text = SiglipTextConfig()
    >>> config_vision = SiglipVisionConfig()

    >>> config = SiglipConfig.from_text_vision_configs(config_text, config_vision)
    ```"""

    model_type = "siglip"

    def __init__(self, text_config=None, vision_config=None, **kwargs):
        super().__init__(**kwargs)

        if text_config is None:
            text_config = {}
            logger.info("`text_config` is `None`. Initializing the `SiglipTextConfig` with default values.")

        if vision_config is None:
            vision_config = {}
            logger.info("`vision_config` is `None`. initializing the `SiglipVisionConfig` with default values.")

        self.text_config = SiglipTextConfig(**text_config)
        self.vision_config = SiglipVisionConfig(**vision_config)

        self.initializer_factor = 1.0

    @classmethod
    def from_text_vision_configs(cls, text_config: SiglipTextConfig, vision_config: SiglipVisionConfig, **kwargs):
        r"""
        Instantiate a [`SiglipConfig`] (or a derived class) from siglip text model configuration and siglip vision
        model configuration.

        Returns:
            [`SiglipConfig`]: An instance of a configuration object
        """

        return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs)



if __name__ == '__main__':  
    from transformers import AutoConfig
    config = AutoConfig.from_pretrained("./", trust_remote_code=True)
    print(config)