|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" PyTorch Baichuan model.""" |
|
import os |
|
import json |
|
import math |
|
from typing import List, Optional, Tuple, Union |
|
from threading import Thread |
|
import numpy as np |
|
import torch |
|
import torch.utils.checkpoint |
|
from torch import nn |
|
from torch.nn import CrossEntropyLoss |
|
from torch.nn import functional as F |
|
from transformers import PreTrainedModel |
|
from transformers.activations import ACT2FN |
|
from dataclasses import dataclass |
|
from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask |
|
|
|
from transformers.modeling_outputs import CausalLMOutputWithPast, ModelOutput |
|
from transformers.generation.utils import GenerationConfig |
|
from transformers.utils import logging |
|
from .configuration_baichuan import BaichuanConfig |
|
from .audio_modeling_baichuan import BaichuanAudioEncoder, BaichuanAudioBridge |
|
from .visual_modeling_baichuan import BaichuanVisualEncoder |
|
from .processor_baichuan import BaichuanMMProcessor |
|
from .moe import moe_matmul |
|
|
|
|
|
try: |
|
|
|
from .generation_utils import build_chat_input, TextIterStreamer |
|
from .sequence_parallel_utils import ( |
|
create_attention_layer, |
|
get_sequence_parallel_size, |
|
get_sequence_parallel_chunk, |
|
) |
|
except ModuleNotFoundError: |
|
|
|
try: |
|
import sys |
|
sys.path.append(os.path.dirname(__file__)) |
|
from generation_utils import build_chat_input, TextIterStreamer |
|
from sequence_parallel_utils import ( |
|
create_attention_layer, |
|
get_sequence_parallel_size, |
|
get_sequence_parallel_chunk, |
|
) |
|
except Exception: |
|
raise |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
def get_slopes(n): |
|
def get_slopes_power_of_2(n): |
|
start = (2 ** (-2 ** -(math.log2(n) - 3))) |
|
ratio = start |
|
return [start * ratio ** i for i in range(n)] |
|
|
|
if math.log2(n).is_integer(): |
|
return get_slopes_power_of_2( |
|
n) |
|
else: |
|
closest_power_of_2 = 2 ** math.floor( |
|
math.log2(n)) |
|
return get_slopes_power_of_2(closest_power_of_2) + get_slopes(2 * closest_power_of_2)[0::2][ |
|
:n - closest_power_of_2] |
|
|
|
|
|
@dataclass |
|
class BaseModelOutputWithPast(ModelOutput): |
|
""" |
|
Base class for model's outputs that may also contain a past key/values (to speed up sequential decoding). |
|
|
|
Args: |
|
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): |
|
Sequence of hidden-states at the output of the last layer of the model. |
|
|
|
If `past_key_values` is used only the last hidden-state of the sequences of shape `(batch_size, 1, |
|
hidden_size)` is output. |
|
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): |
|
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape |
|
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and optionally if |
|
`config.is_encoder_decoder=True` 2 additional tensors of shape `(batch_size, num_heads, |
|
encoder_sequence_length, embed_size_per_head)`. |
|
|
|
Contains pre-computed hidden-states (key and values in the self-attention blocks and optionally if |
|
`config.is_encoder_decoder=True` in the cross-attention blocks) that can be used (see `past_key_values` |
|
input) to speed up sequential decoding. |
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): |
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + |
|
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. |
|
|
|
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. |
|
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): |
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, |
|
sequence_length)`. |
|
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention |
|
heads. |
|
""" |
|
|
|
last_hidden_state: torch.FloatTensor = None |
|
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None |
|
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None |
|
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None |
|
visual_idx_visual: Optional[Tuple[torch.FloatTensor, ...]] = None |
|
visual_idx_semantic: Optional[Tuple[torch.FloatTensor, ...]] = None |
|
|
|
|
|
class RMSNorm(nn.Module): |
|
def __init__(self, hidden_size, eps=1e-6): |
|
""" |
|
RMSNorm is equivalent to T5LayerNorm |
|
""" |
|
super().__init__() |
|
self.weight = nn.Parameter(torch.ones(hidden_size)) |
|
self.variance_epsilon = eps |
|
|
|
def forward(self, hidden_states): |
|
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True) |
|
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) |
|
|
|
|
|
if self.weight.dtype in [torch.float16, torch.bfloat16]: |
|
hidden_states = hidden_states.to(self.weight.dtype) |
|
|
|
return self.weight * hidden_states |
|
|
|
|
|
class RotaryEmbedding(torch.nn.Module): |
|
def __init__(self, dim, max_position_embeddings=2048, base=5e6, device=None): |
|
super().__init__() |
|
|
|
|
|
try: |
|
import deepspeed |
|
self.arange = deepspeed.runtime.zero.partition_parameters._orig_torch_arange |
|
except: |
|
self.arange = torch.arange |
|
|
|
self.inv_freq = 1.0 / (base ** (self.arange(0, dim, 2).float().to(device) / dim)) |
|
self.max_seq_len_cached = max_position_embeddings |
|
t = self.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=torch.float32) |
|
freqs = torch.outer(t, self.inv_freq) |
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
self.cos_cached = emb.cos()[None, None, :, :].to(torch.float32) |
|
self.sin_cached = emb.sin()[None, None, :, :].to(torch.float32) |
|
|
|
def forward(self, x, seq_len=None): |
|
|
|
|
|
if seq_len > self.max_seq_len_cached: |
|
self.max_seq_len_cached = seq_len |
|
t = self.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=torch.float32) |
