File size: 97,778 Bytes
2a5fb5f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 |
from typing import List, Optional, Tuple, Union, Iterable, Any
import torch, math
import torch.utils.checkpoint
from torch import nn
from collections import OrderedDict
from flash_attn import flash_attn_varlen_func
from transformers.activations import ACT2FN
import io, fire
from torch.nn import functional as F
from transformers.modeling_utils import PreTrainedModel
from transformers import PreTrainedModel, CLIPImageProcessor, PretrainedConfig
from .configuration_baichuan import RQVAESIGLIPTransformerConfig, RQTransformerConfig, RQVAESiglipConfig, AttentionStackConfig, AttentionBlockConfig, SiglipConfig, SiglipTextConfig, SiglipVisionConfig
from torch.utils.checkpoint import checkpoint
import warnings
from dataclasses import dataclass
from torch.nn.init import _calculate_fan_in_and_fan_out
from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling
from transformers.utils import (
ModelOutput,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
import torch.distributed as dist
import numpy as np
def top_k_logits(logits, k):
v, ix = torch.topk(logits, k)
out = logits.clone()
out[out < v[:, [-1]]] = -float('Inf')
return out
def top_p_probs(probs, p):
sorted_probs, sorted_indices = torch.sort(probs, dim=-1, descending=True)
cum_probs = torch.cumsum(sorted_probs, dim=-1)
sorted_idx_remove_cond = cum_probs >= p
sorted_idx_remove_cond[..., 1:] = sorted_idx_remove_cond[..., :-1].clone()
sorted_idx_remove_cond[..., 0] = 0
indices_to_remove = sorted_idx_remove_cond.scatter(-1, sorted_indices, sorted_idx_remove_cond)
probs = probs.masked_fill(indices_to_remove, 0.0)
norm_probs = probs / torch.sum(probs, dim=-1, keepdim=True)
return norm_probs
def sample_from_logits(logits, temperature=1.0, top_k=None, top_p=None):
"""Take a 2-dim tensor, apply softmax along each row, and sample from
each multinomial distribution defined by the rows.
Args:
logits: 2-dim tensor of shape (n_samples, logit_dim)
temperature (float): softmax temperature
top_k (Optional[int]): if given, sample only using `top_k` logits
top_p (Optional[float]): if given, sample only using `top_p` logits
Returns:
samples: 1-dim integer tensor of shape (n_samples,)
"""
logits = logits.to(dtype=torch.float32)
logits = logits / temperature
if top_k is not None:
logits = top_k_logits(logits, top_k)
if torch.sum(torch.isnan(logits)):
print('WARNING... NaN observed')
logits[torch.isnan(logits)] = -float('Inf')
probs = F.softmax(logits, dim=-1)
if top_p is not None:
probs = top_p_probs(probs, top_p)
try:
samples = torch.multinomial(probs, num_samples=1)
except:
raise RuntimeError
return samples.view(-1)
def nonlinearity(x):
return F.silu(x, inplace=True)
def Normalize(in_channels):
return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
""" PyTorch Siglip model."""
logger = logging.get_logger(__name__)
# _CHECKPOINT_FOR_DOC = "google/siglip-base-patch16-224"
# SIGLIP_PRETRAINED_MODEL_ARCHIVE_LIST = [
# "google/siglip-base-patch16-224",
# # See all SigLIP models at https://huggingface.co/models?filter=siglip
# ]
def _trunc_normal_(tensor, mean, std, a, b):
# Cut & paste from PyTorch official master until it's in a few official releases - RW
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
def norm_cdf(x):
# Computes standard normal cumulative distribution function
return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0
if (mean < a - 2 * std) or (mean > b + 2 * std):
warnings.warn(
"mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
"The distribution of values may be incorrect.",
stacklevel=2,
)
# Values are generated by using a truncated uniform distribution and
# then using the inverse CDF for the normal distribution.
# Get upper and lower cdf values
l = norm_cdf((a - mean) / std)
u = norm_cdf((b - mean) / std)
# Uniformly fill tensor with values from [l, u], then translate to
# [2l-1, 2u-1].
tensor.uniform_(2 * l - 1, 2 * u - 1)
# Use inverse cdf transform for normal distribution to get truncated
# standard normal
tensor.erfinv_()
# Transform to proper mean, std
tensor.mul_(std * math.sqrt(2.0))
tensor.add_(mean)
# Clamp to ensure it's in the proper range
tensor.clamp_(min=a, max=b)
def trunc_normal_tf_(
tensor: torch.Tensor, mean: float = 0.0, std: float = 1.0, a: float = -2.0, b: float = 2.0
) -> torch.Tensor:
"""Fills the input Tensor with values drawn from a truncated
normal distribution. The values are effectively drawn from the
normal distribution :math:`\\mathcal{N}(\text{mean}, \text{std}^2)`
with values outside :math:`[a, b]` redrawn until they are within
the bounds. The method used for generating the random values works
best when :math:`a \\leq \text{mean} \\leq b`.
NOTE: this 'tf' variant behaves closer to Tensorflow / JAX impl where the
bounds [a, b] are applied when sampling the normal distribution with mean=0, std=1.0
and the result is subsquently scaled and shifted by the mean and std args.
Args:
tensor: an n-dimensional `torch.Tensor`
mean: the mean of the normal distribution
std: the standard deviation of the normal distribution
a: the minimum cutoff value
b: the maximum cutoff value
"""
with torch.no_grad():
_trunc_normal_(tensor, 0, 1.0, a, b)
tensor.mul_(std).add_(mean)
def variance_scaling_(tensor, scale=1.0, mode="fan_in", distribution="normal"):
fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor)
if mode == "fan_in":
denom = fan_in
elif mode == "fan_out":
denom = fan_out
elif mode == "fan_avg":
denom = (fan_in + fan_out) / 2
variance = scale / denom
if distribution == "truncated_normal":
# constant is stddev of standard normal truncated to (-2, 2)
trunc_normal_tf_(tensor, std=math.sqrt(variance) / 0.87962566103423978)
elif distribution == "normal":
with torch.no_grad():
tensor.normal_(std=math.sqrt(variance))
elif distribution == "uniform":
bound = math.sqrt(3 * variance)
with torch.no_grad():
tensor.uniform_(-bound, bound)
else:
raise ValueError(f"invalid distribution {distribution}")
def lecun_normal_(tensor):
variance_scaling_(tensor, mode="fan_in", distribution="truncated_normal")
def default_flax_embed_init(tensor):
variance_scaling_(tensor, mode="fan_in", distribution="normal")
@dataclass
# Copied from transformers.models.clip.modeling_clip.CLIPVisionModelOutput with CLIP->Siglip
class SiglipVisionModelOutput(ModelOutput):
"""
Base class for vision model's outputs that also contains image embeddings of the pooling of the last hidden states.
Args:
image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
The image embeddings obtained by applying the projection layer to the pooler_output.
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
image_embeds: Optional[torch.FloatTensor] = None
last_hidden_state: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
@dataclass
# Copied from transformers.models.clip.modeling_clip.CLIPTextModelOutput with CLIP->Siglip
class SiglipTextModelOutput(ModelOutput):
"""
Base class for text model's outputs that also contains a pooling of the last hidden states.
Args:
text_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
The text embeddings obtained by applying the projection layer to the pooler_output.
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
text_embeds: Optional[torch.FloatTensor] = None
last_hidden_state: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
@dataclass
# Copied from transformers.models.clip.modeling_clip.CLIPOutput with CLIP->Siglip
class SiglipOutput(ModelOutput):
"""
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`):
Contrastive loss for image-text similarity.
logits_per_image:(`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`):
The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text
similarity scores.
logits_per_text:(`torch.FloatTensor` of shape `(text_batch_size, image_batch_size)`):
The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image
similarity scores.
text_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`):
The text embeddings obtained by applying the projection layer to the pooled output of [`SiglipTextModel`].
image_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`):
The image embeddings obtained by applying the projection layer to the pooled output of [`SiglipVisionModel`].
text_model_output(`BaseModelOutputWithPooling`):
The output of the [`SiglipTextModel`].
vision_model_output(`BaseModelOutputWithPooling`):
The output of the [`SiglipVisionModel`].
