Commit
·
3ef8780
1
Parent(s):
3ade3e4
first model commit
Browse files- README.md +60 -1
- attn_pooling_kernel.py +277 -0
- block_sparse_attn.py +395 -0
- config.json +42 -0
- configuration_llama_seerattn.py +236 -0
- model-00001-of-00004.safetensors +3 -0
- model-00002-of-00004.safetensors +3 -0
- model-00003-of-00004.safetensors +3 -0
- model-00004-of-00004.safetensors +3 -0
- model.safetensors.index.json +330 -0
- modeling_llama_seerattn.py +1199 -0
- special_tokens_map.json +30 -0
- tokenizer.json +0 -0
- tokenizer_config.json +2081 -0
- utils.py +30 -0
README.md
CHANGED
@@ -1,3 +1,62 @@
|
|
1 |
---
|
2 |
-
license:
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
license: llama3.1
|
3 |
+
library_name: transformers
|
4 |
+
base_model:
|
5 |
+
- meta-llama/Llama-3.1-8B-Instruct
|
6 |
+
base_model_relation: "adapter"
|
7 |
---
|
8 |
+
|
9 |
+
|
10 |
+
# SeerAttention-Llama-3.1-8B
|
11 |
+
|
12 |
+
This is a reproduction of the [SeerAttention](https://arxiv.org/abs/2410.13276) paper. The model contains additional learnable AttnGate modules on top of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct). The AttnGate modules accelerate long-context attention inference by enabling block-level sparsity. During training, the AttnGates are optimized via self-distillation while keeping the original model weights frozen. Specifically, the AttnGates learn to mimic the 2D-maxpooled outputs of the attention maps. At inference time, the soft scores produced by the gates are converted into binary masks, thereby reducing both the I/O overhead and computational cost of the attention mechanism.
|
13 |
+
|
14 |
+
|
15 |
+
|
16 |
+
## Original Github Repo
|
17 |
+
[https://github.com/microsoft/SeerAttention](https://github.com/microsoft/SeerAttention).
|
18 |
+
|
19 |
+
## Evaluation Results
|
20 |
+
|
21 |
+
### Perplexity on PG19
|
22 |
+
| Density | 8192 | 16384 | 32768 | 65536 | 131072 |
|
23 |
+
|---------|-------|-------|-------|-------|--------|
|
24 |
+
| 1.00 | 10.03 | 9.88 | 9.92 | 9.97 | 10.03 |
|
25 |
+
| 0.50 | 10.04 | 9.89 | 9.92 | 9.99 | 10.05 |
|
26 |
+
| 0.40 | 10.06 | 9.89 | 9.93 | 9.99 | 10.07 |
|
27 |
+
| 0.30 | 10.09 | 9.91 | 9.95 | 10.01 | 10.15 |
|
28 |
+
| 0.20 | 10.19 | 9.94 | 9.97 | 10.04 | 10.37 |
|
29 |
+
| 0.10 | 10.61 | 10.08 | 10.04 | 10.09 | 10.88 |
|
30 |
+
|
31 |
+
### LongBench
|
32 |
+
|
33 |
+
With threshold set to 2e-3.
|
34 |
+
|
35 |
+
| Task | 0-4k | 4-8k | 8k+ |
|
36 |
+
|----------------------|-------|-------|-------|
|
37 |
+
| 2wikimqa | 51.1 | 47.85 | 33.36 |
|
38 |
+
| gov_report | 35.03 | 35.05 | 34.57 |
|
39 |
+
| hotpotqa | 63.97 | 60.0 | 56.7 |
|
40 |
+
| lcc | 67.98 | 73.18 | 65.28 |
|
41 |
+
| multi_news | 28.1 | 25.78 | 24.25 |
|
42 |
+
| multifieldqa_en | 58.63 | 51.45 | 51.87 |
|
43 |
+
| passage_count | 18.0 | 10.15 | 11.88 |
|
44 |
+
| passage_retrieval_en | 100.0 | 99.0 | 98.0 |
|
45 |
+
| qasper | 47.77 | 44.04 | 39.63 |
|
46 |
+
| repobench-p | 51.78 | 56.24 | 56.75 |
|
47 |
+
| samsum | 43.28 | 41.19 | 45.29 |
|
48 |
+
| trec | 64.0 | 76.0 | 75.0 |
|
49 |
+
| triviaqa | 90.91 | 88.45 | 92.43 |
|
50 |
+
| averaged | 55.43 | 54.49 | 52.69 |
|
51 |
+
|
52 |
+
|
53 |
+
### RULER
|
54 |
+
|
55 |
+
| | Dense Baseline | SeerAttn | Avg density |
|
56 |
+
|-------|---------------:|---------:|------------:|
|
57 |
+
| 4k | 95.53 | 95.53 | 0.87 |
|
58 |
+
| 8k | 92.27 | 92.71 | 0.72 |
|
59 |
+
| 16k | 92.01 | 92.02 | 0.56 |
|
60 |
+
| 32k | 87.63 | 88.49 | 0.46 |
|
61 |
+
| 64k | 84.39 | 83.48 | 0.32 |
|
62 |
+
| 128k | 76.26 | 73.37 | 0.17 |
|
attn_pooling_kernel.py
ADDED
@@ -0,0 +1,277 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Original code from Triton's official fused attention example (https://triton-lang.org/main/getting-started/tutorials/06-fused-attention.html).
|
3 |
+
"""
|
4 |
+
"""
|
5 |
+
Modified by Zhichen Zeng,
|
6 |
+
Self-attention output with 2D maxpooling attention map.
|
7 |
+
"""
|
8 |
+
|
9 |
+
import torch
|
10 |
+
|
11 |
+
import triton
|
12 |
+
import triton.language as tl
|
13 |
+
|
14 |
+
|
15 |
+
def is_hip():
|
16 |
+
return triton.runtime.driver.active.get_current_target().backend == "hip"
|
17 |
+
|
18 |
+
@triton.jit
|
19 |
+
def _attn_fwd_inner(acc, l_i, m_i, q, #
|
20 |
+
K_block_ptr, V_block_ptr, #
|
21 |
+
R_block_ptr, #
|
22 |
+
A_block_ptr, #
|
23 |
+
start_m, qk_scale, #
|
24 |
+
BLOCK_M: tl.constexpr, HEAD_DIM: tl.constexpr, BLOCK_N: tl.constexpr, #
|
25 |
+
STAGE: tl.constexpr, offs_m: tl.constexpr, offs_n: tl.constexpr, #
|
26 |
+
N_CTX: tl.constexpr, fp8_v: tl.constexpr):
|
27 |
+
# range of values handled by this stage
|
28 |
+
if STAGE == 1:
|
29 |
+
lo, hi = 0, start_m * BLOCK_M
|
30 |
+
elif STAGE == 2:
|
31 |
+
lo, hi = start_m * BLOCK_M, (start_m + 1) * BLOCK_M
|
32 |
+
lo = tl.multiple_of(lo, BLOCK_M)
|
33 |
+
# causal = False
|
34 |
+
else:
|
35 |
+
lo, hi = 0, N_CTX
|
36 |
+
K_block_ptr = tl.advance(K_block_ptr, (0, lo))
|
37 |
+
V_block_ptr = tl.advance(V_block_ptr, (lo, 0))
|
38 |
+
# loop over k, v and update accumulator
|
39 |
+
for start_n in range(lo, hi, BLOCK_N):
|
40 |
+
start_n = tl.multiple_of(start_n, BLOCK_N)
|
41 |
+
# -- compute qk ----
|
42 |
+
k = tl.load(K_block_ptr)
|
43 |
+
qk = tl.dot(q, k)
|
44 |
+
|
45 |
+
if STAGE == 2:
|
46 |
+
mask = offs_m[:, None] >= (start_n + offs_n[None, :])
|
47 |
+
qk += tl.where(mask, 0, -1.0e6)
|
48 |
+
|
49 |
+
max = tl.max(qk, 1) * qk_scale
|
50 |
+
m_ij = tl.maximum(m_i, max)
|
51 |
+
qk = qk * qk_scale - m_ij[:, None]
|
52 |
+
|
53 |
+
tl.store(tl.advance(R_block_ptr, (0, start_n // BLOCK_N)), max[:, None].to(q.dtype))
|
54 |
+
|
55 |
+
p = tl.math.exp2(qk)
|
56 |
+
l_ij = tl.sum(p, 1)
|
57 |
+
# -- update m_i and l_i
|
58 |
+
alpha = tl.math.exp2(m_i - m_ij)
|
59 |
+
l_i = l_i * alpha + l_ij
|
60 |
+
# -- update output accumulator --
|
61 |
+
acc = acc * alpha[:, None]
|
62 |
+
# update acc
|
63 |
+
v = tl.load(V_block_ptr)
|
64 |
+
if fp8_v:
|
65 |
+
p = p.to(tl.float8e5)
|
66 |
+
else:
|
67 |
+
p = p.to(q.dtype)
|
68 |
+
acc = tl.dot(p, v, acc)
|
69 |
+
# update m_i and l_i
|
70 |
+
m_i = m_ij
|
71 |
+
V_block_ptr = tl.advance(V_block_ptr, (BLOCK_N, 0))
|
72 |
+
K_block_ptr = tl.advance(K_block_ptr, (0, BLOCK_N))
|
73 |
+
|
74 |
+
# -- update Po --
|