|
freqs = torch.outer(t, self.inv_freq) |
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
self.cos_cached = emb.cos()[None, None, :, :].to(torch.float32).to(x.device) |
|
self.sin_cached = emb.sin()[None, None, :, :].to(torch.float32).to(x.device) |
|
return ( |
|
self.cos_cached[:, :, :seq_len, ...].to(torch.float32).to(x.device), |
|
self.sin_cached[:, :, :seq_len, ...].to(torch.float32).to(x.device), |
|
) |
|
|
|
|
|
def rotate_half(x): |
|
"""Rotates half the hidden dims of the input.""" |
|
x1 = x[..., : x.shape[-1] // 2] |
|
x2 = x[..., x.shape[-1] // 2:] |
|
return torch.cat((-x2, x1), dim=-1) |
|
|
|
|
|
def apply_rotary_pos_emb(q, k, cos_, sin_, position_ids): |
|
cos = cos_.squeeze(1).squeeze(0) |
|
sin = sin_.squeeze(1).squeeze(0) |
|
cos = cos[position_ids].unsqueeze(1) |
|
sin = sin[position_ids].unsqueeze(1) |
|
q_embed = (q.float() * cos) + (rotate_half(q.float()) * sin) |
|
k_embed = (k.float() * cos) + (rotate_half(k.float()) * sin) |
|
return q_embed.to(q.dtype), k_embed.to(k.dtype) |
|
|
|
|
|
class MLP(nn.Module): |
|
def __init__( |
|
self, |
|
hidden_size: int, |
|
intermediate_size: int, |
|
hidden_act: str, |
|
): |
|
super().__init__() |
|
self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False) |
|
self.down_proj = nn.Linear(intermediate_size, hidden_size, bias=False) |
|
self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False) |
|
self.act_fn = ACT2FN[hidden_act] |
|
|
|
def forward(self, x): |
|
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) |
|
|
|
|
|
|
|
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: |
|
""" |
|
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, |
|
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) |
|
""" |
|
batch, num_key_value_heads, slen, head_dim = hidden_states.shape |
|
if n_rep == 1: |
|
return hidden_states |
|
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) |
|
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) |
|
|
|
|
|
class Attention(nn.Module): |
|
"""Multi-headed attention from 'Attention Is All You Need' paper""" |
|
def __init__(self, config: BaichuanConfig, is_sparse=False): |
|
super().__init__() |
|
self.config = config |
|
self.position_embedding_type = config.position_embedding_type.lower() |
|
self.num_kv_heads = config.num_key_value_heads |
|
self.head_dim = config.head_dim |
|
self.hidden_size = config.num_attention_heads * self.head_dim |
|
self.hidden_kv_size = self.num_kv_heads * self.head_dim |
|
|
|
if is_sparse: |
|
self.num_heads = config.sparse_attention_heads |
|
assert self.num_kv_heads == config.num_attention_heads |
|
self.W_pack = nn.Linear(self.hidden_size, 3 * self.num_heads * self.head_dim, bias=config.attention_qkv_bias) |
|
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False) |
|
else: |
|
self.num_heads = config.num_attention_heads |
|
if self.config.attention_qkv_pack: |
|
self.W_pack = nn.Linear(config.hidden_size, self.hidden_size + self.hidden_kv_size * 2, bias=config.attention_qkv_bias) |
|
if config.moe: |
|
self.moe_W_pack = nn.Linear(config.hidden_size, self.hidden_size + self.hidden_kv_size * 2, bias=False) |
|
else: |
|
self.q_proj = nn.Linear(config.hidden_size, self.hidden_size, bias=config.attention_qkv_bias) |
|
self.k_proj = nn.Linear(config.hidden_size, self.hidden_kv_size, bias=config.attention_qkv_bias) |
|
self.v_proj = nn.Linear(config.hidden_size, self.hidden_kv_size, bias=config.attention_qkv_bias) |
|
|
|
self.o_proj = nn.Linear(self.num_heads * self.head_dim, config.hidden_size, bias=False) |
|
if config.moe: |
|
self.moe_o_proj = nn.Linear(self.num_heads * self.head_dim, config.hidden_size, bias=False) |
|
|
|
if self.position_embedding_type == 'rope': |
|
self.rotary_emb = RotaryEmbedding( |
|
dim=self.head_dim, |
|
max_position_embeddings=config.max_position_embeddings, |
|
base=config.get_rotary_base() |
|
) |
|
elif self.position_embedding_type == 'alibi': |
|
self.alibi_slopes = get_slopes(self.num_heads) |
|
self.attention = create_attention_layer(self.hidden_size, self.num_heads, self.head_dim) |
|
|
|
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): |
|
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() |
|
|
|
def _repeat_kv(self, hidden_states: torch.Tensor, num_heads: int) -> torch.Tensor: |
|
assert hidden_states.size(1) <= num_heads and num_heads % hidden_states.size(1) == 0 |
|
return repeat_kv(hidden_states, num_heads // hidden_states.size(1)) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
seqlens: Optional[torch.IntTensor] = None, |
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
group_index=None, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
bsz, q_len = hidden_states.shape[:2] |
|
|
|
if self.config.attention_qkv_pack: |
|
if self.config.moe and group_index is not None: |
|
proj = moe_matmul(hidden_states, [self.W_pack.weight, self.moe_W_pack.weight], group_index, lambda x, y: torch.einsum('bd,ld->bl', x, y)) |
|
if self.config.attention_qkv_bias: |
|
proj += self.W_pack.bias |
|
else: |
|
proj = self.W_pack(hidden_states) |
|
query_states, key_states, value_states = proj.split([self.hidden_size, self.hidden_kv_size, self.hidden_kv_size], dim=-1) |
|
else: |
|
query_states = self.q_proj(hidden_states) |
|
key_states = self.k_proj(hidden_states) |
|
value_states = self.v_proj(hidden_states) |
|
|
|
|
|
query_states = query_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2) |
|
|
|
key_states = key_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2) |
|
value_states = value_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2) |
|
|
|