"""
loss: Optional[torch.FloatTensor] = None
logits_per_image: torch.FloatTensor = None
logits_per_text: torch.FloatTensor = None
text_embeds: torch.FloatTensor = None
image_embeds: torch.FloatTensor = None
text_model_output: BaseModelOutputWithPooling = None
vision_model_output: BaseModelOutputWithPooling = None
def to_tuple(self) -> Tuple[Any]:
return tuple(
self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple()
for k in self.keys()
)
class SiglipVisionEmbeddings(nn.Module):
def __init__(self, config: SiglipVisionConfig):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.image_size = config.image_size
self.patch_size = config.patch_size
self.patch_embedding = nn.Conv2d(
in_channels=config.num_channels,
out_channels=self.embed_dim,
kernel_size=self.patch_size,
stride=self.patch_size,
padding="valid",
)
self.num_patches = (self.image_size // self.patch_size) ** 2 # 256//14**2=256
self.num_positions = self.num_patches
self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim) # 256, 1024
self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)), persistent=False)
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
pixel_values = pixel_values.to(self.patch_embedding.weight.device) # self.patch_embedding.weight.dtype=torch.bfloat16
patch_embeds = self.patch_embedding(pixel_values) # shape = [*, width, grid, grid] 3, 1024, 32, 32
embeddings = patch_embeds.flatten(2).transpose(1, 2) # 3, 1024, 1024
embeddings = embeddings + self.position_embedding(self.position_ids)
return embeddings
# Copied from transformers.models.clip.modeling_clip.CLIPTextEmbeddings with CLIP->Siglip
class SiglipTextEmbeddings(nn.Module):
def __init__(self, config: SiglipTextConfig):
super().__init__()
embed_dim = config.hidden_size
self.token_embedding = nn.Embedding(config.vocab_size, embed_dim)
self.position_embedding = nn.Embedding(config.max_position_embeddings, embed_dim)
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.register_buffer(
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
) -> torch.Tensor:
seq_length = input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2]
if position_ids is None:
position_ids = self.position_ids[:, :seq_length]
if inputs_embeds is None:
inputs_embeds = self.token_embedding(input_ids)
position_embeddings = self.position_embedding(position_ids)
embeddings = inputs_embeds + position_embeddings
return embeddings
class SiglipAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
# Copied from transformers.models.clip.modeling_clip.CLIPAttention.__init__
def __init__(self, config):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.embed_dim // self.num_heads
if self.head_dim * self.num_heads != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
f" {self.num_heads})."
)
self.scale = self.head_dim**-0.5
self.dropout = config.attention_dropout
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
batch_size, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
k_v_seq_len = key_states.shape[-2]
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) * self.scale
if attn_weights.size() != (batch_size, self.num_heads, q_len, k_v_seq_len):
raise ValueError(
f"Attention weights should be of size {(batch_size, self.num_heads, q_len, k_v_seq_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (batch_size, 1, q_len, k_v_seq_len):
raise ValueError(
f"Attention mask should be of size {(batch_size, 1, q_len, k_v_seq_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights + attention_mask
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = torch.matmul(attn_weights, value_states)
if attn_output.size() != (batch_size, self.num_heads, q_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(batch_size, self.num_heads, q_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(batch_size, q_len, self.embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights
# Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->Siglip
class SiglipMLP(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.activation_fn = ACT2FN[config.hidden_act]
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.fc1(hidden_states)
hidden_states = self.activation_fn(hidden_states)
hidden_states = self.fc2(hidden_states)
return hidden_states
# Copied from transformers.models.clip.modeling_clip.CLIPEncoderLayer with CLIP->Siglip
class SiglipEncoderLayer(nn.Module):
def __init__(self, config: SiglipConfig):
super().__init__()
self.embed_dim = config.hidden_size
self.self_attn = SiglipAttention(config)
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
self.mlp = SiglipMLP(config)
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
# Ignore copy
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.FloatTensor]:
"""
Args:
hidden_states (`torch.FloatTensor`):
Input to the layer of shape `(batch, seq_len, embed_dim)`.
attention_mask (`torch.FloatTensor`):
Attention mask of shape `(batch, 1, q_len, k_v_seq_len)` where padding elements are indicated by very large negative values.
output_attentions (`bool`, *optional*, defaults to `False`):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
hidden_states = self.layer_norm1(hidden_states)
hidden_states, attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
output_attentions=output_attentions,
)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.layer_norm2(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
class SiglipPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = SiglipConfig
base_model_prefix = "siglip"
supports_gradient_checkpointing = True
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, SiglipVisionEmbeddings):
width = (
self.config.vision_config.hidden_size
if isinstance(self.config, SiglipConfig)
else self.config.hidden_size
)
nn.init.normal_(module.position_embedding.weight, std=1 / np.sqrt(width))
elif isinstance(module, nn.Embedding):
default_flax_embed_init(module.weight)
elif isinstance(module, SiglipAttention):
nn.init.xavier_uniform_(module.q_proj.weight)
nn.init.xavier_uniform_(module.k_proj.weight)
nn.init.xavier_uniform_(module.v_proj.weight)
nn.init.xavier_uniform_(module.out_proj.weight)
nn.init.zeros_(module.q_proj.bias)
nn.init.zeros_(module.k_proj.bias)
nn.init.zeros_(module.v_proj.bias)
nn.init.zeros_(module.out_proj.bias)
elif isinstance(module, SiglipMLP):
nn.init.xavier_uniform_(module.fc1.weight)
nn.init.xavier_uniform_(module.fc2.weight)
nn.init.normal_(module.fc1.bias, std=1e-6)
nn.init.normal_(module.fc2.bias, std=1e-6)
elif isinstance(module, SiglipMultiheadAttentionPoolingHead):
nn.init.xavier_uniform_(module.probe.data)
nn.init.xavier_uniform_(module.attention.in_proj_weight.data)
nn.init.zeros_(module.attention.in_proj_bias.data)
elif isinstance(module, SiglipModel):
logit_scale_init = torch.log(torch.tensor(1.0))
module.logit_scale.data.fill_(logit_scale_init)
module.logit_bias.data.zero_()
elif isinstance(module, (nn.Linear, nn.Conv2d)):
lecun_normal_(module.weight)
if module.bias is not None:
nn.init.zeros_(module.bias)
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
SIGLIP_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`SiglipConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
SIGLIP_TEXT_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
SIGLIP_VISION_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
[`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
SIGLIP_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
[`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details.
return_loss (`bool`, *optional*):
Whether or not to return the contrastive loss.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
# Copied from transformers.models.clip.modeling_clip.CLIPEncoder with CLIP->Siglip
class SiglipEncoder(nn.Module):
"""
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
[`SiglipEncoderLayer`].