75 |
+
if STAGE == 2:
|
76 |
+
for start_n in range(0, (start_m + 1) * BLOCK_N, BLOCK_N):
|
77 |
+
start_n = tl.multiple_of(start_n, BLOCK_N)
|
78 |
+
row_max = tl.load(R_block_ptr)
|
79 |
+
xi = row_max - m_i[:, None]
|
80 |
+
row_max = tl.exp2(xi)/l_i[:, None]
|
81 |
+
col_max = tl.max(row_max, 0)
|
82 |
+
col_max = col_max[:, None].to(q.dtype)
|
83 |
+
tl.store(A_block_ptr, col_max)
|
84 |
+
A_block_ptr = tl.advance(A_block_ptr, (0, 1))
|
85 |
+
R_block_ptr = tl.advance(R_block_ptr, (0, 1))
|
86 |
+
|
87 |
+
elif STAGE == 3:
|
88 |
+
for start_n in range(lo, hi, BLOCK_N):
|
89 |
+
start_n = tl.multiple_of(start_n, BLOCK_N)
|
90 |
+
row_max = tl.load(R_block_ptr)
|
91 |
+
xi = row_max - m_i[:, None]
|
92 |
+
row_max = tl.exp2(xi)/l_i[:, None]
|
93 |
+
col_max = tl.max(row_max, 0)
|
94 |
+
col_max = col_max[:, None].to(q.dtype)
|
95 |
+
tl.store(A_block_ptr, col_max)
|
96 |
+
A_block_ptr = tl.advance(A_block_ptr, (0, 1))
|
97 |
+
R_block_ptr = tl.advance(R_block_ptr, (0, 1))
|
98 |
+
|
99 |
+
return acc, l_i, m_i
|
100 |
+
|
101 |
+
|
102 |
+
@triton.jit
|
103 |
+
def _attn_fwd(Q, K, V, sm_scale, M, Out, #
|
104 |
+
R, Po,
|
105 |
+
stride_qz, stride_qh, stride_qm, stride_qk, #
|
106 |
+
stride_kz, stride_kh, stride_kn, stride_kk, #
|
107 |
+
stride_vz, stride_vh, stride_vk, stride_vn, #
|
108 |
+
stride_oz, stride_oh, stride_om, stride_on, #
|
109 |
+
stride_rz, stride_rh, stride_rm, stride_rn, #
|
110 |
+
stride_poz, stride_poh, stride_pom, stride_pon, #
|
111 |
+
Z, H, N_CTX, #
|
112 |
+
n_rep, #
|
113 |
+
HEAD_DIM: tl.constexpr, #
|
114 |
+
BLOCK_M: tl.constexpr, #
|
115 |
+
BLOCK_N: tl.constexpr, #
|
116 |
+
N_DOWNSAMPLE: tl.constexpr, #
|
117 |
+
STAGE: tl.constexpr #
|
118 |
+
):
|
119 |
+
tl.static_assert(BLOCK_N <= HEAD_DIM)
|
120 |
+
start_m = tl.program_id(0)
|
121 |
+
off_hz = tl.program_id(1)
|
122 |
+
off_z = off_hz // H
|
123 |
+
off_h = off_hz % H
|
124 |
+
off_kvh = off_h // n_rep
|
125 |
+
q_offset = off_z.to(tl.int64) * stride_qz + off_h.to(tl.int64) * stride_qh
|
126 |
+
k_offset = off_z.to(tl.int64) * stride_kz + off_kvh.to(tl.int64) * stride_kh
|
127 |
+
v_offset = off_z.to(tl.int64) * stride_vz + off_kvh.to(tl.int64) * stride_vh
|
128 |
+
r_offset = off_z.to(tl.int64) * stride_rz + off_h.to(tl.int64) * stride_rh
|
129 |
+
po_offset = off_z.to(tl.int64) * stride_poz + off_h.to(tl.int64) * stride_poh
|
130 |
+
|
131 |
+
# block pointers
|
132 |
+
Q_block_ptr = tl.make_block_ptr(
|
133 |
+
base=Q + q_offset,
|
134 |
+
shape=(N_CTX, HEAD_DIM),
|
135 |
+
strides=(stride_qm, stride_qk),
|
136 |
+
offsets=(start_m * BLOCK_M, 0),
|
137 |
+
block_shape=(BLOCK_M, HEAD_DIM),
|
138 |
+
order=(1, 0),
|
139 |
+
)
|
140 |
+
v_order: tl.constexpr = (0, 1) if V.dtype.element_ty == tl.float8e5 else (1, 0)
|
141 |
+
V_block_ptr = tl.make_block_ptr(
|
142 |
+
base=V + v_offset,
|
143 |
+
shape=(N_CTX, HEAD_DIM),
|
144 |
+
strides=(stride_vk, stride_vn),
|
145 |
+
offsets=(0, 0),
|
146 |
+
block_shape=(BLOCK_N, HEAD_DIM),
|
147 |
+
order=v_order,
|
148 |
+
)
|
149 |
+
K_block_ptr = tl.make_block_ptr(
|
150 |
+
base=K + k_offset,
|
151 |
+
shape=(HEAD_DIM, N_CTX),
|
152 |
+
strides=(stride_kk, stride_kn),
|
153 |
+
offsets=(0, 0),
|
154 |
+
block_shape=(HEAD_DIM, BLOCK_N),
|
155 |
+
order=(0, 1),
|
156 |
+
)
|
157 |
+
O_block_ptr = tl.make_block_ptr(
|
158 |
+
base=Out + q_offset,
|
159 |
+
shape=(N_CTX, HEAD_DIM),
|
160 |
+
strides=(stride_om, stride_on),
|
161 |
+
offsets=(start_m * BLOCK_M, 0),
|
162 |
+
block_shape=(BLOCK_M, HEAD_DIM),
|
163 |
+
order=(1, 0),
|
164 |
+
)
|
165 |
+
|
166 |
+
R_block_ptr = tl.make_block_ptr(
|
167 |
+
base=R + r_offset,
|
168 |
+
shape=(N_CTX, N_DOWNSAMPLE),
|
169 |
+
strides=(stride_rm, stride_rn),
|
170 |
+
offsets=(start_m * BLOCK_M, 0),
|
171 |
+
block_shape=(BLOCK_M, 1),
|
172 |
+
order=(0, 1),
|
173 |
+
|
174 |
+
)
|
175 |
+
A_block_ptr = tl.make_block_ptr(
|
176 |
+
base=Po + po_offset,
|
177 |
+
shape=(N_DOWNSAMPLE, N_DOWNSAMPLE),
|
178 |
+
strides=(stride_pom, stride_pon),
|
179 |
+
offsets=(start_m, 0),
|
180 |
+
block_shape=(1, 1),
|
181 |
+
order=(0, 1),
|
182 |
+
)
|
183 |
+
# initialize offsets
|
184 |
+
offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
|
185 |
+
offs_n = tl.arange(0, BLOCK_N)
|
186 |
+
# initialize pointer to m and l
|
187 |
+
m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf")
|
188 |
+
l_i = tl.zeros([BLOCK_M], dtype=tl.float32) + 1.0
|
189 |
+
acc = tl.zeros([BLOCK_M, HEAD_DIM], dtype=tl.float32)
|
190 |
+
# load scales
|
191 |
+
qk_scale = sm_scale
|
192 |
+
qk_scale *= 1.44269504 # 1/log(2)
|
193 |
+
# load q: it will stay in SRAM throughout
|
194 |
+
q = tl.load(Q_block_ptr)
|
195 |
+
# stage 1: off-band
|
196 |
+
# For causal = True, STAGE = 3 and _attn_fwd_inner gets 1 as its STAGE
|
197 |
+
# For causal = False, STAGE = 1, and _attn_fwd_inner gets 3 as its STAGE
|
198 |
+
if STAGE & 1:
|
199 |
+
acc, l_i, m_i = _attn_fwd_inner(acc, l_i, m_i, q, K_block_ptr, V_block_ptr, #
|
200 |
+
R_block_ptr, #
|
201 |
+
A_block_ptr, #
|
202 |
+
start_m, qk_scale, #
|
203 |
+
BLOCK_M, HEAD_DIM, BLOCK_N, #
|
204 |
+
4 - STAGE, offs_m, offs_n, N_CTX, V.dtype.element_ty == tl.float8e5 #
|
205 |
+
)
|
206 |
+
# stage 2: on-band
|
207 |
+
if STAGE & 2:
|
208 |
+
# barrier makes it easier for compielr to schedule the
|
209 |
+
# two loops independently
|
210 |
+
acc, l_i, m_i = _attn_fwd_inner(acc, l_i, m_i, q, K_block_ptr, V_block_ptr, #
|
211 |
+
R_block_ptr, #
|
212 |
+
A_block_ptr, #
|
213 |
+
start_m, qk_scale, #
|
214 |
+
BLOCK_M, HEAD_DIM, BLOCK_N, #
|
215 |
+
2, offs_m, offs_n, N_CTX, V.dtype.element_ty == tl.float8e5 #
|
216 |
+
)
|
217 |
+
# epilogue
|
218 |
+
m_i += tl.math.log2(l_i)
|
219 |
+
acc = acc / l_i[:, None]
|
220 |
+
m_ptrs = M + off_hz * N_CTX + offs_m
|
221 |
+
tl.store(m_ptrs, m_i)
|
222 |
+
tl.store(O_block_ptr, acc.to(Out.type.element_ty))
|
223 |
+
|
224 |
+
class _attention_pooling(torch.autograd.Function):
|
225 |
+
|
226 |
+
@staticmethod
|
227 |
+
def forward(ctx, q, k, v, causal, sm_scale, block_size):
|
228 |
+
assert block_size in {32, 64, 128}
|
229 |
+
# shape constraints
|
230 |
+
q, k, v = q.contiguous(), k.contiguous(), v.contiguous()
|
231 |
+
HEAD_DIM_Q, HEAD_DIM_K = q.shape[-1], k.shape[-1]