kv_seq_len = key_states.shape[-2] |
|
if past_key_value is not None: |
|
kv_seq_len += past_key_value[0].shape[-2] |
|
if self.position_embedding_type == 'rope': |
|
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len * get_sequence_parallel_size()) |
|
query_states, key_states = apply_rotary_pos_emb( |
|
query_states, key_states, cos, sin, |
|
get_sequence_parallel_chunk(position_ids) |
|
) |
|
|
|
if past_key_value is not None: |
|
|
|
key_states = torch.cat([past_key_value[0], key_states], dim=2) |
|
value_states = torch.cat([past_key_value[1], value_states], dim=2) |
|
past_key_value = (key_states, value_states) if use_cache else None |
|
|
|
|
|
key_states = self._repeat_kv(key_states, query_states.size(1)) |
|
value_states = self._repeat_kv(value_states, query_states.size(1)) |
|
|
|
if seqlens is not None: |
|
seqlens = seqlens.to(dtype=torch.int32) |
|
max_seqlen = (seqlens[1:] - seqlens[:-1]).max().item() |
|
if self.position_embedding_type == 'alibi': |
|
alibi_slopes = torch.tensor(self.alibi_slopes, dtype=torch.float32).to(query_states.device) |
|
else: |
|
alibi_slopes = None |
|
attn_output = self.attention( |
|
query_states, key_states, value_states, seqlens, seqlens, |
|
max_seqlen, max_seqlen, causal=True, alibi_slopes=alibi_slopes, use_flash=True) |
|
else: |
|
attn_output = self.attention( |
|
query_states, key_states, value_states, attn_mask=attention_mask, use_flash=False) |
|
|
|
attn_output = attn_output.reshape(bsz, q_len, -1) |
|
if not self.config.moe or group_index is None: |
|
attn_output = self.o_proj(attn_output) |
|
else: |
|
attn_output = moe_matmul(attn_output, [self.o_proj.weight, self.moe_o_proj.weight], group_index, lambda x, y: torch.einsum('bd,ld->bl', x, y)) |
|
|
|
return attn_output, None, past_key_value |
|
|
|
|
|
class DecoderLayer(nn.Module): |
|
def __init__(self, config: BaichuanConfig, is_sparse=False): |
|
super().__init__() |
|
self.hidden_size = config.hidden_size |
|
self.self_attn = Attention(config=config, is_sparse=is_sparse) |
|
self.mlp = MLP( |
|
hidden_size=self.hidden_size, |
|
intermediate_size=config.intermediate_size, |
|
hidden_act=config.hidden_act, |
|
) |
|
self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
self.post_attention_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
seqlens: Optional[torch.IntTensor] = None, |
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
output_attentions: Optional[bool] = False, |
|
use_cache: Optional[bool] = False, |
|
group_index=None, |
|
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: |
|
|
|
residual = hidden_states |
|
|
|
hidden_states = self.input_layernorm(hidden_states) |
|
|
|
|
|
hidden_states, self_attn_weights, present_key_value = self.self_attn( |
|
hidden_states=hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
seqlens=seqlens, |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
group_index=group_index, |
|
) |
|
hidden_states = residual + hidden_states |
|
|
|
|
|
residual = hidden_states |
|
hidden_states = self.post_attention_layernorm(hidden_states) |
|
hidden_states = self.mlp(hidden_states) |
|
hidden_states = residual + hidden_states |
|
|
|
outputs = (hidden_states,) |
|
|
|
if output_attentions: |
|
outputs += (self_attn_weights,) |
|
|
|
if use_cache: |
|
outputs += (present_key_value,) |
|
|
|
return outputs |
|
|
|
|
|
class BaichuanPreTrainedModel(PreTrainedModel): |
|
config_class = BaichuanConfig |
|
base_model_prefix = "model" |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ["DecoderLayer"] |
|
_keys_to_ignore_on_load_unexpected = [r"decoder\.version"] |
|
|
|
def _init_weights(self, module): |
|
std = self.config.initializer_range |
|
if isinstance(module, nn.Linear) or isinstance(module, nn.Conv1d) or isinstance(module, nn.ConvTranspose1d): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
elif isinstance(module, nn.LayerNorm) or isinstance(module, nn.GroupNorm): |
|
module.weight.data.fill_(1.0) |
|
module.bias.data.zero_() |
|
elif isinstance(module, RMSNorm): |
|
module.weight.data.fill_(1.0) |
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
if isinstance(module, BaichuanModel): |
|
module.gradient_checkpointing = value |
|
|
|
|
|
class BaichuanModel(BaichuanPreTrainedModel): |
|
def __init__(self, config: BaichuanConfig): |
|
super().__init__(config) |
|
self.padding_idx = config.pad_token_id |
|
self.vocab_size = config.vocab_size |
|
self.merge_size = 1 |
|
if config.audio_config.enable: |
|
self.audio_model = BaichuanAudioEncoder(config.audio_config) |
|
self.audio_bridge_model = BaichuanAudioBridge(config) |
|
if config.visual_config.enable: |
|
|
|
self.visual_model = BaichuanVisualEncoder(config=config.visual_config.config_path) |
|
self.merge_size = max(config.visual_config.merge_size, self.merge_size) |
|
if config.video_config.enable: |
|
if not config.visual_config.enable: |
|
self.visual_model = BaichuanVisualEncoder(config.video_config) |
|
self.merge_size = max(config.video_config.merge_size, self.merge_size) |
|
|
|
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) |
|
self.projector1 = nn.Sequential(nn.Linear(2*config.visual_config.hidden_size, config.hidden_size), nn.GELU(), nn.Linear(config.hidden_size, config.hidden_size)) |
|
self.layers = nn.ModuleList([ |
|
DecoderLayer(config, is_sparse=layer_idx in config.sparse_attention_layers) |
|
for layer_idx in range(config.num_hidden_layers) |
|
]) |
|
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
self.gradient_checkpointing = True |
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.embed_tokens = value |
|
|
|
def get_multimodal_mask(self, input_ids, pad_token_id, special_token_list): |