Args:
config: SiglipConfig
"""
def __init__(self, config: SiglipConfig):
super().__init__()
self.config = config
self.layers = nn.ModuleList([SiglipEncoderLayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
# Ignore copy
def forward(
self,
inputs_embeds,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutput]:
r"""
Args:
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
hidden_states = inputs_embeds
for encoder_layer in self.layers:
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
encoder_layer.__call__,
hidden_states,
attention_mask,
output_attentions,
)
else:
layer_outputs = encoder_layer(
hidden_states,
attention_mask,
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
)
class SiglipTextTransformer(nn.Module):
def __init__(self, config: SiglipTextConfig):
super().__init__()
self.config = config
embed_dim = config.hidden_size
self.embeddings = SiglipTextEmbeddings(config)
self.encoder = SiglipEncoder(config)
self.final_layer_norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
self.head = nn.Linear(embed_dim, embed_dim)
@add_start_docstrings_to_model_forward(SIGLIP_TEXT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=SiglipTextConfig)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPooling]:
r"""
Returns:
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is None:
raise ValueError("You have to specify input_ids")
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
hidden_states = self.embeddings(input_ids=input_ids, position_ids=position_ids)
# note: SigLIP's text model does not use a causal mask, unlike the original CLIP model.
# expand attention_mask
# if attention_mask is not None:
# # [batch_size, seq_len] -> [batch_size, 1, tgt_seq_len, src_seq_len]
# attention_mask = _prepare_4d_attention_mask(attention_mask, hidden_states.dtype)
encoder_outputs = self.encoder(
inputs_embeds=hidden_states,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
last_hidden_state = encoder_outputs[0]
last_hidden_state = self.final_layer_norm(last_hidden_state)
# Assuming "sticky" EOS tokenization, last token is always EOS.
pooled_output = last_hidden_state[:, -1, :]
pooled_output = self.head(pooled_output)
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPooling(
last_hidden_state=last_hidden_state,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
@add_start_docstrings(
"""The text model from SigLIP without any head or projection on top.""",
SIGLIP_START_DOCSTRING,
)
class SiglipTextModel(SiglipPreTrainedModel):
config_class = SiglipTextConfig
_no_split_modules = ["SiglipTextEmbeddings", "SiglipEncoderLayer"]
def __init__(self, config: SiglipTextConfig):
super().__init__(config)
self.text_model = SiglipTextTransformer(config)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self) -> nn.Module:
return self.text_model.embeddings.token_embedding
def set_input_embeddings(self, value):
self.text_model.embeddings.token_embedding = value
@add_start_docstrings_to_model_forward(SIGLIP_TEXT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=SiglipTextConfig)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPooling]:
r"""
Returns:
Examples:
```python
>>> from transformers import AutoTokenizer, SiglipTextModel
>>> model = SiglipTextModel.from_pretrained("google/siglip-base-patch16-224")
>>> tokenizer = AutoTokenizer.from_pretrained("google/siglip-base-patch16-224")
>>> # important: make sure to set padding="max_length" as that's how the model was trained
>>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding="max_length", return_tensors="pt")
>>> outputs = model(**inputs)
>>> last_hidden_state = outputs.last_hidden_state
>>> pooled_output = outputs.pooler_output # pooled (EOS token) states
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
return self.text_model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
class SiglipVisionTransformer(nn.Module):
def __init__(self, config: SiglipVisionConfig):
super().__init__()
self.config = config
embed_dim = config.hidden_size
self.embeddings = SiglipVisionEmbeddings(config)
self.encoder = SiglipEncoder(config)
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
self.head = SiglipMultiheadAttentionPoolingHead(config)
@add_start_docstrings_to_model_forward(SIGLIP_VISION_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=SiglipVisionConfig)
def forward(
self,
pixel_values,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPooling]:
r"""
Returns:
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
hidden_states = self.embeddings(pixel_values)
encoder_outputs = self.encoder(
inputs_embeds=hidden_states,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
last_hidden_state = encoder_outputs[0]
last_hidden_state = self.post_layernorm(last_hidden_state)
pooled_output = self.head(last_hidden_state)
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPooling(
last_hidden_state=last_hidden_state,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
class SiglipMultiheadAttentionPoolingHead(nn.Module):
"""Multihead Attention Pooling."""
def __init__(self, config: SiglipVisionConfig):
super().__init__()
self.probe = nn.Parameter(torch.randn(1, 1, config.hidden_size))
self.attention = torch.nn.MultiheadAttention(config.hidden_size, config.num_attention_heads, batch_first=True)
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.mlp = SiglipMLP(config)
def forward(self, hidden_state):
batch_size = hidden_state.shape[0]
probe = self.probe.repeat(batch_size, 1, 1)
hidden_state = self.attention(probe, hidden_state, hidden_state)[0]
residual = hidden_state
hidden_state = self.layernorm(hidden_state)
hidden_state = residual + self.mlp(hidden_state)
return hidden_state[:, 0]
@add_start_docstrings(
"""The vision model from SigLIP without any head or projection on top.""",
SIGLIP_START_DOCSTRING,
)
class SiglipVisionModel(SiglipPreTrainedModel):
config_class = SiglipVisionConfig
main_input_name = "pixel_values"
def __init__(self, config: SiglipVisionConfig):
super().__init__(config)
self.vision_model = SiglipVisionTransformer(config)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self) -> nn.Module:
return self.vision_model.embeddings.patch_embedding
@add_start_docstrings_to_model_forward(SIGLIP_VISION_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=SiglipVisionConfig)
def forward(
self,
pixel_values,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPooling]:
r"""
Returns:
Examples:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, SiglipVisionModel
>>> model = SiglipVisionModel.from_pretrained("google/siglip-base-patch16-224")
>>> processor = AutoProcessor.from_pretrained("google/siglip-base-patch16-224")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(images=image, return_tensors="pt")
>>> outputs = model(**inputs)
>>> last_hidden_state = outputs.last_hidden_state
>>> pooled_output = outputs.pooler_output # pooled features
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
return self.vision_model(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
@add_start_docstrings(SIGLIP_START_DOCSTRING)
class SiglipModel(SiglipPreTrainedModel):
config_class = SiglipConfig
def __init__(self, config: SiglipConfig):
super().__init__(config)
if not isinstance(config.text_config, SiglipTextConfig):
raise ValueError(
"config.text_config is expected to be of type SiglipTextConfig but is of type"
f" {type(config.text_config)}."
)
if not isinstance(config.vision_config, SiglipVisionConfig):
raise ValueError(
"config.vision_config is expected to be of type SiglipVisionConfig but is of type"
f" {type(config.vision_config)}."
)
text_config = config.text_config
vision_config = config.vision_config
self.text_model = SiglipTextTransformer(text_config)
self.vision_model = SiglipVisionTransformer(vision_config)
self.logit_scale = nn.Parameter(torch.randn(1))
self.logit_bias = nn.Parameter(torch.randn(1))
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(SIGLIP_TEXT_INPUTS_DOCSTRING)
def get_text_features(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> torch.FloatTensor:
r"""
Returns:
text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by
applying the projection layer to the pooled output of [`SiglipTextModel`].
Examples:
```python
>>> from transformers import AutoTokenizer, AutoModel
>>> import torch
>>> model = AutoModel.from_pretrained("google/siglip-base-patch16-224")
>>> tokenizer = AutoTokenizer.from_pretrained("google/siglip-base-patch16-224")
>>> # important: make sure to set padding="max_length" as that's how the model was trained
>>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding="max_length", return_tensors="pt")
>>> with torch.no_grad():
... text_features = model.get_text_features(**inputs)
```"""
# Use SigLIP model's config for some fields (if specified) instead of those of vision & text components.
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
text_outputs = self.text_model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = text_outputs[1]
return pooled_output
@add_start_docstrings_to_model_forward(SIGLIP_VISION_INPUTS_DOCSTRING)
def get_image_features(
self,
pixel_values: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> torch.FloatTensor:
r"""
Returns:
image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by
applying the projection layer to the pooled output of [`SiglipVisionModel`].