|
232 |
+
# when v is in float8_e5m2 it is transposed.
|
233 |
+
HEAD_DIM_V = v.shape[-1]
|
234 |
+
assert HEAD_DIM_Q == HEAD_DIM_K and HEAD_DIM_K == HEAD_DIM_V
|
235 |
+
assert HEAD_DIM_K in {16, 32, 64, 128, 256}
|
236 |
+
NUM_HEADS_Q, NUM_HEADS_K, NUM_HEADS_V = q.shape[1], k.shape[1], v.shape[1]
|
237 |
+
assert NUM_HEADS_K == NUM_HEADS_V
|
238 |
+
n_rep = NUM_HEADS_Q // NUM_HEADS_K
|
239 |
+
o = torch.empty_like(q)
|
240 |
+
BLOCK_N = block_size
|
241 |
+
n_d = triton.cdiv(q.shape[2], BLOCK_N)
|
242 |
+
R = torch.full((q.shape[0], q.shape[1], q.shape[2], n_d), -65504.0, device=q.device, dtype=torch.bfloat16)
|
243 |
+
Po = torch.zeros((q.shape[0], q.shape[1], n_d, n_d), device=q.device, dtype=torch.bfloat16)
|
244 |
+
stage = 3 if causal else 1
|
245 |
+
extra_kern_args = {}
|
246 |
+
# Tuning for AMD target
|
247 |
+
if is_hip():
|
248 |
+
waves_per_eu = 3 if HEAD_DIM_K <= 64 else 2
|
249 |
+
extra_kern_args = {"waves_per_eu": waves_per_eu, "allow_flush_denorm": True}
|
250 |
+
|
251 |
+
grid = lambda args: (triton.cdiv(q.shape[2], args["BLOCK_M"]), q.shape[0] * q.shape[1], 1)
|
252 |
+
M = torch.empty((q.shape[0], q.shape[1], q.shape[2]), device=q.device, dtype=torch.float32)
|
253 |
+
_attn_fwd[grid](
|
254 |
+
q, k, v, sm_scale, M, o, #
|
255 |
+
R, Po, #
|
256 |
+
q.stride(0), q.stride(1), q.stride(2), q.stride(3), #
|
257 |
+
k.stride(0), k.stride(1), k.stride(2), k.stride(3), #
|
258 |
+
v.stride(0), v.stride(1), v.stride(2), v.stride(3), #
|
259 |
+
o.stride(0), o.stride(1), o.stride(2), o.stride(3), #
|
260 |
+
R.stride(0), R.stride(1), R.stride(2), R.stride(3), #
|
261 |
+
Po.stride(0), Po.stride(1), Po.stride(2), Po.stride(3), #
|
262 |
+
q.shape[0], q.shape[1], #
|
263 |
+
N_CTX=q.shape[2], #
|
264 |
+
n_rep=n_rep, #
|
265 |
+
HEAD_DIM=HEAD_DIM_K, #
|
266 |
+
STAGE=stage, #
|
267 |
+
BLOCK_M=block_size,
|
268 |
+
BLOCK_N=block_size,
|
269 |
+
N_DOWNSAMPLE=n_d,
|
270 |
+
num_stages=3,
|
271 |
+
num_warps=4,
|
272 |
+
**extra_kern_args)
|
273 |
+
Sum = torch.sum(Po, dim=-1, keepdim=True)
|
274 |
+
Po.div_(Sum)
|
275 |
+
return o, Po
|
276 |
+
|
277 |
+
attn_with_pooling = _attention_pooling.apply
|
block_sparse_attn.py
ADDED
@@ -0,0 +1,395 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
"""
|
3 |
+
Original Author: Eric Lin (xihlin) (https://huggingface.co/microsoft/Phi-3-small-8k-instruct/blob/main/triton_flash_blocksparse_attn.py)
|
4 |
+
"""
|
5 |
+
"""
|
6 |
+
Modified by Yizhao Gao
|
7 |
+
Use binary block mask for simplicity. Need to be updated to varlen version for batched inference.
|
8 |
+
"""
|
9 |
+
|
10 |
+
|
11 |
+
from typing import TypeVar
|
12 |
+
from functools import lru_cache
|
13 |
+
import math
|
14 |
+
import torch
|
15 |
+
import numpy as np
|
16 |
+
|
17 |
+
import triton
|
18 |
+
import triton.language as tl
|
19 |
+
import torch.nn.functional as F
|
20 |
+
import os
|
21 |
+
|
22 |
+
import dataclasses
|
23 |
+
|
24 |
+
|
25 |
+
|
26 |
+
def is_hip():
|
27 |
+
return triton.runtime.driver.active.get_current_target().backend == "hip"
|
28 |
+
|
29 |
+
|
30 |
+
def get_sparse_attn_mask_from_topk(x, topk, use_dense_for_last_block=False):
|
31 |
+
bsz, num_head, downsample_len, _ = x.shape
|
32 |
+
# N_CTX = downsample_len * BLOCK
|
33 |
+
sparse_index = torch.topk(x, topk, dim=-1).indices
|
34 |
+
dense_mask = torch.full([bsz, num_head, downsample_len, downsample_len], False, dtype=torch.bool, device=x.device)
|
35 |
+
dense_mask.scatter_(-1, sparse_index, True)
|
36 |
+
if use_dense_for_last_block:
|
37 |
+
dense_mask[:, :,-2:,:] = True
|
38 |
+
dense_mask.tril_()
|
39 |
+
return dense_mask
|
40 |
+
|
41 |
+
|
42 |
+
def get_sparse_attn_mask_from_threshold(x, threshold, use_dense_for_last_block=False):
|
43 |
+
dense_mask = x > threshold
|
44 |
+
if use_dense_for_last_block:
|
45 |
+
dense_mask[:, :,-2:,:] = True
|
46 |
+
dense_mask.tril_()
|
47 |
+
return dense_mask
|
48 |
+
|
49 |
+
|
50 |
+
|
51 |
+
|
52 |
+
@triton.jit
|
53 |
+
def _fwd_kernel_inner(
|
54 |
+
acc, l_i, m_i,
|
55 |
+
q,
|
56 |
+
k_block_col_idx,
|
57 |
+
block_mask_ptr,
|
58 |
+
k_ptrs, v_ptrs,
|
59 |
+
offs_m, offs_n,
|
60 |
+
stride_kt, stride_vt, stride_bmask_n,
|
61 |
+
sm_scale,
|
62 |
+
seqlen_k,
|
63 |
+
past_len,
|
64 |
+
LAST_K_BLOCK: tl.constexpr,
|
65 |
+
BLOCK_M: tl.constexpr,
|
66 |
+
BLOCK_N: tl.constexpr,
|
67 |
+
):
|
68 |
+
|
69 |
+
mask_val = tl.load(block_mask_ptr + k_block_col_idx * stride_bmask_n)
|
70 |
+
if mask_val == True:
|
71 |
+
start_n = k_block_col_idx * BLOCK_N
|
72 |
+
# -- compute qk ----
|
73 |
+
|
74 |
+
if LAST_K_BLOCK:
|
75 |
+
k = tl.load(k_ptrs + start_n * stride_kt,
|
76 |
+
mask=offs_n[None, :] + start_n < seqlen_k)
|
77 |
+
|
78 |
+
else:
|
79 |
+
k = tl.load(k_ptrs + start_n * stride_kt)
|
80 |
+
|
81 |
+
qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
|
82 |
+
qk += tl.dot(q, k)
|
83 |
+
|
84 |
+
qk *= sm_scale
|
85 |
+
|
86 |
+
# the following is needed only when LAST_K_BLOCK or BLOCK_M < BLOCK_N
|
87 |
+
if LAST_K_BLOCK :
|
88 |
+
qk += tl.where(offs_m[:, None] + past_len >= (start_n + offs_n[None, :]), 0, float('-inf'))
|
89 |
+
|
90 |
+
|
91 |
+
m_ij = tl.maximum(m_i, tl.max(qk, 1))
|
92 |
+
qk -= m_ij[:, None]
|
93 |
+
p = tl.exp(qk)
|
94 |
+
l_ij = tl.sum(p, 1)
|
95 |
+
alpha = tl.exp(m_i - m_ij)
|
96 |
+
l_i = l_i * alpha + l_ij
|
97 |
+
acc = acc * alpha[:, None]
|
98 |
+
|
99 |
+
# update acc
|
100 |
+
if LAST_K_BLOCK:
|
101 |
+
v = tl.load(v_ptrs + start_n * stride_vt,
|
102 |
+
mask=offs_n[:, None] + start_n < seqlen_k)
|
103 |
+
else:
|
104 |
+
v = tl.load(v_ptrs + start_n * stride_vt)
|
105 |
+
|
106 |
+
p = p.to(v.type.element_ty)
|
107 |
+
|
108 |
+
acc += tl.dot(p, v)
|
109 |
+
# update m_i and l_i
|
110 |
+
m_i = m_ij
|
111 |
+
return acc, l_i, m_i
|
112 |
+
|
113 |
+
|
114 |
+
|
115 |
+
|
116 |
+
@triton.jit
|
117 |
+
def _fwd_kernel(
|
118 |
+
Q, K, V, sm_scale,
|
119 |
+
block_mask_ptr,
|
120 |
+
Out,
|
121 |
+
stride_qz, stride_qh, stride_qm, stride_qd,
|
122 |
+
stride_kz, stride_kh, stride_kn, stride_kd,
|
123 |
+
stride_vz, stride_vh, stride_vn, stride_vd,
|
124 |
+
stride_bmz, stride_bmh, stride_bmm, stride_bmn,
|
125 |
+
stride_oz, stride_oh, stride_om, stride_od,
|
126 |
+
H, N_CTX,
|
127 |
+
PAST_LEN,
|
128 |
+
BLOCK_M: tl.constexpr,
|
129 |
+
BLOCK_N: tl.constexpr,
|
130 |
+
BLOCK_DMODEL: tl.constexpr,
|
131 |
+
):
|
132 |
+
Q_LEN = N_CTX - PAST_LEN
|
133 |
+
start_m = tl.program_id(0)
|
134 |
+
off_hz = tl.program_id(1)
|
135 |
+
off_h = off_hz % H
|
136 |
+
off_z = off_hz // H
|
137 |
+
Q += off_z * stride_qz + off_h * stride_qh
|
138 |
+
K += off_z * stride_kz + off_h * stride_kh
|
139 |
+
V += off_z * stride_vz + off_h * stride_vh
|
140 |
+
block_mask_ptr += off_z * stride_bmz + off_h * stride_bmh
|
141 |
+
|
142 |
+
# initialize offsets
|
143 |
+
offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
|