|
''' |
|
获取任意模态的特殊mask, 包含以下 |
|
1. pad mask 表示文本中图像/语音/视频模态提前留出的token位置 |
|
2. special token mask 特殊token 例如对理解模型<start> <end> 不需要next token prediction |
|
3. embedding mask / lm_head mask 标记出特殊token在embedding中的mask |
|
''' |
|
|
|
pad_mask = torch.eq(input_ids, pad_token_id) |
|
sp_mask = torch.zeros_like(input_ids, dtype=torch.bool) |
|
lm_head_mask = torch.zeros([self.config.vocab_size, 1], dtype=torch.bool) |
|
for sp_id in special_token_list: |
|
sp_mask = torch.logical_or(sp_mask, torch.eq(input_ids, sp_id)) |
|
lm_head_mask[sp_id, 0] = True |
|
return pad_mask, sp_mask, lm_head_mask |
|
|
|
def get_audio_embed( |
|
self, |
|
input_ids, |
|
text_embedding, |
|
features, |
|
encoder_length, |
|
bridge_length, |
|
group_index=None, |
|
): |
|
pad_mask, sp_mask, _ = self.get_multimodal_mask(input_ids, self.config.audio_config.audio_pad_token_id, self.config.multimodal_special_token_list) |
|
if features is None or len(features) <= 0 : |
|
features, encoder_length, bridge_length = self.audio_model.fake_input(input_ids.device) |
|
fake_input = True |
|
else: |
|
fake_input = False |
|
audio_embed = self.audio_model(features, encoder_length) |
|
audio_embed = self.audio_bridge_model(audio_embed, bridge_length) |
|
if not self.training: |
|
audio_embed = audio_embed.to(input_ids.device) |
|
if not fake_input: |
|
assert pad_mask.sum() == audio_embed.shape[0] |
|
else: |
|
assert pad_mask.sum() <= 0 |
|
if group_index is None: |
|
group_index = pad_mask.to(torch.int32) |
|
else: |
|
current_index = torch.max(group_index) + 1 |
|
group_index += pad_mask.to(torch.int32) * current_index |
|
|
|
input_ids = torch.where(pad_mask, torch.cumsum(pad_mask.view(-1).to(input_ids), dim=0).view(input_ids.shape)-1, input_ids) |
|
if self.config.train_multimodal_special_tokens_only and self.training: |
|
|
|
|
|
sp_mask = sp_mask.unsqueeze(-1).to(text_embedding) |
|
text_embedding = (1 - sp_mask) * text_embedding.detach() + sp_mask * text_embedding |
|
text_embedding = (1 - pad_mask.to(text_embedding)).unsqueeze(-1) * text_embedding |
|
multimodal_embedding = torch.embedding(audio_embed, input_ids * pad_mask) |
|
multimodal_embedding = pad_mask.to(multimodal_embedding).unsqueeze(-1) * multimodal_embedding |
|
|
|
final_embedding = multimodal_embedding.to(text_embedding) + text_embedding |
|
|
|
return final_embedding, group_index |
|
|
|
def get_visual_embed( |
|
self, |
|
input_ids, |
|
text_embedding, |
|
images, |
|
group_index, |
|
images_grid |
|
): |
|
|
|
pad_mask, sp_mask, _ = self.get_multimodal_mask(input_ids, self.config.visual_config.image_pad_token_id, self.config.multimodal_special_token_list) |
|
if images is None or len(images) <= 0 : |
|
images = self.visual_model.fake_input(input_ids, self.merge_size) |
|
images_grid = [[1, 1]] |
|
fake_input = True |
|
else: |
|
fake_input = False |
|
|
|
if self.config.visual_config.feature_mode == 'anyres': |
|
pass |
|
else: |
|
with torch.no_grad(): |
|
images = torch.stack(images, dim=0) |
|
visual_embed_visual, visual_embed_semantic, visual_idx_visual, visual_idx_semantic = self.visual_model(images) |
|
if len(visual_idx_visual.shape) == 2: |
|
print("!!! unsqueeze visual_idx_visual, get_visual_embed") |
|
visual_idx_visual = visual_idx_visual.unsqueeze(0) |
|
if len(visual_idx_semantic.shape) == 2: |
|
print("!!! unsqueeze visual_idx_semantic, get_visual_embed") |
|
visual_idx_semantic = visual_idx_semantic.unsqueeze(0) |
|
|
|
visual_embed_visual = visual_embed_visual.reshape(-1, visual_embed_visual.shape[-1]) |
|
visual_embed_semantic = visual_embed_semantic.reshape(-1, visual_embed_semantic.shape[-1]) |
|
visual_embed = torch.cat((visual_embed_semantic, visual_embed_visual), dim=-1) |
|
visual_embed = self.projector1(visual_embed) |
|
|
|
if not self.training: |
|
visual_embed = visual_embed.to(input_ids.device) |
|
if not fake_input: |
|
assert pad_mask.sum() == visual_embed.shape[0], '{} != {} images.shape={} input_ids.tolist()={}'.format(pad_mask.sum(), visual_embed.shape[0], images.shape, input_ids.tolist()) |
|
else: |
|
assert pad_mask.sum() <= 0, '{} != {}'.format(pad_mask.sum(), visual_embed.shape[0]) |
|
|
|
|
|
input_ids = torch.where(pad_mask, torch.cumsum(pad_mask.view(-1).to(input_ids), dim=0).view(input_ids.shape)-1, input_ids) |
|
if self.config.train_multimodal_special_tokens_only and self.training: |
|
|
|
|
|
sp_mask = sp_mask.unsqueeze(-1).to(text_embedding) |
|
text_embedding = (1 - sp_mask) * text_embedding.detach() + sp_mask * text_embedding |
|
text_embedding = (1 - pad_mask.to(text_embedding)).unsqueeze(-1) * text_embedding |
|
multimodal_embedding = torch.embedding(visual_embed, input_ids * pad_mask) |
|
multimodal_embedding = pad_mask.to(multimodal_embedding).unsqueeze(-1) * multimodal_embedding |
|
|
|
final_embedding = multimodal_embedding.to(text_embedding) + text_embedding |
|
|
|
if group_index is None: |
|
group_index = pad_mask.to(torch.int32) |
|
else: |
|
current_index = torch.max(group_index) + 1 |
|
group_index += pad_mask.to(torch.int32) * current_index |
|
|
|
return final_embedding, group_index, visual_idx_visual, visual_idx_semantic |
|
|
|
|
|
def get_video_embed( |
|
self, |
|
input_ids, |
|
text_embedding, |
|
images, |
|
group_index, |
|
images_grid |
|
|
|
): |
|
|
|
pad_mask, sp_mask, _ = self.get_multimodal_mask(input_ids, self.config.video_config.video_place_token_id, self.config.multimodal_special_token_list) |
|
if images is None or len(images) <= 0 : |
|
images = self.visual_model.fake_input(input_ids.device) |
|
images_grid = [[1, 1]] |
|
fake_input = True |
|
else: |
|
fake_input = False |