Examples:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, AutoModel
>>> import torch
>>> model = AutoModel.from_pretrained("google/siglip-base-patch16-224")
>>> processor = AutoProcessor.from_pretrained("google/siglip-base-patch16-224")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(images=image, return_tensors="pt")
>>> with torch.no_grad():
... image_features = model.get_image_features(**inputs)
```"""
# Use SiglipModel's config for some fields (if specified) instead of those of vision & text components.
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
vision_outputs = self.vision_model(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = vision_outputs[1]
return pooled_output
@add_start_docstrings_to_model_forward(SIGLIP_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=SiglipOutput, config_class=SiglipConfig)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
pixel_values: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
return_loss: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, SiglipOutput]:
r"""
Returns:
Examples:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, AutoModel
>>> import torch
>>> model = AutoModel.from_pretrained("google/siglip-base-patch16-224")
>>> processor = AutoProcessor.from_pretrained("google/siglip-base-patch16-224")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> texts = ["a photo of 2 cats", "a photo of 2 dogs"]
>>> inputs = processor(text=texts, images=image, return_tensors="pt")
>>> with torch.no_grad():
... outputs = model(**inputs)
>>> logits_per_image = outputs.logits_per_image
>>> probs = torch.sigmoid(logits_per_image) # these are the probabilities
>>> print(f"{probs[0][0]:.1%} that image 0 is '{texts[0]}'")
31.9% that image 0 is 'a photo of 2 cats'
```"""
# Use SigLIP model's config for some fields (if specified) instead of those of vision & text components.
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
vision_outputs = self.vision_model(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
text_outputs = self.text_model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
image_embeds = vision_outputs[1]
text_embeds = text_outputs[1]
# normalized features
image_embeds = image_embeds / image_embeds.norm(p=2, dim=-1, keepdim=True)
text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True)
# cosine similarity as logits
logits_per_text = torch.matmul(text_embeds, image_embeds.t()) * self.logit_scale.exp() + self.logit_bias
logits_per_image = logits_per_text.t()
loss = None
if return_loss:
raise NotImplementedError("SigLIP loss to be implemented")
if not return_dict:
output = (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs)
return ((loss,) + output) if loss is not None else output
return SiglipOutput(
loss=loss,
logits_per_image=logits_per_image,
logits_per_text=logits_per_text,
text_embeds=text_embeds,
image_embeds=image_embeds,
text_model_output=text_outputs,
vision_model_output=vision_outputs,
)
class Upsample(nn.Module):
def __init__(self, in_channels, with_conv):
super().__init__()
self.with_conv = with_conv
if self.with_conv:
self.conv = torch.nn.Conv2d(in_channels,
in_channels,
kernel_size=3,
stride=1,
padding=1)
def forward(self, x):
x = torch.nn.functional.interpolate(x.to(torch.float32), scale_factor=2.0, mode="nearest").to(torch.bfloat16)
if self.with_conv:
x = self.conv(x)
return x
class ResnetBlock(nn.Module):
def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False,
dropout, temb_channels=512):
super().__init__()
self.in_channels = in_channels
out_channels = in_channels if out_channels is None else out_channels
self.out_channels = out_channels
self.use_conv_shortcut = conv_shortcut
self.checkpointing = False
self.norm1 = Normalize(in_channels)
self.conv1 = torch.nn.Conv2d(in_channels,
out_channels,
kernel_size=3,
stride=1,
padding=1)
if temb_channels > 0:
self.temb_proj = torch.nn.Linear(temb_channels,
out_channels)
self.norm2 = Normalize(out_channels)
self.dropout = torch.nn.Dropout(dropout, inplace=True)
self.conv2 = torch.nn.Conv2d(out_channels,
out_channels,
kernel_size=3,
stride=1,
padding=1)
if self.in_channels != self.out_channels:
if self.use_conv_shortcut:
self.conv_shortcut = torch.nn.Conv2d(in_channels,
out_channels,
kernel_size=3,
stride=1,
padding=1)
else:
self.nin_shortcut = torch.nn.Conv2d(in_channels,
out_channels,
kernel_size=1,
stride=1,
padding=0)
def _forward(self, x, temb):
h = x
h = self.norm1(h)
h = nonlinearity(h)
h = self.conv1(h)
if temb is not None:
h = h + self.temb_proj(nonlinearity(temb))[:,:,None,None]
h = self.norm2(h)
h = nonlinearity(h)
h = self.dropout(h)
h = self.conv2(h)
if self.in_channels != self.out_channels:
if self.use_conv_shortcut:
x = self.conv_shortcut(x)
else:
x = self.nin_shortcut(x)
return x+h
def forward(self, x, temb):
if self.checkpointing and self.training:
out = checkpoint(self._forward, x, temb)
else:
out = self._forward(x, temb)
return out
class PostQuantResnetBlock(nn.Module):
def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False, dropout):
super().__init__()
self.in_channels = in_channels
out_channels = in_channels if out_channels is None else out_channels
self.out_channels = out_channels
self.use_conv_shortcut = conv_shortcut
self.checkpointing = False
self.norm1 = Normalize(in_channels)
self.conv1 = torch.nn.Conv2d(in_channels,
out_channels,
kernel_size=1,
stride=1,
padding=0)
self.norm2 = Normalize(out_channels)
self.dropout = torch.nn.Dropout(dropout, inplace=True)
self.conv2 = torch.nn.Conv2d(out_channels,
out_channels,
kernel_size=3,
stride=1,
padding=1)
if self.in_channels != self.out_channels:
if self.use_conv_shortcut:
self.conv_shortcut = torch.nn.Conv2d(in_channels,
out_channels,
kernel_size=3,
stride=1,
padding=1)
else:
self.nin_shortcut = torch.nn.Conv2d(in_channels,
out_channels,
kernel_size=1,
stride=1,
padding=0)
def _forward(self, x):
h = x
h = self.norm1(h)
h = nonlinearity(h)
h = self.conv1(h)
h = self.norm2(h)
h = nonlinearity(h)
h = self.dropout(h)
h = self.conv2(h)
if self.in_channels != self.out_channels:
if self.use_conv_shortcut:
x = self.conv_shortcut(x)
else:
x = self.nin_shortcut(x)
return x+h
def forward(self, x):
if self.checkpointing and self.training:
out = checkpoint(self._forward, x)
else:
out = self._forward(x)
return out
class ProjectResnetBlock(nn.Module):
def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False, dropout):
super().__init__()
self.in_channels = in_channels
out_channels = in_channels if out_channels is None else out_channels
self.out_channels = out_channels
self.use_conv_shortcut = conv_shortcut
self.checkpointing = False
self.norm1 = Normalize(in_channels)
self.conv1 = torch.nn.Conv2d(in_channels,
out_channels,
kernel_size=1,
stride=1,
padding=0)
self.norm2 = Normalize(out_channels)
self.dropout = torch.nn.Dropout(dropout, inplace=True)
self.conv2 = torch.nn.Conv2d(out_channels,
out_channels,
kernel_size=3,
stride=1,
padding=1)
if self.in_channels != self.out_channels:
if self.use_conv_shortcut:
self.conv_shortcut = torch.nn.Conv2d(in_channels,
out_channels,
kernel_size=3,
stride=1,
padding=1)
else:
self.nin_shortcut = torch.nn.Conv2d(in_channels,
out_channels,
kernel_size=1,
stride=1,
padding=0)
def _forward(self, x):
h = x
h = self.norm1(h)
h = nonlinearity(h)
h = self.conv1(h)
h = self.norm2(h)
h = nonlinearity(h)
h = self.dropout(h)
h = self.conv2(h)
if self.in_channels != self.out_channels:
if self.use_conv_shortcut:
x = self.conv_shortcut(x)
else:
x = self.nin_shortcut(x)
return x+h
def forward(self, x):
if self.checkpointing and self.training:
out = checkpoint(self._forward, x)
else:
out = self._forward(x)
return out
class AttnBlock(nn.Module):
def __init__(self, in_channels):
super().__init__()
self.in_channels = in_channels
self.norm = Normalize(in_channels)
self.q = torch.nn.Conv2d(in_channels,
in_channels,
kernel_size=1,
stride=1,
padding=0)
self.k = torch.nn.Conv2d(in_channels,
in_channels,
kernel_size=1,
stride=1,
padding=0)
self.v = torch.nn.Conv2d(in_channels,
in_channels,
kernel_size=1,
stride=1,
padding=0)
self.proj_out = torch.nn.Conv2d(in_channels,
in_channels,
kernel_size=1,
stride=1,
padding=0)
def forward(self, x):
h_ = x
h_ = self.norm(h_)
q = self.q(h_)
k = self.k(h_)
v = self.v(h_)
b,c,h,w = q.shape
q = q.reshape(b,c,h*w)
q = q.permute(0,2,1)
k = k.reshape(b,c,h*w)
w_ = torch.bmm(q,k)
w_ = w_ * (int(c)**(-0.5))
w_ = torch.nn.functional.softmax(w_, dim=2)
v = v.reshape(b,c,h*w)
w_ = w_.permute(0,2,1)
h_ = torch.bmm(v,w_)
h_ = h_.reshape(b,c,h,w)
h_ = self.proj_out(h_)
return x+h_
class VQEmbedding(nn.Embedding):
"""VQ embedding module with ema update."""