144 |
+
offs_n = tl.arange(0, BLOCK_N)
|
145 |
+
offs_d = tl.arange(0, BLOCK_DMODEL)
|
146 |
+
off_q = offs_m[:, None] * stride_qm + offs_d[None, :] * stride_qd
|
147 |
+
# off_k = offs_n[:, None] * stride_kn + offs_d[None, :] * stride_kd
|
148 |
+
off_k = offs_n[None, :] * stride_kn + offs_d[:, None] * stride_kd
|
149 |
+
off_v = offs_n[:, None] * stride_vn + offs_d[None, :] * stride_vd
|
150 |
+
# Initialize pointers to Q, K, V
|
151 |
+
q_ptrs = Q + off_q
|
152 |
+
k_ptrs = K + off_k
|
153 |
+
v_ptrs = V + off_v
|
154 |
+
mask_ptrs = block_mask_ptr + start_m * stride_bmm
|
155 |
+
|
156 |
+
m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float('inf')
|
157 |
+
l_i = tl.zeros([BLOCK_M], dtype=tl.float32)
|
158 |
+
acc = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32)
|
159 |
+
|
160 |
+
q = tl.load(q_ptrs, mask=offs_m[:, None] < Q_LEN)
|
161 |
+
|
162 |
+
k_block_start = 0
|
163 |
+
k_block_end = tl.cdiv((start_m + 1) * BLOCK_M, BLOCK_N)
|
164 |
+
|
165 |
+
# loop over k, v and update accumulator
|
166 |
+
for col_idx in range(k_block_start, k_block_end-1):
|
167 |
+
acc, l_i, m_i = _fwd_kernel_inner(
|
168 |
+
acc, l_i, m_i,
|
169 |
+
q,
|
170 |
+
col_idx,
|
171 |
+
mask_ptrs,
|
172 |
+
k_ptrs, v_ptrs,
|
173 |
+
offs_m, offs_n,
|
174 |
+
stride_kn, stride_vn, stride_bmn,
|
175 |
+
sm_scale,
|
176 |
+
N_CTX,
|
177 |
+
PAST_LEN,
|
178 |
+
False,
|
179 |
+
BLOCK_M,
|
180 |
+
BLOCK_N,
|
181 |
+
)
|
182 |
+
|
183 |
+
# last block
|
184 |
+
acc, l_i, m_i = _fwd_kernel_inner(
|
185 |
+
acc, l_i, m_i,
|
186 |
+
q,
|
187 |
+
k_block_end-1,
|
188 |
+
mask_ptrs,
|
189 |
+
k_ptrs, v_ptrs,
|
190 |
+
offs_m, offs_n,
|
191 |
+
stride_kn, stride_vn, stride_bmn,
|
192 |
+
sm_scale,
|
193 |
+
N_CTX,
|
194 |
+
PAST_LEN,
|
195 |
+
True,
|
196 |
+
BLOCK_M,
|
197 |
+
BLOCK_N,
|
198 |
+
)
|
199 |
+
|
200 |
+
m_i += tl.math.log(l_i)
|
201 |
+
l_recip = 1 / l_i[:, None]
|
202 |
+
acc = acc * l_recip
|
203 |
+
acc = acc.to(Out.dtype.element_ty)
|
204 |
+
|
205 |
+
|
206 |
+
off_o = off_z * stride_oz + off_h * stride_oh + offs_m[:, None] * stride_om + offs_d[None, :] * stride_od
|
207 |
+
out_ptrs = Out + off_o
|
208 |
+
tl.store(out_ptrs, acc, mask=offs_m[:, None] < N_CTX)
|
209 |
+
|
210 |
+
def _forward(
|
211 |
+
ctx,
|
212 |
+
q,
|
213 |
+
k,
|
214 |
+
v,
|
215 |
+
block_sparse_mask,
|
216 |
+
sm_scale,
|
217 |
+
BLOCK_M=64,
|
218 |
+
BLOCK_N=64,
|
219 |
+
num_warps=None,
|
220 |
+
num_stages=1,
|
221 |
+
out=None
|
222 |
+
):
|
223 |
+
|
224 |
+
|
225 |
+
assert q.shape[-1] == k.shape[-1] == v.shape[-1]
|
226 |
+
assert k.shape[2] == v.shape[2]
|
227 |
+
o = out if out is not None else torch.empty_like(q).contiguous()
|
228 |
+
grid = (triton.cdiv(q.shape[2], BLOCK_M), q.shape[0] * q.shape[1])
|
229 |
+
|
230 |
+
assert q.shape[-1] in [64, 128]
|
231 |
+
BLOCK_DMODEL = q.shape[-1]
|
232 |
+
|
233 |
+
if is_hip():
|
234 |
+
num_warps, num_stages = 8, 1
|
235 |
+
else:
|
236 |
+
num_warps, num_stages = 4, 2
|
237 |
+
|
238 |
+
N_CTX = k.shape[2]
|
239 |
+
PAST_LEN = N_CTX - q.shape[2]
|
240 |
+
|
241 |
+
|
242 |
+
H = q.shape[1]
|
243 |
+
|
244 |
+
_fwd_kernel[grid](
|
245 |
+
q, k, v, sm_scale,
|
246 |
+
block_sparse_mask,
|
247 |
+
o,
|
248 |
+
*q.stride(),
|
249 |
+
*k.stride(),
|
250 |
+
*v.stride(),
|
251 |
+
*block_sparse_mask.stride(),
|
252 |
+
*o.stride(),
|
253 |
+
H, N_CTX,
|
254 |
+
PAST_LEN,
|
255 |
+
BLOCK_M,
|
256 |
+
BLOCK_N,
|
257 |
+
BLOCK_DMODEL,
|
258 |
+
num_warps=num_warps,
|
259 |
+
num_stages=num_stages,
|
260 |
+
)
|
261 |
+
|
262 |
+
return o
|
263 |
+
|
264 |
+
|
265 |
+
|
266 |
+
|
267 |
+
class _sparse_attention(torch.autograd.Function):
|
268 |
+
|
269 |
+
@staticmethod
|
270 |
+
def forward(ctx, q, k, v, block_sparse_dense, sm_scale):
|
271 |
+
# shape constraints
|
272 |
+
return _forward(ctx, q, k, v, block_sparse_dense, sm_scale)
|
273 |
+
|
274 |
+
@staticmethod
|
275 |
+
def backward(ctx, do):
|
276 |
+
# No gradient propagation.
|
277 |
+
raise NotImplementedError("It does not support gradient propagation yet")
|
278 |
+
return None, None, None, None, None
|
279 |
+
|
280 |
+
def sparse_attention_factory(BLOCK_M=64, BLOCK_N=64, **kwargs):
|
281 |
+
class _sparse_attention_config(_sparse_attention):
|
282 |
+
@staticmethod
|
283 |
+
def forward(ctx, q, k, v, block_sparse_dense, sm_scale):
|
284 |
+
# shape constraints
|
285 |
+
return _forward(ctx, q, k, v, block_sparse_dense, sm_scale, BLOCK_M, BLOCK_N,
|
286 |
+
**kwargs
|
287 |
+
)
|
288 |
+
return _sparse_attention_config.apply
|
289 |
+
|
290 |
+
block_sparse_triton_fn = _sparse_attention.apply
|
291 |
+
|
292 |
+
|
293 |
+
|
294 |
+
def test_topk_sparse_attention():
|
295 |
+
# Config
|
296 |
+
BATCH, N_HEADS, SEQ_LEN, D_HEAD = 2, 4, 256, 64
|
297 |
+
TOPK = 2 # Keep top 8 elements per row
|
298 |
+
BLOCK = 64
|
299 |
+
torch.manual_seed(0)
|
300 |
+
|
301 |
+
# Create inputs
|
302 |
+
q = torch.randn(BATCH, N_HEADS, SEQ_LEN, D_HEAD, device='cuda', dtype=torch.bfloat16)
|
303 |
+
k = torch.randn(BATCH, N_HEADS, SEQ_LEN, D_HEAD, device='cuda', dtype=torch.bfloat16)
|
304 |
+
v = torch.randn(BATCH, N_HEADS, SEQ_LEN, D_HEAD, device='cuda', dtype=torch.bfloat16)
|
305 |
+
sm_scale = 1.0 / (D_HEAD ** 0.5)
|
306 |
+
|
307 |
+
# Create sparse mask (downsampled to block level)
|
308 |
+
downsample_factor = BLOCK
|
309 |
+
downsample_len = math.ceil(SEQ_LEN / downsample_factor)
|
310 |
+
x_ds = torch.randn([BATCH, N_HEADS, downsample_len, downsample_len], device='cuda', dtype=torch.bfloat16)
|
311 |
+
x_ds[:,:,:,0] = 100
|
312 |
+
block_mask = get_sparse_attn_mask_from_topk(x_ds, topk=TOPK)
|
313 |
+
|
314 |
+
# Run Triton kernel
|
315 |
+
triton_output = block_sparse_triton_fn(
|
316 |
+
q, k, v,
|
317 |
+
block_mask,
|
318 |
+
sm_scale
|
319 |
+
)
|
320 |
+
|
321 |
+
# Compute reference
|
322 |
+
# Expand block mask to full attention matrix
|
323 |
+
full_mask = torch.kron(block_mask.float(),
|
324 |
+
torch.ones(BLOCK, BLOCK, device='cuda'))
|
325 |
+
full_mask = full_mask[..., :SEQ_LEN, :SEQ_LEN].bool()
|
326 |
+
full_mask = full_mask & torch.tril(torch.ones_like(full_mask)) # Apply causal
|
327 |
+
|
328 |
+
# PyTorch reference implementation
|
329 |
+
attn = torch.einsum('bhsd,bhtd->bhst', q, k) * sm_scale
|
330 |
+
attn = attn.masked_fill(~full_mask, float('-inf'))
|
331 |
+
attn = F.softmax(attn, dim=-1)
|
332 |
+
ref_output = torch.einsum('bhst,bhtd->bhsd', attn, v)
|
333 |
+
|
334 |
+
|
335 |
+
# Verify accuracy
|
336 |
+
assert torch.allclose(triton_output, ref_output, atol=1e-2, rtol=1e-2), \
|
337 |
+
"Triton output doesn't match reference"
|
338 |
+
print("Pass topk sparse attention test with qlen == klen")
|
339 |
+
|
340 |
+
|
341 |
+
|
342 |
+
def test_topk_sparse_attention_qlt_kl():
|
343 |
+
BATCH, N_HEADS = 2, 4
|
344 |
+
Q_LEN, K_LEN, D_HEAD = 128, 256, 64 # qlen < klen; here, past_len = 256 - 128 = 128.