|
|
|
images = torch.cat(images, dim=0) |
|
visual_embed = self.visual_model(images)[self.visual_model.config.layer_idx] |
|
visual_embed = self.visual_bridge_model(visual_embed).view(-1, text_embedding.shape[-1]) |
|
|
|
if not self.training: |
|
visual_embed = visual_embed.to(input_ids.device) |
|
if not fake_input: |
|
assert pad_mask.sum() == visual_embed.shape[0], '{} != {}'.format(pad_mask.sum(), visual_embed.shape[0]) |
|
assert pad_mask.sum() == visual_embed.shape[0], '{} != {}'.format(pad_mask.sum(), visual_embed.shape[0]) |
|
else: |
|
assert pad_mask.sum() <= 0, '{} != {}'.format(pad_mask.sum(), visual_embed.shape[0]) |
|
|
|
|
|
input_ids = torch.where(pad_mask, torch.cumsum(pad_mask.view(-1).to(input_ids), dim=0).view(input_ids.shape)-1, input_ids) |
|
if self.config.train_multimodal_special_tokens_only and self.training: |
|
|
|
|
|
sp_mask = sp_mask.unsqueeze(-1).to(text_embedding) |
|
text_embedding = (1 - sp_mask) * text_embedding.detach() + sp_mask * text_embedding |
|
text_embedding = (1 - pad_mask.to(text_embedding)).unsqueeze(-1) * text_embedding |
|
multimodal_embedding = torch.embedding(visual_embed, input_ids * pad_mask) |
|
multimodal_embedding = pad_mask.to(multimodal_embedding).unsqueeze(-1) * multimodal_embedding |
|
|
|
final_embedding = multimodal_embedding.to(text_embedding) + text_embedding |
|
|
|
if group_index is None: |
|
group_index = pad_mask.to(torch.int32) |
|
else: |
|
current_index = torch.max(group_index) + 1 |
|
group_index += pad_mask.to(torch.int32) * current_index |
|
|
|
return final_embedding, group_index |
|
|
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
seqlens: Optional[torch.IntTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
audios: Optional[List|torch.Tensor] = None, |
|
encoder_length: Optional[torch.Tensor] = None, |
|
bridge_length: Optional[torch.Tensor] = None, |
|
images: Optional[List|torch.Tensor] = None, |
|
images_grid: Optional[List|torch.Tensor] = None, |
|
videos: Optional[List|torch.Tensor] = None, |
|
videos_grid: Optional[List|torch.Tensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
|
|
image_ids_visual: Optional[List] = [], |
|
image_ids_semantic: Optional[List] = [], |
|
gen_mode: Optional[bool] = False |
|
) -> Union[Tuple, BaseModelOutputWithPast]: |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") |
|
elif input_ids is not None: |
|
batch_size, seq_length = input_ids.shape |
|
elif inputs_embeds is not None: |
|
batch_size, seq_length, _ = inputs_embeds.shape |
|
else: |
|
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") |
|
|
|
seq_length_with_past = seq_length |
|
past_key_values_length = 0 |
|
|
|
if past_key_values is not None: |
|
past_key_values_length = past_key_values[0][0].shape[2] |
|
seq_length_with_past = seq_length_with_past + past_key_values_length |
|
|
|
if position_ids is None: |
|
device = input_ids.device if input_ids is not None else inputs_embeds.device |
|
position_ids = torch.arange( |
|
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device |
|
) |
|
position_ids = position_ids.unsqueeze(0).view(-1, seq_length) |
|
else: |
|
position_ids = position_ids.view(-1, seq_length).long() |
|
|
|
group_index = None |
|
if inputs_embeds is None: |
|
sp_input_ids = get_sequence_parallel_chunk(input_ids) |
|
if image_ids_visual is None or len(image_ids_visual) <= 0: |
|
inputs_embeds = self.embed_tokens(sp_input_ids) |
|
if self.config.audio_config.enable: |
|
inputs_embeds, group_index = self.get_audio_embed(sp_input_ids, inputs_embeds, audios, encoder_length, bridge_length) |
|
if self.config.visual_config.enable: |
|
inputs_embeds, group_index, visual_idx_visual, visual_idx_semantic = self.get_visual_embed(sp_input_ids, inputs_embeds, images, group_index, images_grid) |
|
if self.config.video_config.enable: |
|
inputs_embeds, group_index = self.get_video_embed(sp_input_ids, inputs_embeds, videos, group_index, videos_grid) |
|
else: |
|
image_ids_end = image_ids_visual[-1].clone() |
|
inputs_embeds_visual = self.visual_model.vision_tower.rqtransformer_visual.embed_with_model_aux(image_ids_end, self.visual_model.vision_tower.rqvaesiglip, mode="visual") |
|
inputs_embeds_visual = torch.cumsum(inputs_embeds_visual, dim=-2)[:,:,-1,:] |
|
|
|
image_ids_end = image_ids_semantic[-1].clone() |
|
inputs_embeds_semantic = self.visual_model.vision_tower.rqtransformer_semantic.embed_with_model_aux(image_ids_end, self.visual_model.vision_tower.rqvaesiglip, mode="semantic") |
|
inputs_embeds_semantic = torch.cumsum(inputs_embeds_semantic, dim=-2)[:,:,-1,:] |
|
|
|
inputs_embeds = torch.cat((inputs_embeds_semantic, inputs_embeds_visual), dim=-1) |
|
inputs_embeds = self.projector1(inputs_embeds) |
|
visual_idx_visual, visual_idx_semantic = None, None |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if seqlens is not None and seqlens.ndim == 2: |
|
|
|
cu_seqlens = [] |
|
offset, seqlen = 0, seqlens.size(1) |
|
for lens in seqlens: |
|
cu_seqlens.append(offset) |
|
cu_seqlens.extend((lens[(lens > 0) & (lens < seqlen)] + offset).tolist()) |
|
offset += seqlen |
|
cu_seqlens.append(offset) |
|
seqlens = torch.tensor(cu_seqlens, dtype=seqlens.dtype, device=seqlens.device) |
|
elif seqlens is None and self.training: |
|
|
|
seqlens = torch.arange( |
|
end=input_ids.size(0) + 1, |
|
dtype=torch.int32, |
|
device=input_ids.device |
|
) * input_ids.size(1) |
|
if seqlens is not None: |
|
attention_mask = None |
|
|
|
if seqlens is None and attention_mask is None: |
|
attention_mask = torch.ones( |
|
(batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device |
|
) |
|
if attention_mask is not None: |