def __init__(self, n_embed, embed_dim, ema=False, decay=0.99, restart_unused_codes=True, eps=1e-5):
super().__init__(n_embed + 1, embed_dim, padding_idx=n_embed)
self.ema = ema
self.decay = decay
self.eps = eps
self.restart_unused_codes = restart_unused_codes
self.n_embed = n_embed
@torch.no_grad()
def compute_distances(self, inputs): # 12, 16, 16, 1024
codebook_t = self.weight[:-1, :].t() # 1024, 16384
(embed_dim, _) = codebook_t.shape
inputs_shape = inputs.shape
assert inputs_shape[-1] == embed_dim
inputs_flat = inputs.reshape(-1, embed_dim) # 3072, 1024
inputs_norm_sq = inputs_flat.pow(2.).sum(dim=1, keepdim=True) # 3072, 1
codebook_t_norm_sq = codebook_t.pow(2.).sum(dim=0, keepdim=True) # 1, 16384
distances = torch.addmm(
inputs_norm_sq + codebook_t_norm_sq,
inputs_flat,
codebook_t,
alpha=-2.0,
)
distances = distances.reshape(*inputs_shape[:-1], -1)
return distances # 13, 16, 16, 16384
@torch.no_grad()
def find_nearest_embedding(self, inputs):
distances = self.compute_distances(inputs)
embed_idxs = distances.argmin(dim=-1)
return embed_idxs
def forward(self, inputs):
embed_idxs = self.find_nearest_embedding(inputs)
embeds = self.embed(embed_idxs)
return embeds, embed_idxs
def embed(self, idxs):
embeds = super().forward(idxs)
return embeds
class Decoder(nn.Module):
def __init__(self, *, ch, out_ch, ch_mult=(1, 2, 4, 8), num_res_blocks,
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
resolution, decoder_in_channels, give_pre_end=False, **ignorekwargs):
super().__init__()
self.ch = ch
self.temb_ch = 0
self.num_resolutions = len(ch_mult)
self.num_res_blocks = num_res_blocks
self.resolution = resolution
self.in_channels = in_channels
self.give_pre_end = give_pre_end
in_ch_mult = (1,)+tuple(ch_mult)
block_in = ch*ch_mult[self.num_resolutions-1]
curr_res = resolution // 2**(self.num_resolutions-1)
self.z_shape = (1, decoder_in_channels, curr_res, curr_res)
self.conv_in = torch.nn.Conv2d(decoder_in_channels,
block_in,
kernel_size=3,
stride=1,
padding=1)
self.mid = nn.Module()
self.mid.block_1 = ResnetBlock(in_channels=block_in,
out_channels=block_in,
temb_channels=self.temb_ch,
dropout=dropout)
self.mid.attn_1 = AttnBlock(block_in)
self.mid.block_2 = ResnetBlock(in_channels=block_in,
out_channels=block_in,
temb_channels=self.temb_ch,
dropout=dropout)
self.up = nn.ModuleList()
for i_level in reversed(range(self.num_resolutions)):
block = nn.ModuleList()
attn = nn.ModuleList()
block_out = ch*ch_mult[i_level]
for i_block in range(self.num_res_blocks+1):
block.append(ResnetBlock(in_channels=block_in,
out_channels=block_out,
temb_channels=self.temb_ch,
dropout=dropout))
block_in = block_out
if curr_res in attn_resolutions:
attn.append(AttnBlock(block_in))
up = nn.Module()
up.block = block
up.attn = attn
if i_level != 0:
up.upsample = Upsample(block_in, resamp_with_conv)
curr_res = curr_res * 2
self.up.insert(0, up)
self.norm_out = Normalize(block_in)
self.conv_out = torch.nn.Conv2d(block_in,
out_ch,
kernel_size=3,
stride=1,
padding=1)
def forward(self, z):
self.last_z_shape = z.shape
temb = None
h = self.conv_in(z)
h = self.mid.block_1(h, temb)
h = self.mid.attn_1(h)
h = self.mid.block_2(h, temb)
for i_level in reversed(range(self.num_resolutions)):
for i_block in range(self.num_res_blocks+1):
h = self.up[i_level].block[i_block](h, temb)
if len(self.up[i_level].attn) > 0:
h = self.up[i_level].attn[i_block](h)
if i_level != 0:
h = self.up[i_level].upsample(h)
if self.give_pre_end:
return h
h = self.norm_out(h)
h = nonlinearity(h)
h = self.conv_out(h)
return h
class RQBottleneck(nn.Module):
"""
Quantization bottleneck via Residual Quantization.
Arguments:
latent_shape (Tuple[int, int, int]): the shape of latents, denoted (H, W, D)
code_shape (Tuple[int, int, int]): the shape of codes, denoted (h, w, d)
n_embed (int, List, or Tuple): the number of embeddings (i.e., the size of codebook)
If isinstance(n_embed, int), the sizes of all codebooks are same.
shared_codebook (bool): If True, codebooks are shared in all location. If False,
uses separate codebooks along the ``depth'' dimension. (default: False)
restart_unused_codes (bool): If True, it randomly assigns a feature vector in the curruent batch
as the new embedding of unused codes in training. (default: True)
"""
def __init__(self,
latent_shape,
code_shape,
n_embed,
decay=0.99,
shared_codebook=False,
restart_unused_codes=True,
commitment_loss='cumsum'
):
super().__init__()
if not len(code_shape) == len(latent_shape) == 3:
raise ValueError("incompatible code shape or latent shape")
if any([y % x != 0 for x, y in zip(code_shape[:2], latent_shape[:2])]):
raise ValueError("incompatible code shape or latent shape")
embed_dim = np.prod(latent_shape[:2]) // np.prod(code_shape[:2]) * latent_shape[2]
self.latent_shape = torch.Size(latent_shape)
self.code_shape = torch.Size(code_shape) # 16, 16, 4
self.shape_divisor = torch.Size([latent_shape[i] // code_shape[i] for i in range(len(latent_shape))])
self.shared_codebook = shared_codebook
if self.shared_codebook:
if isinstance(n_embed, Iterable) or isinstance(decay, Iterable):
raise ValueError("Shared codebooks are incompatible \
with list types of momentums or sizes: Change it into int")
self.restart_unused_codes = restart_unused_codes
self.n_embed = n_embed if isinstance(n_embed, Iterable) else [n_embed for _ in range(self.code_shape[-1])] # [16384, 16384, 16384, 16384]
self.decay = decay if isinstance(decay, Iterable) else [decay for _ in range(self.code_shape[-1])]
assert len(self.n_embed) == self.code_shape[-1]
assert len(self.decay) == self.code_shape[-1]
if self.shared_codebook:
codebook0 = VQEmbedding(self.n_embed[0],
embed_dim,
decay=self.decay[0],
restart_unused_codes=restart_unused_codes,
)
self.codebooks = nn.ModuleList([codebook0 for _ in range(self.code_shape[-1])])
else:
codebooks = [VQEmbedding(self.n_embed[idx],
embed_dim,
decay=self.decay[idx],
restart_unused_codes=restart_unused_codes,
) for idx in range(self.code_shape[-1])]
self.codebooks = nn.ModuleList(codebooks)
self.commitment_loss = commitment_loss
def to_code_shape(self, x):
(B, H, W, D) = x.shape
(rH, rW, _) = self.shape_divisor
x = x.reshape(B, H//rH, rH, W//rW, rW, D)
x = x.permute(0, 1, 3, 2, 4, 5)
x = x.reshape(B, H//rH, W//rW, -1)
return x
def to_latent_shape(self, x):
(B, h, w, _) = x.shape
(_, _, D) = self.latent_shape
(rH, rW, _) = self.shape_divisor
x = x.reshape(B, h, w, rH, rW, D)
x = x.permute(0, 1, 3, 2, 4, 5)
x = x.reshape(B, h*rH, w*rW, D)
return x
def quantize(self, x):
r"""
Return list of quantized features and the selected codewords by the residual quantization.