|
345 |
+
TOPK = 1
|
346 |
+
BLOCK = 64 # block size used in downsampling
|
347 |
+
torch.manual_seed(0)
|
348 |
+
|
349 |
+
# Create inputs.
|
350 |
+
q = torch.randn(BATCH, N_HEADS, Q_LEN, D_HEAD, device='cuda', dtype=torch.bfloat16)
|
351 |
+
k = torch.randn(BATCH, N_HEADS, K_LEN, D_HEAD, device='cuda', dtype=torch.bfloat16)
|
352 |
+
v = torch.randn(BATCH, N_HEADS, K_LEN, D_HEAD, device='cuda', dtype=torch.bfloat16)
|
353 |
+
sm_scale = 1.0 / (D_HEAD ** 0.5)
|
354 |
+
|
355 |
+
downsample_factor = BLOCK
|
356 |
+
downsample_len = math.ceil(K_LEN / downsample_factor) # number of blocks along one dimension
|
357 |
+
x_ds = torch.randn(BATCH, N_HEADS, downsample_len, downsample_len,
|
358 |
+
device='cuda', dtype=torch.bfloat16)
|
359 |
+
# Force the first column to be high so that the first block is always selected.
|
360 |
+
x_ds[:, :, :, 0] = 100
|
361 |
+
block_mask = get_sparse_attn_mask_from_topk(x_ds, topk=TOPK)
|
362 |
+
|
363 |
+
# Run Triton kernel.
|
364 |
+
triton_output = block_sparse_triton_fn(q, k, v, block_mask, sm_scale)
|
365 |
+
|
366 |
+
past_len = K_LEN - Q_LEN
|
367 |
+
|
368 |
+
attn = torch.einsum('bhsd,bhtd->bhst', q, k) * sm_scale
|
369 |
+
|
370 |
+
full_mask_full = torch.kron(block_mask.float(), torch.ones(BLOCK, BLOCK, device='cuda')).bool()
|
371 |
+
full_mask_full = full_mask_full[..., :K_LEN, :K_LEN]
|
372 |
+
|
373 |
+
effective_mask = full_mask_full[..., past_len:K_LEN, :] # shape: (B, H, Q_LEN, K_LEN)
|
374 |
+
|
375 |
+
|
376 |
+
i_global = torch.arange(past_len, K_LEN, device=k.device).unsqueeze(1) # shape: (Q_LEN, 1)
|
377 |
+
j_global = torch.arange(K_LEN, device=k.device).unsqueeze(0) # shape: (1, K_LEN)
|
378 |
+
causal_mask = (j_global <= i_global) # shape: (Q_LEN, K_LEN)
|
379 |
+
|
380 |
+
final_mask = effective_mask & causal_mask # shape: (B, H, Q_LEN, K_LEN)
|
381 |
+
|
382 |
+
attn = attn.masked_fill(~final_mask, float('-inf'))
|
383 |
+
attn = F.softmax(attn, dim=-1)
|
384 |
+
ref_output = torch.einsum('bhst,bhtd->bhsd', attn, v)
|
385 |
+
|
386 |
+
# Verify accuracy.
|
387 |
+
assert torch.allclose(triton_output, ref_output, atol=1e-2, rtol=1e-2), \
|
388 |
+
"Triton output doesn't match reference when qlen < klen"
|
389 |
+
|
390 |
+
print("Pass topk sparse attention test with qlen < klen")
|
391 |
+
|
392 |
+
|
393 |
+
if __name__ == "__main__":
|
394 |
+
test_topk_sparse_attention()
|
395 |
+
test_topk_sparse_attention_qlt_kl()
|
config.json
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "SeerAttention/SeerAttention-Llama-3.1-8B",
|
3 |
+
"architectures": [
|
4 |
+
"SeerAttnLlamaForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_bias": false,
|
7 |
+
"attention_dropout": 0.0,
|
8 |
+
"bos_token_id": 128000,
|
9 |
+
"eos_token_id": [
|
10 |
+
128001,
|
11 |
+
128008,
|
12 |
+
128009
|
13 |
+
],
|
14 |
+
"hidden_act": "silu",
|
15 |
+
"hidden_size": 4096,
|
16 |
+
"initializer_range": 0.02,
|
17 |
+
"intermediate_size": 14336,
|
18 |
+
"max_position_embeddings": 131072,
|
19 |
+
"mlp_bias": false,
|
20 |
+
"model_type": "llama",
|
21 |
+
"num_attention_heads": 32,
|
22 |
+
"num_hidden_layers": 32,
|
23 |
+
"num_key_value_heads": 8,
|
24 |
+
"pretraining_tp": 1,
|
25 |
+
"rms_norm_eps": 1e-05,
|
26 |
+
"rope_scaling": {
|
27 |
+
"factor": 8.0,
|
28 |
+
"high_freq_factor": 4.0,
|
29 |
+
"low_freq_factor": 1.0,
|
30 |
+
"original_max_position_embeddings": 8192,
|
31 |
+
"rope_type": "llama3"
|
32 |
+
},
|
33 |
+
"rope_theta": 500000.0,
|
34 |
+
"seerattn_gate_block_size": 64,
|
35 |
+
"seerattn_gate_hidden_size": 128,
|
36 |
+
"seerattn_gate_type": "Qavg_Kmaxminavg",
|
37 |
+
"tie_word_embeddings": false,
|
38 |
+
"torch_dtype": "bfloat16",
|
39 |
+
"transformers_version": "4.44.2",
|
40 |
+
"use_cache": true,
|
41 |
+
"vocab_size": 128258
|
42 |
+
}
|
configuration_llama_seerattn.py
ADDED
@@ -0,0 +1,236 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Modified from hf transformers
|
2 |
+
"""LLaMA model configuration"""
|
3 |
+
|
4 |
+
from transformers.configuration_utils import PretrainedConfig
|
5 |
+
from transformers.modeling_rope_utils import rope_config_validation
|
6 |
+
|
7 |
+
|
8 |
+
class SeerAttnLlamaConfig(PretrainedConfig):
|
9 |
+
r"""
|
10 |
+
This is the configuration class to store the configuration of a [`LlamaModel`]. It is used to instantiate an LLaMA
|
11 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
12 |
+
defaults will yield a similar configuration to that of the LLaMA-7B.
|
13 |
+
|
14 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
15 |
+
documentation from [`PretrainedConfig`] for more information.
|
16 |
+
|
17 |
+
|
18 |
+
Args:
|
19 |
+
vocab_size (`int`, *optional*, defaults to 32000):
|
20 |
+
Vocabulary size of the LLaMA model. Defines the number of different tokens that can be represented by the
|
21 |
+
`inputs_ids` passed when calling [`LlamaModel`]
|
22 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
23 |
+
Dimension of the hidden representations.
|
24 |
+
intermediate_size (`int`, *optional*, defaults to 11008):
|
25 |
+
Dimension of the MLP representations.
|
26 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
27 |
+
Number of hidden layers in the Transformer decoder.
|
28 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
29 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
30 |
+
num_key_value_heads (`int`, *optional*):
|
31 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
32 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
33 |
+
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
34 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
35 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
36 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
37 |
+
`num_attention_heads`.
|
38 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
39 |
+
The non-linear activation function (function or string) in the decoder.
|
40 |
+
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
41 |
+
The maximum sequence length that this model might ever be used with. Llama 1 supports up to 2048 tokens,
|
42 |
+
Llama 2 up to 4096, CodeLlama up to 16384.
|
43 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
44 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
45 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
46 |
+
The epsilon used by the rms normalization layers.
|
47 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
48 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
49 |
+
relevant if `config.is_decoder=True`.
|
50 |
+
pad_token_id (`int`, *optional*):
|
51 |
+
Padding token id.
|
52 |
+
bos_token_id (`int`, *optional*, defaults to 1):
|
53 |
+
Beginning of stream token id.
|
54 |
+
eos_token_id (`int`, *optional*, defaults to 2):
|
55 |
+
End of stream token id.
|
56 |
+
pretraining_tp (`int`, *optional*, defaults to 1):
|
57 |
+
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
|
58 |
+
document](https://huggingface.co/docs/transformers/main/perf_train_gpu_many#tensor-parallelism) to
|
59 |
+
understand more about it. This value is necessary to ensure exact reproducibility of the pretraining
|
60 |
+
results. Please refer to [this issue](https://github.com/pytorch/pytorch/issues/76232).
|
61 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
62 |
+
Whether to tie weight embeddings
|
63 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
64 |
+
The base period of the RoPE embeddings.
|
65 |
+
rope_scaling (`Dict`, *optional*):
|
66 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
|
67 |
+
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
|
68 |
+
accordingly.
|
69 |
+
Expected contents:
|
70 |
+
`rope_type` (`str`):
|
71 |
+
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
|
72 |
+
'llama3'], with 'default' being the original RoPE implementation.
|
73 |
+
`factor` (`float`, *optional*):
|
74 |
+
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
|
75 |
+
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
|
76 |
+
original maximum pre-trained length.
|
77 |
+
`original_max_position_embeddings` (`int`, *optional*):
|
78 |
+
Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
|
79 |
+
pretraining.
|
80 |
+
`attention_factor` (`float`, *optional*):
|
81 |
+
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
|
82 |
+
computation. If unspecified, it defaults to value recommended by the implementation, using the
|
83 |
+
`factor` field to infer the suggested value.
|
84 |
+
`beta_fast` (`float`, *optional*):
|
85 |
+
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
|
86 |
+
ramp function. If unspecified, it defaults to 32.
|
87 |
+
`beta_slow` (`float`, *optional*):
|
88 |
+
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
|
89 |
+
ramp function. If unspecified, it defaults to 1.
|
90 |
+
`short_factor` (`List[float]`, *optional*):
|
91 |
+
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
|
92 |
+
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
|
93 |
+
size divided by the number of attention heads divided by 2
|
94 |
+
`long_factor` (`List[float]`, *optional*):
|
95 |
+
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
|
96 |
+
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
|
97 |
+
size divided by the number of attention heads divided by 2
|
98 |
+
`low_freq_factor` (`float`, *optional*):
|
99 |
+
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
|
100 |
+
`high_freq_factor` (`float`, *optional*):
|
101 |
+
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
|
102 |
+
attention_bias (`bool`, *optional*, defaults to `False`):
|
103 |
+
Whether to use a bias in the query, key, value and output projection layers during self-attention.
|
104 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
105 |
+
The dropout ratio for the attention probabilities.
|
106 |
+
mlp_bias (`bool`, *optional*, defaults to `False`):
|
107 |
+
Whether to use a bias in up_proj, down_proj and gate_proj layers in the MLP layers.