|
attention_mask = _prepare_4d_causal_attention_mask( |
|
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length |
|
) |
|
|
|
|
|
hidden_states = inputs_embeds |
|
|
|
if self.gradient_checkpointing and self.training: |
|
if use_cache: |
|
logger.warning_once( |
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." |
|
) |
|
use_cache = False |
|
|
|
|
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attns = () if output_attentions else None |
|
next_decoder_cache = () if use_cache else None |
|
|
|
for idx, decoder_layer in enumerate(self.layers): |
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
past_key_value = past_key_values[idx] if past_key_values is not None else None |
|
|
|
if self.gradient_checkpointing and self.training: |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
|
|
return module(*inputs, output_attentions, False, group_index) |
|
|
|
return custom_forward |
|
|
|
layer_outputs = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(decoder_layer), |
|
hidden_states, |
|
attention_mask, |
|
position_ids, |
|
seqlens, |
|
None, |
|
) |
|
else: |
|
layer_outputs = decoder_layer( |
|
hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
seqlens=seqlens, |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
group_index=group_index, |
|
) |
|
|
|
hidden_states = layer_outputs[0] |
|
|
|
if use_cache: |
|
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],) |
|
|
|
if output_attentions: |
|
all_self_attns += (layer_outputs[1],) |
|
|
|
hidden_states = self.norm(hidden_states) |
|
|
|
|
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
next_cache = next_decoder_cache if use_cache else None |
|
if not return_dict: |
|
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) |
|
return BaseModelOutputWithPast( |
|
last_hidden_state=hidden_states, |
|
past_key_values=next_cache, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attns, |
|
|
|
visual_idx_visual=visual_idx_visual, |
|
visual_idx_semantic=visual_idx_semantic |
|
) |
|
|
|
|
|
class NormHead(nn.Module): |
|
def __init__(self, hidden_size, vocab_size, bias=False): |
|
super().__init__() |
|
self.hidden_size = hidden_size |
|
self.vocab_size = vocab_size |
|
self.weight = nn.Parameter(torch.empty((self.vocab_size, self.hidden_size))) |
|
nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5)) |
|
|
|
def forward(self, hidden_states, mask=None): |
|
norm_weight = nn.functional.normalize(self.weight) |
|
if mask is not None: |
|
mask = mask.to(norm_weight) |
|
norm_weight = norm_weight * mask + (1 - mask) * norm_weight.detach() |
|
return nn.functional.linear(hidden_states, norm_weight) |
|
|
|
|
|
def extra_repr(self) -> str: |
|
return f'in_features={self.hidden_size}, out_features={self.vocab_size}' |
|
|
|
@dataclass |
|
class BaichuanMMCausalLMOutputWithPast(ModelOutput): |
|
loss: Optional[torch.FloatTensor] = None |
|
logits: Optional[torch.FloatTensor] = None |
|
text_logits: Optional[torch.FloatTensor] = None |
|
visual_logits: Optional[torch.FloatTensor] = None |
|
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None |
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None |
|
attentions: Optional[Tuple[torch.FloatTensor]] = None |
|
text_nt_loss: Optional[torch.FloatTensor] = None |
|
image_nt_loss_visual: Optional[torch.FloatTensor] = None |
|
image_loss_count_visual: Optional[torch.FloatTensor] = None |
|
image_nt_loss_semantic: Optional[torch.FloatTensor] = None |
|
image_loss_count_semantic: Optional[torch.FloatTensor] = None |
|
|
|
class BaichuanForCausalLM(BaichuanPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.config = config |
|
self.model = BaichuanModel(config) |
|
if config.use_norm_head: |
|
self.lm_head = NormHead(config.hidden_size, config.vocab_size, bias=False) |
|
else: |
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
|
|
self.projector_semantic = nn.Sequential(nn.Linear(config.hidden_size, config.visual_config.depth_head_embed_dim), nn.GELU(), nn.Linear(config.visual_config.depth_head_embed_dim, config.visual_config.depth_head_embed_dim)) |
|
self.projector_visual = nn.Sequential(nn.Linear(config.hidden_size, config.visual_config.depth_head_embed_dim), nn.GELU(), nn.Linear(config.visual_config.depth_head_embed_dim, config.visual_config.depth_head_embed_dim)) |
|
|
|
|
|
self.post_init() |
|
|
|
def bind_processor(self, tokenizer, **kwargs): |
|
self.processor = BaichuanMMProcessor( |
|
tokenizer=tokenizer, |
|
config=self.config, |
|
**kwargs, |
|
) |
|
return self.processor |
|
|
|
def get_input_embeddings(self): |
|
return self.model.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.model.embed_tokens = value |
|
|
|
def get_output_embeddings(self): |
|
return self.lm_head |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.lm_head = new_embeddings |
|
|
|
def set_decoder(self, decoder): |
|
self.model = decoder |
|
|
|
def get_decoder(self): |
|
return self.model |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
seqlens: Optional[torch.IntTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
audios: Optional[List|torch.Tensor] = None, |
|
encoder_length: Optional[torch.Tensor] = None, |
|
bridge_length: Optional[torch.Tensor] = None, |
|
images: Optional[torch.Tensor] = None, |
|
images_grid: Optional[torch.Tensor] = None, |
|
videos: Optional[torch.Tensor] = None, |
|
videos_grid: Optional[torch.Tensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
|
|
image_ids_visual: Optional[List] = [], |
|
image_ids_semantic: Optional[List] = [], |
|
gen_mode: Optional[bool] = False, |
|
cfg: Optional[float] = None |
|
) -> Union[Tuple, CausalLMOutputWithPast]: |