The code is selected by the residuals between x and quantized features by the previous codebooks.
Arguments:
x (Tensor): bottleneck feature maps to quantize.
Returns:
quant_list (list): list of sequentially aggregated and quantized feature maps by codebooks.
codes (LongTensor): codewords index, corresponding to quants.
Shape:
- x: (B, h, w, embed_dim)
- quant_list[i]: (B, h, w, embed_dim)
- codes: (B, h, w, d)
"""
B, h, w, embed_dim = x.shape
residual_feature = x.detach().clone() # 13, 16, 16, 1024
quant_list = []
code_list = []
aggregated_quants = torch.zeros_like(x)
for i in range(self.code_shape[-1]): # 4
quant, code = self.codebooks[i](residual_feature) # 13, 16, 16, 1024 13, 16, 16
residual_feature.sub_(quant)
aggregated_quants.add_(quant)
quant_list.append(aggregated_quants.clone())
code_list.append(code.unsqueeze(-1))
codes = torch.cat(code_list, dim=-1)
return quant_list, codes
def forward(self, x):
x_reshaped = self.to_code_shape(x)
quant_list, codes = self.quantize(x_reshaped)
commitment_loss = self.compute_commitment_loss(x_reshaped, quant_list)
quants_trunc = self.to_latent_shape(quant_list[-1])
quants_trunc = x + (quants_trunc - x).detach()
return quants_trunc, commitment_loss, codes
def compute_commitment_loss(self, x, quant_list):
r"""
Compute the commitment loss for the residual quantization.
The loss is iteratively computed by aggregating quantized features.
"""
loss_list = []
for idx, quant in enumerate(quant_list):
partial_loss = (x-quant.detach()).pow(2.0).mean()
loss_list.append(partial_loss)
commitment_loss = torch.mean(torch.stack(loss_list))
return commitment_loss
@torch.no_grad()
def embed_code(self, code):
assert code.shape[1:] == self.code_shape
code_slices = torch.chunk(code, chunks=code.shape[-1], dim=-1)
if self.shared_codebook:
embeds = [self.codebooks[0].embed(code_slice) for i, code_slice in enumerate(code_slices)]
else:
embeds = [self.codebooks[i].embed(code_slice) for i, code_slice in enumerate(code_slices)]
embeds = torch.cat(embeds, dim=-2).sum(-2)
embeds = self.to_latent_shape(embeds)
return embeds
@torch.no_grad()
def embed_code_with_depth(self, code, to_latent_shape=False):
assert code.shape[-1] == self.code_shape[-1] # 4
code_slices = torch.chunk(code, chunks=code.shape[-1], dim=-1)
# print(f"self.shared_codebook: {self.shared_codebook}")
if self.shared_codebook:
embeds = [self.codebooks[0].embed(code_slice) for i, code_slice in enumerate(code_slices)]
else:
embeds = [self.codebooks[i].embed(code_slice) for i, code_slice in enumerate(code_slices)]
if to_latent_shape:
embeds = [self.to_latent_shape(embed.squeeze(-2)).unsqueeze(-2) for embed in embeds]
embeds = torch.cat(embeds, dim=-2)
return embeds # 16, 16, 4, 1024
class MultiSelfAttention(nn.Module):
"""
Optimized by batched matmul operations
"""
def __init__(self, config: AttentionBlockConfig, mask=True):
super().__init__()
assert config.embed_dim % config.n_head == 0
self.key = nn.Linear(config.embed_dim, config.embed_dim, bias=config.attn_bias)
self.query = nn.Linear(config.embed_dim, config.embed_dim, bias=config.attn_bias)
self.value = nn.Linear(config.embed_dim, config.embed_dim, bias=config.attn_bias)
self.attn_drop = nn.Dropout(config.attn_pdrop, inplace=False)
self.resid_drop = nn.Dropout(config.resid_pdrop, inplace=True)
self.proj = nn.Linear(config.embed_dim, config.embed_dim, config.attn_bias)
self.n_head = config.n_head
self.mask = mask
def forward(self, x, caching=False, past_kv=None):
(B, T, C) = x.shape
if not caching:
assert past_kv is None
x = x.transpose(0, 1).contiguous()
k = self.key(x).view(T, B*self.n_head, C//self.n_head).transpose(0, 1)
q = self.query(x).view(T, B*self.n_head, C//self.n_head).transpose(0, 1)
v = self.value(x).view(T, B*self.n_head, C//self.n_head).transpose(0, 1)
if past_kv is not None:
past_key, past_value = past_kv
k = torch.cat([past_key, k], dim=-2)
v = torch.cat([past_value, v], dim=-2)
T_past = past_key.shape[1]
else:
T_past = 0
if caching:
present = torch.stack([k, v])
else:
present = None
att = torch.bmm(q, (k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1))))
if self.mask:
mask = torch.tril(torch.ones(T_past+T, T_past+T, device=x.device, dtype=torch.bool))
mask = mask.view(1, T_past+T, T_past+T)
att = att.masked_fill(~mask[:, T_past:T_past+T, :T_past+T], float('-inf'))
att = F.softmax(att, dim=-1)
att = self.attn_drop(att)
y = torch.bmm(att, v)
y = y.transpose(0, 1).contiguous().view(T, B, C)
y = self.resid_drop(self.proj(y))
if caching:
return y.transpose(0, 1).contiguous(), present
else:
return y.transpose(0, 1).contiguous()
class AttentionBlock(nn.Module):
""" an unassuming Transformer block """
def __init__(self, config: AttentionBlockConfig):
super().__init__()
self.ln1 = nn.LayerNorm(config.embed_dim)
self.ln2 = nn.LayerNorm(config.embed_dim)
self.attn = MultiSelfAttention(config, mask=True)
self.mlp = nn.Sequential(
nn.Linear(config.embed_dim, 4 * config.embed_dim, bias=config.mlp_bias),
nn.GELU(),
nn.Linear(4 * config.embed_dim, config.embed_dim, bias=config.mlp_bias),
nn.Dropout(config.resid_pdrop, inplace=True),
)
self._cache = None
def forward(self, x):
attn = self.attn(self.ln1(x))
x = x + attn
x = x + self.mlp(self.ln2(x))
return x
def cached_forward(self, x_present):
attn, present = self.attn(self.ln1(x_present), caching=True, past_kv=self._cache['past_kv'])
self._cache['past_kv'] = present
x_present = x_present + attn
x_present = x_present + self.mlp(self.ln2(x_present))
return x_present
def init_cache(self):
self._cache = {'past_kv': None}
class AttentionStack(nn.Module):
blocks: Iterable[AttentionBlock]
def __init__(self, config: AttentionStackConfig):
super().__init__()
self.blocks = nn.ModuleList([AttentionBlock(config.block) for _ in range(config.n_layer)])
def forward(self, x):
for block in self.blocks:
x = block(x)
return x
def cached_forward(self, x_present):
for block in self.blocks:
x_present = block.cached_forward(x_present)
return x_present
def init_cache(self):
for block in self.blocks:
block.init_cache()
class RMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
"""
RMSNorm is equivalent to T5LayerNorm
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
# convert into half-precision if necessary
if self.weight.dtype in [torch.float16, torch.bfloat16]:
hidden_states = hidden_states.to(self.weight.dtype)
return self.weight * hidden_states
class CasualDepthTransformerLayer(nn.Module):
def __init__(self, config, depth):