|
108 |
+
head_dim (`int`, *optional*):
|
109 |
+
The attention head dimension. If None, it will default to hidden_size // num_heads
|
110 |
+
seerattn_apply_stage (`str`, *optional*, defaults to 'post_training'):
|
111 |
+
The stage to apply the SeerAttention. Can be one of ['post_training', 'fine_tuning', 'pre_training'].
|
112 |
+
'post_training' means applying SeerAttention after training, only gate is trained/learned with mask_loss to predict attention mask.
|
113 |
+
'fine_tuning' means applying SeerAttention during fine-tuning ((long context extension)), both gate and attention weights are trained/learned with both mask_loss and tok_loss (currently, tok_loss can not backpropogate seerattn_gate).
|
114 |
+
'pre_training' means applying SeerAttention during pre-training, both gate and attention weights are trained/learned with only tok_loss.
|
115 |
+
seerattn_sparsity_method (`str`, *optional*, defaults to 'threshold'):
|
116 |
+
Sparsity method used in gate. 'threshold' or 'nz_ratio'.
|
117 |
+
seerattn_threshold (`float`, *optional*, defaults to 2e-3):
|
118 |
+
The threhold to mask out attention weight if using "threshold" as sparsity method.
|
119 |
+
seerattn_nz_ratio (`float`, *optional*, defaults to 1.0):
|
120 |
+
The ratio of non-zero attention weights uf using "nz_ratio" as sparsity method. topk for each row in attention weight.
|
121 |
+
seerattn_gate_type (`str`, *optional*, defaults to 'Qavg_Kmaxmin'):
|
122 |
+
The pooling method for the attention gate. Can be one of ['Qmax_Kmax', 'Qmax_Kmin', 'Qmax_Kavg',...]
|
123 |
+
seerattn_gate_block_size (`int`, *optional*, defaults to 64):
|
124 |
+
The block size for the gate.
|
125 |
+
seerattn_gate_hidden_size (`int`, *optional*, defaults to 128):
|
126 |
+
The hidden size for the gate.
|
127 |
+
seerattn_last_block_dense (`bool`, *optional*, defaults to True):
|
128 |
+
Use dense attention for the last 2 row of blocks (Usually the question of prompt).
|
129 |
+
```python
|
130 |
+
>>> from transformers import LlamaModel, LlamaConfig
|
131 |
+
|
132 |
+
>>> # Initializing a LLaMA llama-7b style configuration
|
133 |
+
>>> configuration = LlamaConfig()
|
134 |
+
|
135 |
+
>>> # Initializing a model from the llama-7b style configuration
|
136 |
+
>>> model = LlamaModel(configuration)
|
137 |
+
|
138 |
+
>>> # Accessing the model configuration
|
139 |
+
>>> configuration = model.config
|
140 |
+
```"""
|
141 |
+
|
142 |
+
model_type = "llama"
|
143 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
144 |
+
# Default tensor parallel plan for base model `LlamaModel`
|
145 |
+
base_model_tp_plan = {
|
146 |
+
"layers.*.self_attn.q_proj": "colwise",
|
147 |
+
"layers.*.self_attn.k_proj": "colwise",
|
148 |
+
"layers.*.self_attn.v_proj": "colwise",
|
149 |
+
"layers.*.self_attn.o_proj": "rowwise",
|
150 |
+
"layers.*.mlp.gate_proj": "colwise",
|
151 |
+
"layers.*.mlp.up_proj": "colwise",
|
152 |
+
"layers.*.mlp.down_proj": "rowwise",
|
153 |
+
}
|
154 |
+
|
155 |
+
def __init__(
|
156 |
+
self,
|
157 |
+
vocab_size=32000,
|
158 |
+
hidden_size=4096,
|
159 |
+
intermediate_size=11008,
|
160 |
+
num_hidden_layers=32,
|
161 |
+
num_attention_heads=32,
|
162 |
+
num_key_value_heads=None,
|
163 |
+
hidden_act="silu",
|
164 |
+
max_position_embeddings=2048,
|
165 |
+
initializer_range=0.02,
|
166 |
+
rms_norm_eps=1e-6,
|
167 |
+
use_cache=True,
|
168 |
+
pad_token_id=None,
|
169 |
+
bos_token_id=1,
|
170 |
+
eos_token_id=2,
|
171 |
+
pretraining_tp=1,
|
172 |
+
tie_word_embeddings=False,
|
173 |
+
rope_theta=10000.0,
|
174 |
+
rope_scaling=None,
|
175 |
+
attention_bias=False,
|
176 |
+
attention_dropout=0.0,
|
177 |
+
mlp_bias=False,
|
178 |
+
head_dim=None,
|
179 |
+
seerattn_sparsity_method='threshold', ## or nz_ratio
|
180 |
+
seerattn_threshold=0.0,
|
181 |
+
seerattn_nz_ratio=1.0,
|
182 |
+
seerattn_gate_type='Qavg_Kmaxminavg',
|
183 |
+
seerattn_gate_block_size=64,
|
184 |
+
seerattn_gate_hidden_size=128,
|
185 |
+
seerattn_last_block_dense=True,
|
186 |
+
**kwargs,
|
187 |
+
):
|
188 |
+
self.vocab_size = vocab_size
|
189 |
+
self.max_position_embeddings = max_position_embeddings
|
190 |
+
self.hidden_size = hidden_size
|
191 |
+
self.intermediate_size = intermediate_size
|
192 |
+
self.num_hidden_layers = num_hidden_layers
|
193 |
+
self.num_attention_heads = num_attention_heads
|
194 |
+
|
195 |
+
# for backward compatibility
|
196 |
+
if num_key_value_heads is None:
|
197 |
+
num_key_value_heads = num_attention_heads
|
198 |
+
|
199 |
+
self.num_key_value_heads = num_key_value_heads
|
200 |
+
self.hidden_act = hidden_act
|
201 |
+
self.initializer_range = initializer_range
|
202 |
+
self.rms_norm_eps = rms_norm_eps
|
203 |
+
self.pretraining_tp = pretraining_tp
|
204 |
+
self.use_cache = use_cache
|
205 |
+
self.rope_theta = rope_theta
|
206 |
+
self.rope_scaling = rope_scaling
|
207 |
+
self.attention_bias = attention_bias
|
208 |
+
self.attention_dropout = attention_dropout
|
209 |
+
self.mlp_bias = mlp_bias
|
210 |
+
self.head_dim = head_dim if head_dim is not None else self.hidden_size // self.num_attention_heads
|
211 |
+
# Validate the correctness of rotary position embeddings parameters
|
212 |
+
# BC: if there is a 'type' field, copy it it to 'rope_type'.
|
213 |
+
|
214 |
+
self.seerattn_sparsity_method = seerattn_sparsity_method
|
215 |
+
self.seerattn_threshold = seerattn_threshold
|
216 |
+
self.seerattn_nz_ratio = seerattn_nz_ratio
|
217 |
+
self.seerattn_gate_type = seerattn_gate_type
|
218 |
+
self.seerattn_gate_block_size = seerattn_gate_block_size
|
219 |
+
self.seerattn_gate_hidden_size = seerattn_gate_hidden_size
|
220 |
+
self.seerattn_last_block_dense = seerattn_last_block_dense
|
221 |
+
|
222 |
+
assert self.seerattn_sparsity_method in ['threshold', 'nz_ratio']
|
223 |
+
|
224 |
+
#assert for each stage,type
|
225 |
+
|
226 |
+
if self.rope_scaling is not None and "type" in self.rope_scaling:
|
227 |
+
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
|
228 |
+
rope_config_validation(self)
|
229 |
+
|
230 |
+
super().__init__(
|
231 |
+
pad_token_id=pad_token_id,
|
232 |
+
bos_token_id=bos_token_id,
|
233 |
+
eos_token_id=eos_token_id,
|
234 |
+
tie_word_embeddings=tie_word_embeddings,
|
235 |
+
**kwargs,
|
236 |
+
)
|
model-00001-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:74200700660dd0f5524fba75534e9dd68fd4d825ea2a52ebf0e254ced1f5746c
|
3 |
+
size 4887570576
|
model-00002-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8420949ada36e85940885be2f2591f3b59bbfc7a3bb3e3096df0d2141cf847e2
|
3 |
+
size 4992480552
|
model-00003-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:734407e32bfbc5320aaee6e0354b5b1497bb1dfab2c2458a6760a0366dfb0a99
|
3 |
+
size 4995609816
|
model-00004-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4e6ab9eec2c90d2a824769e5112c235c9d99c4e794aa914716658ba065730dee
|
3 |
+
size 1285595816
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,330 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 16161218560
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00004-of-00004.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00004.safetensors",
|
8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
13 |
+
"model.layers.0.self_attn.attn_gate.mask_linear_k.weight": "model-00001-of-00004.safetensors",
|
14 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
15 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
16 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
17 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
18 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
19 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
20 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
21 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
22 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
23 |
+
"model.layers.1.self_attn.attn_gate.mask_linear_k.weight": "model-00001-of-00004.safetensors",
|
24 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
25 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
26 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
27 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
28 |
+
"model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
29 |
+
"model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
30 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
31 |
+
"model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
32 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
33 |
+
"model.layers.10.self_attn.attn_gate.mask_linear_k.weight": "model-00002-of-00004.safetensors",
|
34 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
35 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
36 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
37 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
38 |
+
"model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
39 |
+
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
40 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
41 |
+
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
42 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
43 |
+
"model.layers.11.self_attn.attn_gate.mask_linear_k.weight": "model-00002-of-00004.safetensors",
|
44 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
45 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
46 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
47 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
48 |
+
"model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
49 |
+
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
50 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
51 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
52 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
53 |
+
"model.layers.12.self_attn.attn_gate.mask_linear_k.weight": "model-00002-of-00004.safetensors",
|
54 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
55 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
56 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
57 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
58 |
+
"model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
59 |
+
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
60 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
61 |
+
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
62 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
63 |
+
"model.layers.13.self_attn.attn_gate.mask_linear_k.weight": "model-00002-of-00004.safetensors",
|
64 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
65 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
66 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
67 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
68 |
+
"model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
69 |
+
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
70 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
71 |
+
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
72 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
73 |
+
"model.layers.14.self_attn.attn_gate.mask_linear_k.weight": "model-00002-of-00004.safetensors",
|
74 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
75 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
76 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
77 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
78 |
+
"model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
79 |
+
"model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
80 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
81 |
+
"model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
82 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
83 |
+
"model.layers.15.self_attn.attn_gate.mask_linear_k.weight": "model-00002-of-00004.safetensors",
|
84 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
85 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
86 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
87 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
88 |
+
"model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
89 |
+
"model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
90 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
91 |
+
"model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
92 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
93 |
+
"model.layers.16.self_attn.attn_gate.mask_linear_k.weight": "model-00002-of-00004.safetensors",
|
94 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
95 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
96 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
97 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
98 |
+
"model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
99 |
+
"model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
100 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
101 |
+
"model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
102 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
103 |
+
"model.layers.17.self_attn.attn_gate.mask_linear_k.weight": "model-00002-of-00004.safetensors",