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
_, sp_mask, _ = self.model.get_multimodal_mask(input_ids, self.config.visual_config.image_pad_token_id, self.config.multimodal_special_token_list) |
|
|
|
|
|
outputs = self.model( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
seqlens=seqlens, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
audios=audios, |
|
encoder_length=encoder_length, |
|
bridge_length=bridge_length, |
|
images=images, |
|
images_grid=images_grid, |
|
videos=videos, |
|
videos_grid=videos_grid, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
|
|
image_ids_visual=image_ids_visual, |
|
image_ids_semantic=image_ids_semantic, |
|
gen_mode=gen_mode |
|
) |
|
|
|
hidden_states = outputs[0] |
|
|
|
visual_idx_visual = outputs.visual_idx_visual |
|
visual_idx_semantic = outputs.visual_idx_semantic |
|
|
|
|
|
special_with_loss_list = list(set(self.config.multimodal_special_token_list) - set(self.config.multimodal_special_token_no_loss_list)) |
|
pad_mask, sp_with_loss_mask, lm_head_mask = self.model.get_multimodal_mask(input_ids, self.config.visual_config.image_pad_token_id, special_with_loss_list) |
|
|
|
bs, seq_len, _ = hidden_states.shape |
|
if self.training: |
|
B, IMAGE_TOKEN, DEPTH = visual_idx_visual.shape |
|
if self.config.train_multimodal_special_tokens_only and self.training and len(special_with_loss_list) > 0: |
|
if self.config.use_norm_head: |
|
logits = self.lm_head(hidden_states, mask=lm_head_mask) |
|
else: |
|
lm_head_mask = lm_head_mask.to(self.lm_head.weight) |
|
norm_weight = self.lm_head.weight * lm_head_mask + (1 - lm_head_mask) * self.lm_head.weight.detach() |
|
logits = torch.einsum('bsd,ld->bsl', hidden_states, norm_weight) |
|
else: |
|
logits = self.lm_head(hidden_states.reshape(bs, -1, self.config.hidden_size)) |
|
|
|
if pad_mask.sum() <= 0: |
|
image_hidden_states = torch.zeros([B, IMAGE_TOKEN, self.config.hidden_size], dtype=hidden_states.dtype, device=hidden_states.device) |
|
else: |
|
shifted_pad_mask = torch.cat((pad_mask[:, 1:], torch.zeros(bs, 1).to(pad_mask)), dim=1) |
|
image_hidden_states = hidden_states[shifted_pad_mask == 1].reshape(B, IMAGE_TOKEN, self.config.hidden_size) |
|
|
|
image_hidden_states_visual = self.projector_visual(image_hidden_states) |
|
image_hidden_states_semantic = self.projector_semantic(image_hidden_states) |
|
|
|
visual_logits_visual = self.model.visual_model.vision_tower.rqtransformer_visual(image_hidden_states_visual, visual_idx_visual, self.model.visual_model.vision_tower.rqvaesiglip, mode="visual") |
|
visual_logits_semantic = self.model.visual_model.vision_tower.rqtransformer_semantic(image_hidden_states_semantic, visual_idx_semantic, self.model.visual_model.vision_tower.rqvaesiglip, mode="semantic") |
|
else: |
|
|
|
if (image_ids_visual is not None and len(image_ids_visual) > 0) or (len(image_ids_visual) <= 0 and input_ids[-1, -1] == self.config.visual_config.image_start_token_id and input_ids[-1, -2] == self.config.visual_config.image_gen_start_token_id): |
|
self.model.visual_model.vision_tower.rqtransformer_visual.eval() |
|
self.model.visual_model.vision_tower.rqtransformer_semantic.eval() |
|
hidden_state = hidden_states[:, -1, :] |
|
if len(hidden_state.shape) == 2: |
|
hidden_state = hidden_state.unsqueeze(1) |
|
hidden_state_visual = self.projector_visual(hidden_state) |
|
hidden_state_semantic = self.projector_semantic(hidden_state) |
|
|
|
image_hidden_state_visual, code_visual = self.model.visual_model.vision_tower.rqtransformer_visual.generate(hidden_state_visual, |
|
self.model.visual_model.vision_tower.rqvaesiglip, |
|
cfg, mode="visual") |
|
image_hidden_state_semantic, code_semantic = self.model.visual_model.vision_tower.rqtransformer_semantic.generate(hidden_state_semantic, |
|
self.model.visual_model.vision_tower.rqvaesiglip, |
|
cfg, mode="semantic") |
|
image_ids_visual.append(code_visual) |
|
image_ids_semantic.append(code_semantic) |
|
|
|
logits = self.lm_head(hidden_states.reshape(bs, -1, self.config.hidden_size)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
loss = torch.tensor(0, device=hidden_states.device, dtype=hidden_states.dtype) |
|
text_nt_loss = torch.tensor(0, device=hidden_states.device, dtype=hidden_states.dtype) |
|
image_nt_loss_visual = torch.tensor(0, device=hidden_states.device, dtype=hidden_states.dtype) |
|
image_nt_loss_semantic = torch.tensor(0, device=hidden_states.device, dtype=hidden_states.dtype) |
|
image_loss_count_visual = torch.tensor(0, device=hidden_states.device, dtype=hidden_states.dtype) |
|
image_loss_count_semantic = torch.tensor(0, device=hidden_states.device, dtype=hidden_states.dtype) |
|
visual_loss_list_visual = [torch.tensor(0, device=hidden_states.device, dtype=hidden_states.dtype) for _ in range(self.config.visual_config.block_size[-1])] |
|
visual_loss_list_semantic = [torch.tensor(0, device=hidden_states.device, dtype=hidden_states.dtype) for _ in range(self.config.visual_config.block_size[-1])] |
|
|
|
if labels is not None: |
|
|
|
shift_logits = logits[pad_mask == 0][..., :-1, :].contiguous() |
|
shift_text_labels = labels[pad_mask == 0][..., 1:].contiguous() |
|
|
|
valid_mask = torch.gt(shift_text_labels, -1) |
|
_, sp_mask_, _ = self.model.get_multimodal_mask(shift_text_labels, self.config.visual_config.image_pad_token_id, self.config.multimodal_special_token_list) |
|
_, sp_with_loss_mask_, _ = self.model.get_multimodal_mask(shift_text_labels, self.config.visual_config.image_pad_token_id, special_with_loss_list) |
|
text_mask = torch.logical_and(valid_mask, torch.logical_not(sp_mask_)) |
|