super().__init__()
self.config = config
embed_size = config.embed_dim # 2048
num_heads = embed_size // 128 # 16
self.self_attention = nn.MultiheadAttention(embed_dim=embed_size, num_heads=num_heads,batch_first=True)
self.layernorm1 = RMSNorm(embed_size)
self.layernorm2 = RMSNorm(embed_size)
self.linear1 = nn.Linear(embed_size * depth, 2 * embed_size) # 8192, 4096
self.linear2 = nn.Linear(2 * embed_size * depth, embed_size)
def forward(self, x):
# 获取输入的序列长度
seq_len = x.size(1)
# 创建因果掩码,确保只能看到当前和过去的信息
# 自注意力层
res = x
x = self.layernorm1(x)
src_mask = torch.triu(torch.ones(seq_len, seq_len), diagonal=1).bool().to(x.device)
_x, _ = self.self_attention(x, x, x, is_causal=True, attn_mask=src_mask)
res = _x + res # (bs, sl, d)
res = self.layernorm2(res)
x = torch.einsum('bld,tld->blt', res, torch.reshape(self.linear1.weight, (2 * self.config.embed_dim, -1, self.config.embed_dim))) # linear1.reshape: 4096, 4, 2048
x = torch.nn.functional.gelu(x)
x = torch.einsum('blt,dlt->bld', x, torch.reshape(self.linear2.weight, (self.config.embed_dim, -1, 2 * self.config.embed_dim)))
return res + x
class RQTransformer(PreTrainedModel):
config_class = RQTransformerConfig
def __init__(self, config: RQTransformerConfig):
super().__init__(config)
self.in_mlp_1 = nn.Linear(config.input_embed_dim_1, config.embed_dim) # 1024, llm_hidden_size(2048)
self.head_transformer = nn.ModuleList([
CasualDepthTransformerLayer(config, config.block_size[-1])
for _ in range(3)
])
self.headnorm = RMSNorm(config.embed_dim)
self.heads = nn.ModuleList([
nn.Linear(config.embed_dim, config.vocab_size)
for i in range(config.block_size[-1])
])
self.gradient_checkpointing = True
def embed_with_model_aux(self, code, model_aux, mode=None):
# mode = "visual" or "semantic"
xs_emb = model_aux.get_code_emb_with_depth(code, mode=mode)
return xs_emb
def forward(self, embed_from_body, code, model_aux=None, mode=None):
B, seq_len, D = code.shape # 59, 256, 4
depth_ctx = self.embed_with_model_aux(code, model_aux, mode=mode)
depth_ctx = torch.cumsum(depth_ctx, dim=-2)
depth_ctx = self.in_mlp_1(depth_ctx) # torch.Size([59, 256, 4, llm_hidden_size(2048)])
depth_ctx_full = torch.cat(
[
embed_from_body.view(B, seq_len, 1, -1),
depth_ctx[:, :, :-1, :],
],
dim=-2,
) # B, 256, 4, 2048
depth_ctx_full = depth_ctx_full.reshape(B * seq_len, D, -1) # B*256, 4, 2048
for i, tlayer in enumerate(self.head_transformer):
if self.gradient_checkpointing and self.training:
def create_custom_forward(module):
def custom_forward(*inputs):
# None for past_key_value
return module(*inputs)
return custom_forward
depth_ctx_full = torch.utils.checkpoint.checkpoint(
create_custom_forward(tlayer), depth_ctx_full,
)
else:
depth_ctx_full = tlayer(
depth_ctx_full,
)
depth_ctx_full = self.headnorm(depth_ctx_full) # B*256, 4, 2048
logits = [head(depth_ctx_full[:, i]) for i, head in enumerate(self.heads)] # logits[0].shape = B*256, 16384(codebook_size)
return logits
def generate(self, embed_from_body, model_aux=None, cfg=3.0, mode=None):
top_k = 900
# top_k = 500
# top_k = 1
top_p = 0.96
# top_p = 0.99
B, seq_len, _ = embed_from_body.shape # 1, 1, 2048
next_token_ids = torch.zeros(B, 1, 4, dtype=torch.long).to(embed_from_body.device)
for i in range(4):
logits = self(embed_from_body, next_token_ids, model_aux, mode=mode)
next_token_logits = logits[i].clone()
next_token_logits = next_token_logits[B//2:, :] + cfg * (next_token_logits[:B//2, :] - next_token_logits[B//2:, :])
next_tokens = sample_from_logits(next_token_logits, temperature=1.0, top_p=top_p, top_k=top_k)
next_tokens = next_tokens.reshape(B//2, seq_len).repeat(2, 1)
next_token_ids[:, :, i] = next_tokens
out_features = self.embed_with_model_aux(next_token_ids, model_aux, mode=mode)
out_features = torch.cumsum(out_features, dim=-2)[:, :, -1, :]
# out_features = self.in_mlp_1(out_features)
return out_features, next_token_ids
def build_projector(dim_in, dim_out, projector_type='mlp2x_gelu'):
if projector_type == 'linear':
linear = nn.Linear(dim_in, dim_out)
linear.reset_parameters()
return linear
elif projector_type == 'nonlinear':
linear = nn.Linear(dim_in, dim_out)
linear.reset_parameters()
modules = [linear, nn.GELU()]
return nn.Sequential(*modules)
elif projector_type == 'conv':
return nn.Conv2d(dim_in, dim_out, 1)
else: # mlp2x_gelu
linear_1 = nn.Linear(dim_in, dim_in)
linear_1.reset_parameters()
modules = [linear_1]
modules.append(nn.GELU())
linear_2 = nn.Linear(dim_in, dim_out)
linear_2.reset_parameters()
modules.append(linear_2)
return nn.Sequential(*modules)
class RQVAESiglipModel(PreTrainedModel):
config_class = RQVAESiglipConfig
def __init__(self, config: RQVAESiglipConfig):
super().__init__(config)
self.config = config
# self.siglip_model = SiglipModel.from_pretrained(config.pretrained_model)
siglip_config = SiglipModel.config_class.from_pretrained(config.pretrained_model)
self.siglip_model = SiglipModel._from_config(siglip_config)
# self.prequant_semantic = build_projector(config.hidden_size, config.embed_dim, projector_type='linear')
self.prequant_visual = ProjectResnetBlock(in_channels=config.hidden_size,
out_channels=config.embed_dim,
dropout=0.0)
self.prequant_visual_1 = ProjectResnetBlock(in_channels=config.hidden_size,
out_channels=config.embed_dim,
dropout=0.0)
self.layer_norm_visual = nn.LayerNorm(config.embed_dim)
self.layer_norm_semantic = nn.LayerNorm(config.embed_dim)
self.quantizer_semantic = RQBottleneck(
latent_shape=config.latent_shape,
code_shape=config.code_shape_semantic,
n_embed=config.n_embed_semantic,
decay=config.decay,
shared_codebook=config.shared_codebook,
restart_unused_codes=config.restart_unused_codes,
)
self.quantizer = RQBottleneck(
latent_shape=config.latent_shape,
code_shape=config.code_shape_visual,
n_embed=config.n_embed_visual,
decay=config.decay,
shared_codebook=config.shared_codebook,
restart_unused_codes=config.restart_unused_codes,
)
self.postquant_semantic = build_projector(config.embed_dim, config.hidden_size, projector_type='nonlinear')
self.postquant_visual = ProjectResnetBlock(in_channels=config.embed_dim,
out_channels=config.hidden_size,
dropout=0.0)
self.post_quant_conv = PostQuantResnetBlock(in_channels=config.hidden_size,
out_channels=config.ddconfig["decoder_in_channels"],
dropout=0.0)
self.decoder = Decoder(**config.ddconfig)
try:
self.decoder_latent_shape = config.decoder_latent_shape
except:
self.decoder_latent_shape = None
def encode_text(self, text):