|
104 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
105 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
106 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
107 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
108 |
+
"model.layers.18.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
109 |
+
"model.layers.18.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
110 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
111 |
+
"model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
112 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
113 |
+
"model.layers.18.self_attn.attn_gate.mask_linear_k.weight": "model-00002-of-00004.safetensors",
|
114 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
115 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
116 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
117 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
118 |
+
"model.layers.19.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
119 |
+
"model.layers.19.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
120 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
121 |
+
"model.layers.19.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
122 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
123 |
+
"model.layers.19.self_attn.attn_gate.mask_linear_k.weight": "model-00002-of-00004.safetensors",
|
124 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
125 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
126 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
127 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
128 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
129 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
130 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
131 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
132 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
133 |
+
"model.layers.2.self_attn.attn_gate.mask_linear_k.weight": "model-00001-of-00004.safetensors",
|
134 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
135 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
136 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
137 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
138 |
+
"model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
139 |
+
"model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
140 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
141 |
+
"model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
142 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
143 |
+
"model.layers.20.self_attn.attn_gate.mask_linear_k.weight": "model-00003-of-00004.safetensors",
|
144 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
145 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
146 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
147 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
148 |
+
"model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
149 |
+
"model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
150 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
151 |
+
"model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
152 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
153 |
+
"model.layers.21.self_attn.attn_gate.mask_linear_k.weight": "model-00003-of-00004.safetensors",
|
154 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
155 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
156 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
157 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
158 |
+
"model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
159 |
+
"model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
160 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
161 |
+
"model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
162 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
163 |
+
"model.layers.22.self_attn.attn_gate.mask_linear_k.weight": "model-00003-of-00004.safetensors",
|
164 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
165 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
166 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
167 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
168 |
+
"model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
169 |
+
"model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
170 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
171 |
+
"model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
172 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
173 |
+
"model.layers.23.self_attn.attn_gate.mask_linear_k.weight": "model-00003-of-00004.safetensors",
|
174 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
175 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
176 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
177 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
178 |
+
"model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
179 |
+
"model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
180 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
181 |
+
"model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
182 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
183 |
+
"model.layers.24.self_attn.attn_gate.mask_linear_k.weight": "model-00003-of-00004.safetensors",
|
184 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
185 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
186 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
187 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
188 |
+
"model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
189 |
+
"model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
190 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
191 |
+
"model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
192 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
193 |
+
"model.layers.25.self_attn.attn_gate.mask_linear_k.weight": "model-00003-of-00004.safetensors",
|
194 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
195 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
196 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
197 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
198 |
+
"model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
199 |
+
"model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
200 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
201 |
+
"model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
202 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
203 |
+
"model.layers.26.self_attn.attn_gate.mask_linear_k.weight": "model-00003-of-00004.safetensors",
|
204 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
205 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
206 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
207 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
208 |
+
"model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
209 |
+
"model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
210 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
211 |
+
"model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
212 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
213 |
+
"model.layers.27.self_attn.attn_gate.mask_linear_k.weight": "model-00003-of-00004.safetensors",
|
214 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
215 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
216 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
217 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
218 |
+
"model.layers.28.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
219 |
+
"model.layers.28.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
220 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
221 |
+
"model.layers.28.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
222 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
223 |
+
"model.layers.28.self_attn.attn_gate.mask_linear_k.weight": "model-00003-of-00004.safetensors",
|
224 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
225 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
226 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
227 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
228 |
+
"model.layers.29.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
229 |
+
"model.layers.29.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
230 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
231 |
+
"model.layers.29.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
232 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
233 |
+
"model.layers.29.self_attn.attn_gate.mask_linear_k.weight": "model-00003-of-00004.safetensors",
|
234 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
235 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
236 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
237 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
238 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
239 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
240 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
241 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
242 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
243 |
+
"model.layers.3.self_attn.attn_gate.mask_linear_k.weight": "model-00001-of-00004.safetensors",
|
244 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
245 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
246 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
247 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
248 |
+
"model.layers.30.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
249 |
+
"model.layers.30.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
250 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
251 |
+
"model.layers.30.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
252 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
253 |
+
"model.layers.30.self_attn.attn_gate.mask_linear_k.weight": "model-00003-of-00004.safetensors",
|
254 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
255 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
256 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
257 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
258 |
+
"model.layers.31.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
259 |
+
"model.layers.31.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
260 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
261 |
+
"model.layers.31.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
262 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
263 |
+
"model.layers.31.self_attn.attn_gate.mask_linear_k.weight": "model-00003-of-00004.safetensors",
|
264 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
265 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
266 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
267 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
268 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
269 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
270 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
271 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
272 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
273 |
+
"model.layers.4.self_attn.attn_gate.mask_linear_k.weight": "model-00001-of-00004.safetensors",
|
274 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
275 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
276 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
277 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
278 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
279 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
280 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
281 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
282 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
283 |
+
"model.layers.5.self_attn.attn_gate.mask_linear_k.weight": "model-00001-of-00004.safetensors",
|
284 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
285 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
286 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
287 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
288 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
289 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
290 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
291 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
292 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
293 |
+
"model.layers.6.self_attn.attn_gate.mask_linear_k.weight": "model-00001-of-00004.safetensors",
|
294 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
295 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
296 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
297 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
298 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
299 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
300 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
301 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