valid_mask = torch.logical_or(torch.logical_and(valid_mask, torch.logical_not(sp_mask_)), sp_with_loss_mask_) |
|
|
|
shift_logits = shift_logits.view(-1, self.config.vocab_size) |
|
shift_text_labels = shift_text_labels.view(-1).to(shift_logits.device) |
|
flatten_loss = F.cross_entropy(shift_logits, shift_text_labels, ignore_index=-100, reduction='none') |
|
text_flatten_loss = torch.masked_select(flatten_loss, text_mask.view(-1)) |
|
valid_flatten_loss = torch.masked_select(flatten_loss, valid_mask.view(-1)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if pad_mask.sum() > 0: |
|
visual_labels_original = labels[pad_mask == 1] |
|
visual_valid_mask = visual_labels_original > 0 |
|
else: |
|
visual_valid_mask = torch.zeros(visual_idx_visual[..., 0].view(-1).shape, dtype=valid_mask.dtype, device=valid_mask.device) |
|
|
|
for i in range(len(visual_logits_visual)): |
|
visual_loss_list_visual[i] = F.cross_entropy(visual_logits_visual[i], visual_idx_visual[..., i].view(-1), reduction='none') |
|
|
|
for i in range(len(visual_logits_semantic)): |
|
visual_loss_list_semantic[i] = F.cross_entropy(visual_logits_semantic[i], visual_idx_semantic[..., i].view(-1), reduction='none') |
|
|
|
total_weight = sum(self.config.visual_config.visual_codebook_loss_weights) |
|
|
|
visual_flatten_loss_visual = sum(w * loss for w, loss in zip(self.config.visual_config.visual_codebook_loss_weights, visual_loss_list_visual)) / total_weight |
|
visual_flatten_loss_visual = visual_flatten_loss_visual.to(text_flatten_loss.dtype).to(text_flatten_loss.device) |
|
visual_flatten_loss_visual = torch.masked_select(visual_flatten_loss_visual, visual_valid_mask) |
|
|
|
visual_flatten_loss_semantic = sum(w * loss for w, loss in zip(self.config.visual_config.visual_codebook_loss_weights, visual_loss_list_semantic)) / total_weight |
|
visual_flatten_loss_semantic = visual_flatten_loss_semantic.to(text_flatten_loss.dtype).to(text_flatten_loss.device) |
|
visual_flatten_loss_semantic = torch.masked_select(visual_flatten_loss_semantic, visual_valid_mask) |
|
|
|
|
|
loss = torch.mean(torch.cat((valid_flatten_loss, visual_flatten_loss_visual, visual_flatten_loss_semantic), dim=0)) |
|
text_nt_loss = torch.mean(text_flatten_loss).detach() |
|
image_nt_loss_visual = torch.mean(visual_flatten_loss_visual).detach() if visual_flatten_loss_visual.numel() != 0 else image_nt_loss_visual |
|
image_loss_count_visual = torch.tensor(1, device=hidden_states.device, dtype=hidden_states.dtype) if visual_flatten_loss_visual.numel() != 0 else image_loss_count_visual |
|
image_nt_loss_semantic = torch.mean(visual_flatten_loss_semantic).detach() if visual_flatten_loss_semantic.numel() != 0 else image_nt_loss_semantic |
|
image_loss_count_semantic = torch.tensor(1, device=hidden_states.device, dtype=hidden_states.dtype) if visual_flatten_loss_semantic.numel() != 0 else image_loss_count_semantic |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[1:] |
|
return (loss,) + output if loss is not None else output |
|
|
|
return BaichuanMMCausalLMOutputWithPast( |
|
loss=loss, |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
text_nt_loss=text_nt_loss, |
|
image_nt_loss_visual=image_nt_loss_visual, |
|
image_loss_count_visual=image_loss_count_visual, |
|
image_nt_loss_semantic=image_nt_loss_semantic, |
|
image_loss_count_semantic=image_loss_count_semantic |
|
) |
|
|
|
|
|
def prepare_inputs_for_generation( |
|
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs |
|
): |
|
if past_key_values: |
|
input_ids = input_ids[:, -1:] |
|
|
|
position_ids = kwargs.get("position_ids", None) |
|
if attention_mask is not None and position_ids is None: |
|
|
|
position_ids = attention_mask.long().cumsum(-1) - 1 |
|
position_ids.masked_fill_(attention_mask == 0, 1) |
|
if past_key_values: |
|
position_ids = position_ids[:, -1].unsqueeze(-1) |
|
|
|
|
|
if inputs_embeds is not None and past_key_values is None: |
|
model_inputs = {"inputs_embeds": inputs_embeds} |
|
elif past_key_values is not None: |
|
model_inputs = {"input_ids": input_ids} |
|
else: |
|
model_inputs = {"input_ids": input_ids, |
|
"audios": kwargs.get("audios", None), "encoder_length": kwargs.get("encoder_length", None), "bridge_length": kwargs.get("bridge_length", None), |
|
"images": kwargs.get("images", None), |
|
"videos": kwargs.get("videos", None) |
|
} |
|
|
|
model_inputs.update( |
|
{ |
|
"position_ids": position_ids, |
|
"past_key_values": past_key_values, |
|
"use_cache": kwargs.get("use_cache"), |
|
"attention_mask": attention_mask, |
|
"images_grid": kwargs.get("images_grid"), |
|
"videos_grid": kwargs.get("videos_grid") |
|
} |
|
) |
|
return model_inputs |
|
|
|
@staticmethod |
|
def _reorder_cache(past_key_values, beam_idx): |
|
reordered_past = () |
|
for layer_past in past_key_values: |
|
reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),) |
|
return reordered_past |
|
|
|
def chat(self, tokenizer, messages: List[dict], stream=False, |
|
generation_config: Optional[GenerationConfig]=None): |
|
generation_config = generation_config or self.generation_config |
|
input_ids = build_chat_input(self, tokenizer, messages, generation_config.max_new_tokens) |
|
if stream: |
|
streamer = TextIterStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) |
|
Thread(target=self.generate, kwargs=dict( |
|
inputs=input_ids, streamer=streamer, |
|
generation_config=generation_config, |
|
)).start() |
|
return streamer |
|
else: |
|
outputs = self.generate(input_ids, generation_config=generation_config) |
|
response = tokenizer.decode(outputs[0][len(input_ids[0]):], skip_special_tokens=True) |
|
return response |
|
|