# Use SigLIP model's config for some fields (if specified) instead of those of vision & text components.
output_attentions, output_hidden_states, return_dict = None, None, None
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
text_model = self.siglip_model.text_model
text_outputs = text_model(
input_ids=text,
attention_mask=None,
position_ids=None,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
text_embeds = text_outputs[1]
return text_embeds
def encode_image(self, image):
vision_model = self.siglip_model.vision_model
hidden_states = vision_model.embeddings(image)
attention_mask = None
output_attentions = None
# visual_n, semantic_n = 20, 2 # 取到倒数第n层的特征
visual_n, semantic_n = self.config.last_n_layer_recon, self.config.last_n_layer_sem
for i, encoder_layer in enumerate(vision_model.encoder.layers):
if vision_model.encoder.gradient_checkpointing and vision_model.encoder.training:
layer_outputs = vision_model.encoder._gradient_checkpointing_func(
encoder_layer.__call__,
hidden_states,
attention_mask,
output_attentions,
)
else:
layer_outputs = encoder_layer(
hidden_states,
attention_mask,
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if i == len(vision_model.encoder.layers) - (visual_n+2): # -22
B, L, C = hidden_states.shape
hidden_states_visual_1 = hidden_states.reshape(B, int(L**0.5), int(L**0.5), -1)
hidden_states_visual_1 = hidden_states_visual_1.permute(0, 3, 1, 2).contiguous()
hidden_states_visual_1 = self.prequant_visual_1(hidden_states_visual_1)
hidden_states_visual_1 = hidden_states_visual_1.permute(0, 2, 3, 1).contiguous()
if i == len(vision_model.encoder.layers) - visual_n: # -20
B, L, C = hidden_states.shape
hidden_states_visual = hidden_states.reshape(B, int(L**0.5), int(L**0.5), -1)
hidden_states_visual = hidden_states_visual.permute(0, 3, 1, 2).contiguous()
hidden_states_visual = self.prequant_visual(hidden_states_visual)
hidden_states_visual = hidden_states_visual.permute(0, 2, 3, 1).contiguous()
hidden_states_visual += 0.6 * hidden_states_visual_1
hidden_states_visual = self.layer_norm_visual(hidden_states_visual)
z_q_visual, quant_loss_visual, code_visual = self.quantizer(hidden_states_visual)
if i == len(vision_model.encoder.layers) - semantic_n:
hidden_state_26 = hidden_states
B, L, C = hidden_states.shape
hidden_states_semantic = hidden_states.reshape(B, int(L**0.5), int(L**0.5), -1)
hidden_states_semantic = self.layer_norm_semantic(hidden_states_semantic)
z_q_semantic, quant_loss_semantic, code_semantic = self.quantizer_semantic(hidden_states_semantic)
return z_q_visual, code_visual, z_q_semantic, code_semantic
def decode(self, z_q):
z_q = z_q.permute(0, 3, 1, 2).contiguous()
z_q = self.postquant_visual(z_q)
if self.decoder_latent_shape is not None:
z_q = F.interpolate(z_q.to(torch.float32), size=tuple(self.decoder_latent_shape), mode='bilinear').to(torch.bfloat16)
z_q = self.post_quant_conv(z_q)
out = self.decoder(z_q)
return out
@torch.no_grad()
def get_code_emb_with_depth(self, code, mode=None):
# 分 visual codebook 取 image embedding, mode = "visual" or "semantic"
if mode == "visual":
visual_embedding = self.quantizer.embed_code_with_depth(code)
return visual_embedding
elif mode == "semantic":
semantic_embedding = self.quantizer_semantic.embed_code_with_depth(code)
return semantic_embedding
class RQVAESIGLIPTransformer(PreTrainedModel):
config_class = RQVAESIGLIPTransformerConfig
def __init__(self, config: RQVAESIGLIPTransformerConfig):
super().__init__(config)
rqvaesiglip_config = RQVAESiglipModel.config_class.from_dict(config.rqvaesiglip)
rqtransformer_visual_config = RQTransformer.config_class.from_dict(config.rqtransformer_visual)
rqtransformer_semantic_config = RQTransformer.config_class.from_dict(config.rqtransformer_semantic)
self.rqvaesiglip = RQVAESiglipModel._from_config(rqvaesiglip_config)
self.rqtransformer_visual = RQTransformer._from_config(rqtransformer_visual_config)
self.rqtransformer_semantic = RQTransformer._from_config(rqtransformer_semantic_config)
class RQVAESIGLIPTransformerVisionTower(nn.Module):
def __init__(self, model_name_or_path):
super().__init__()
model_dtype = torch.bfloat16
self.config = RQVAESIGLIPTransformerConfig.from_pretrained(model_name_or_path)
self.vision_tower = RQVAESIGLIPTransformer._from_config(self.config, torch_dtype=model_dtype)
self.is_loaded = True
encoder_path = self.config.rqvaesiglip["pretrained_model"]
if "siglip-so400m-patch14-384" in encoder_path: # SigLIP-SO400M-patch14-384
self.image_processor = CLIPImageProcessor(
size={"height": 384, "width": 384},
crop_size={"height": 384, "width": 384},
image_mean=[0.5, 0.5, 0.5],
image_std=[0.5, 0.5, 0.5]
)
self.image_tokens = 729
# self.config.hidden_size == 1152
elif "siglip-large-patch16-256" in encoder_path: # SigLIP-Large-patch16-256
self.image_processor = CLIPImageProcessor(
size={"height": 256, "width": 256},
crop_size={"height": 256, "width": 256},
image_mean=[0.5, 0.5, 0.5],
image_std=[0.5, 0.5, 0.5]
)
self.image_tokens = 256
# self.config.hidden_size == 1024
else:
raise NotImplementedError()
def encode(self, images: torch.Tensor):
vision_output = self.vision_tower.rqvaesiglip.encode_image(images)
image_features_visual, tokens_visual = vision_output[0], vision_output[1]
image_features_semantic, tokens_semantic = vision_output[2], vision_output[3]
bs, patch_size, _, dim = image_features_visual.shape
image_features_visual = torch.reshape(image_features_visual, [bs, patch_size**2, dim])
tokens_visual = torch.reshape(tokens_visual, [bs, patch_size**2, -1])
bs, patch_size, _, dim = image_features_semantic.shape
image_features_semantic = torch.reshape(image_features_semantic, [bs, patch_size**2, dim])
tokens_semantic = torch.reshape(tokens_semantic, [bs, patch_size**2, -1])
return image_features_visual, image_features_semantic, tokens_visual, tokens_semantic
class BaichuanVisualEncoder(RQVAESIGLIPTransformerVisionTower):
def __init__(self, config):
super().__init__(config)
self.vision_tower.rqvaesiglip.siglip_model.vision_model.gradient_checkpointing = True # 强制开启
self.vision_tower.rqvaesiglip.siglip_model.vision_model._gradient_checkpointing_func = torch.utils.checkpoint.checkpoint
def forward(
self,
pixel_values # pixel_values = 179, 161, 147..., shape=13, 3, 256, 256
):
pixel_values = pixel_values.to(self.vision_tower.rqvaesiglip.siglip_model.vision_model.embeddings.patch_embedding.weight.dtype)
return self.encode(pixel_values) # visual_idx (not add text_vocab)
@torch.no_grad()
def fake_input(self, input_ids, merge_size):
fake_image = [torch.zeros([3, self.config.image_size, self.config.image_size], dtype=torch.float32, device=input_ids.device)]
return fake_image
# def test_vision():
# from transformers.models.clip.modeling_clip import CLIPPreTrainedModel
# from transformers import AutoConfig
# config = AutoConfig.from_pretrained("./", trust_remote_code=True)
# ae = BaichuanVisualEncoder(config).cuda().to(torch.bfloat16)
# bg = BaichuanVisualBridge(config).cuda().to(torch.bfloat16)
# print(ae)
# pixel_input = torch.rand([4, 3, config.image_size, config.image_size], dtype=torch.float32).cuda()
# visual_embedding = ae(pixel_input)[0][:, 1:] # 删除class token
# visual_proj = bg(visual_embedding)
# print(visual_proj.shape)
# print(ae.fake_input(visual_proj.device))
if __name__ == '__main__':
fire.Fire()
|