302 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
303 |
+
"model.layers.7.self_attn.attn_gate.mask_linear_k.weight": "model-00001-of-00004.safetensors",
|
304 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
305 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
306 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
307 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
308 |
+
"model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
309 |
+
"model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
310 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
311 |
+
"model.layers.8.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
312 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
313 |
+
"model.layers.8.self_attn.attn_gate.mask_linear_k.weight": "model-00001-of-00004.safetensors",
|
314 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
315 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
316 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
317 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
318 |
+
"model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
319 |
+
"model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
320 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
321 |
+
"model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
322 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
323 |
+
"model.layers.9.self_attn.attn_gate.mask_linear_k.weight": "model-00002-of-00004.safetensors",
|
324 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
325 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
326 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
327 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
328 |
+
"model.norm.weight": "model-00004-of-00004.safetensors"
|
329 |
+
}
|
330 |
+
}
|
modeling_llama_seerattn.py
ADDED
@@ -0,0 +1,1199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
5 |
+
# and OPT implementations in this library. It has been modified from its
|
6 |
+
# original forms to accommodate minor architectural differences compared
|
7 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
|
21 |
+
# Modified by Yizhao Gao from huggingface llama implementation
|
22 |
+
|
23 |
+
from typing import Callable, List, Optional, Tuple, Union
|
24 |
+
|
25 |
+
import torch
|
26 |
+
import torch.utils.checkpoint
|
27 |
+
from torch import nn
|
28 |
+
import torch.nn.functional as F
|
29 |
+
from torch.nn import init
|
30 |
+
|
31 |
+
from transformers.activations import ACT2FN
|
32 |
+
from transformers.cache_utils import Cache, DynamicCache, StaticCache
|
33 |
+
from transformers.generation import GenerationMixin
|
34 |
+
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
|
35 |
+
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS
|
36 |
+
from transformers.modeling_utils import PreTrainedModel
|
37 |
+
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
|
38 |
+
from transformers.utils import (
|
39 |
+
add_code_sample_docstrings,
|
40 |
+
add_start_docstrings,
|
41 |
+
add_start_docstrings_to_model_forward,
|
42 |
+
logging,
|
43 |
+
replace_return_docstrings,
|
44 |
+
)
|
45 |
+
from .configuration_llama_seerattn import SeerAttnLlamaConfig
|
46 |
+
from .utils import BaseModelOutputWithPastAndSeer, CausalLMOutputWithPastAndSeer
|
47 |
+
from .attn_pooling_kernel import attn_with_pooling
|
48 |
+
from .block_sparse_attn import get_sparse_attn_mask_from_topk, get_sparse_attn_mask_from_threshold, sparse_attention_factory
|
49 |
+
import copy, math, os
|
50 |
+
|
51 |
+
logger = logging.get_logger(__name__)
|
52 |
+
from itertools import combinations
|
53 |
+
|
54 |
+
|
55 |
+
|
56 |
+
def min_pool2d(input, kernel_size, stride=None, padding=0, dilation=1, ceil_mode=False):
|
57 |
+
return -F.max_pool2d(-input, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, ceil_mode=ceil_mode)
|
58 |
+
|
59 |
+
|
60 |
+
|
61 |
+
class MultiHeadLinear(nn.Module):
|
62 |
+
def __init__(self, in_channel_size, hidden_size, num_head):
|
63 |
+
super(MultiHeadLinear, self).__init__()
|
64 |
+
self.in_channel = in_channel_size
|
65 |
+
self.hidden_size = hidden_size
|
66 |
+
self.num_head = num_head
|
67 |
+
self.weight = nn.Parameter(torch.Tensor(self.num_head, self.in_channel, self.hidden_size))
|
68 |
+
self._init_weight()
|
69 |
+
|
70 |
+
|
71 |
+
def _init_weight(self):
|
72 |
+
init.xavier_uniform_(self.weight)
|
73 |
+
|
74 |
+
def forward(self, x): # x shape (batch_size, head, seq_length, channel_size)
|
75 |
+
if x.shape[1] < self.num_head:
|
76 |
+
x = repeat_kv(x, self.num_head // x.shape[1])
|
77 |
+
return torch.matmul(x, self.weight) # torch.einsum('bhsi,hio->bhso', x, self.weight)
|
78 |
+
|
79 |
+
|
80 |
+
class AttnGate(nn.Module):
|
81 |
+
def __init__(self, block_size, in_channel_size, hidden_size, num_k_head, num_q_head, q_pooling_funcs, k_pooling_funcs):
|
82 |
+
super(AttnGate, self).__init__()
|
83 |
+
self.block_size = block_size
|
84 |
+
self.in_channel = in_channel_size
|
85 |
+
self.hidden_size = hidden_size
|
86 |
+
self.num_k_head = num_k_head
|
87 |
+
self.num_q_head = num_q_head
|
88 |
+
|
89 |
+
self.q_pooling_funcs = q_pooling_funcs
|
90 |
+
self.k_pooling_funcs = k_pooling_funcs
|
91 |
+
|
92 |
+
|
93 |
+
self.q_dup_size = len(q_pooling_funcs)
|
94 |
+
self.k_dup_size = len(k_pooling_funcs)
|
95 |
+
|
96 |
+
q_in_channel_size = in_channel_size * self.q_dup_size
|
97 |
+
k_in_channel_size = in_channel_size * self.k_dup_size
|
98 |
+
|
99 |
+
|
100 |
+
if self.q_dup_size > 1 or self.hidden_size != in_channel_size:
|
101 |
+
self.mask_linear_q = MultiHeadLinear(q_in_channel_size, self.hidden_size, self.num_q_head)
|
102 |
+
self.mask_linear_k = MultiHeadLinear(k_in_channel_size, self.hidden_size, self.num_k_head)
|
103 |
+
else: # Can use a single linear layer if hidden_size = in_channel_size
|
104 |
+
self.mask_linear_q = None
|
105 |
+
self.mask_linear_k = MultiHeadLinear(k_in_channel_size, self.hidden_size, self.num_q_head)
|
106 |
+
|
107 |
+
# q shape (batch_size, num_q_head, seq_length, channel_size)
|
108 |
+
# k shape (batch_size, num_k_head, seq_length, channel_size)
|
109 |
+
def forward(self, q, k, attention_mask, position_embeddings=None, use_softmax=True):
|
110 |
+
q, k, attention_mask = q.contiguous(), k.contiguous(), attention_mask.contiguous()
|
111 |
+
|
112 |
+
q_pooled = [pool_func(q, kernel_size=[self.block_size, 1], stride=[self.block_size, 1], ceil_mode=True) for pool_func in self.q_pooling_funcs]
|
113 |
+
q = torch.cat(q_pooled, dim=-1)
|
114 |
+
if self.mask_linear_q is not None:
|
115 |
+
q = self.mask_linear_q(q)
|
116 |
+
|
117 |
+
k_pooled = [pool_func(k, kernel_size=[self.block_size, 1], stride=[self.block_size, 1], ceil_mode=True) for pool_func in self.k_pooling_funcs]
|
118 |
+
k = torch.cat(k_pooled, dim=-1)
|
119 |
+
k = self.mask_linear_k(k)
|
120 |
+
|
121 |
+
if position_embeddings is not None:
|
122 |
+
cos, sin = position_embeddings
|
123 |
+
q, k = apply_rotary_pos_emb(q, k, cos, sin, unsqueeze_dim=1)
|
124 |
+
|
125 |
+
if k.shape[1] < self.num_q_head:
|
126 |
+
k = repeat_kv(k, self.num_q_head // k.shape[1])
|
127 |
+
|
128 |
+
attn = torch.matmul(q, k.transpose(-1, -2)) / torch.sqrt(torch.tensor(self.hidden_size).float())
|
129 |
+
if attention_mask.dtype == torch.bool:
|
130 |
+
attn = attn.masked_fill(~attention_mask, -1e9)
|
131 |
+
else:
|
132 |
+
attn = attn + attention_mask
|
133 |
+
if use_softmax:
|
134 |
+
attn = F.softmax(attn, dim=-1)
|
135 |
+
return attn
|
136 |
+
|
137 |
+
|
138 |
+
POOL_FUNCS = {
|
139 |
+
'max': F.max_pool2d,
|
140 |
+
'min': min_pool2d,
|
141 |
+
'avg': F.avg_pool2d
|
142 |
+
}
|
143 |
+
|
144 |
+
|
145 |
+
def _create_generic_attngate_class(base_class, suffix, q_pooling_names, k_pooling_names):
|
146 |
+
q_pooling_funcs = [POOL_FUNCS[name] for name in q_pooling_names]
|
147 |
+
k_pooling_funcs = [POOL_FUNCS[name] for name in k_pooling_names]
|
148 |
+
class_name = f"Q{''.join(q_pooling_names)}_K{''.join(k_pooling_names)}{suffix}"
|
149 |
+
|
150 |
+
class NewAttnGate(base_class):
|
151 |
+
def __init__(self, block_size, in_channel_size, hidden_size, num_k_head, num_q_head):
|
152 |
+
super(NewAttnGate, self).__init__(
|
153 |
+
block_size=block_size,
|
154 |
+
in_channel_size=in_channel_size,
|
155 |
+
hidden_size=hidden_size,
|
156 |
+
num_k_head=num_k_head,
|
157 |
+
num_q_head=num_q_head,
|
158 |
+
q_pooling_funcs=q_pooling_funcs,
|
159 |
+
k_pooling_funcs=k_pooling_funcs
|
160 |
+
)
|
161 |
+
NewAttnGate.__name__ = class_name
|
162 |
+
return class_name, NewAttnGate
|
163 |
+
|
164 |
+
|
165 |
+
def generate_combinations():
|
166 |
+
new_classes = {}
|
167 |
+
pool_types = ['max', 'min', 'avg']
|
168 |
+
|
169 |
+
for q_comb in range(1, 4):
|
170 |
+
for k_comb in range(1, 4):
|
171 |
+
for q_pooling_comb in combinations(pool_types, q_comb):
|
172 |
+
for k_pooling_comb in combinations(pool_types, k_comb):
|
173 |
+
class_name, new_class = _create_generic_attngate_class(AttnGate, '', q_pooling_comb, k_pooling_comb)
|
174 |
+
new_classes[class_name] = new_class
|
175 |
+
return new_classes
|
176 |
+
|
177 |
+
|
178 |
+
ATTNGATE_CLASSES = generate_combinations()
|
179 |
+
|
180 |
+
|
181 |
+
class LlamaRMSNorm(nn.Module):
|
182 |
+
def __init__(self, hidden_size, eps=1e-6):
|
183 |
+
"""
|
184 |
+
LlamaRMSNorm is equivalent to T5LayerNorm
|
185 |
+
"""
|
186 |
+
super().__init__()
|
187 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
188 |
+
self.variance_epsilon = eps
|
189 |
+
|
190 |
+
def forward(self, hidden_states):
|
191 |
+
input_dtype = hidden_states.dtype
|
192 |
+
hidden_states = hidden_states.to(torch.float32)
|
193 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
194 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
195 |
+
return self.weight * hidden_states.to(input_dtype)
|
196 |
+
|
197 |
+
def extra_repr(self):
|
198 |
+
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
|
199 |
+
|
200 |
+
|
201 |
+
ALL_LAYERNORM_LAYERS.append(LlamaRMSNorm)
|
202 |
+
|
203 |
+
|
204 |
+
class LlamaRotaryEmbedding(nn.Module):
|
205 |
+
def __init__(
|
206 |
+
self,
|
207 |
+
config: SeerAttnLlamaConfig,
|
208 |
+
device=None,
|
209 |
+
):
|
210 |
+
super().__init__()
|
211 |
+
self.rope_kwargs = {}
|
212 |
+
# BC: "rope_type" was originally "type"
|
213 |
+
if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
|
214 |
+
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
|
215 |
+
else:
|
216 |
+
self.rope_type = "default"
|
217 |
+
self.max_seq_len_cached = config.max_position_embeddings
|
218 |
+
self.original_max_seq_len = config.max_position_embeddings
|
219 |
+
|
220 |
+
self.config = config
|
221 |
+
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
|
222 |
+
|
223 |
+
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, **self.rope_kwargs)
|
224 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
225 |
+
self.original_inv_freq = self.inv_freq
|
226 |
+
|
227 |
+
def _dynamic_frequency_update(self, position_ids, device):
|
228 |
+
"""
|
229 |
+
dynamic RoPE layers should recompute `inv_freq` in the following situations:
|
230 |
+
1 - growing beyond the cached sequence length (allow scaling)
|
231 |
+
2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
|
232 |
+
"""
|
233 |
+
seq_len = torch.max(position_ids) + 1
|
234 |
+
if seq_len > self.max_seq_len_cached: # growth
|
235 |
+
inv_freq, self.attention_scaling = self.rope_init_fn(
|
236 |
+
self.config, device, seq_len=seq_len, **self.rope_kwargs
|
237 |
+
)
|
238 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation
|
239 |
+
self.max_seq_len_cached = seq_len
|
240 |
+
|
241 |
+
if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset
|
242 |
+
self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
|
243 |
+
self.max_seq_len_cached = self.original_max_seq_len
|
244 |
+
|
245 |
+
@torch.no_grad()
|
246 |
+
def forward(self, x, position_ids):
|
247 |
+
if "dynamic" in self.rope_type:
|
248 |
+
self._dynamic_frequency_update(position_ids, device=x.device)
|
249 |
+
|
250 |
+
# Core RoPE block
|
251 |
+
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
|
252 |
+
position_ids_expanded = position_ids[:, None, :].float()
|
253 |
+
# Force float32 (see https://github.com/huggingface/transformers/pull/29285)
|
254 |
+
device_type = x.device.type
|
255 |
+
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
|
256 |
+
with torch.autocast(device_type=device_type, enabled=False):
|
257 |
+
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
258 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
259 |
+
cos = emb.cos()
|
260 |
+
sin = emb.sin()
|
261 |
+
|
262 |
+
# Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
|
263 |
+
cos = cos * self.attention_scaling
|
264 |
+
sin = sin * self.attention_scaling
|
265 |
+
|
266 |
+
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
267 |
+
|
268 |
+
|
269 |
+
def rotate_half(x):
|
270 |
+
"""Rotates half the hidden dims of the input."""
|
271 |
+
x1 = x[..., : x.shape[-1] // 2]
|
272 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
273 |
+
return torch.cat((-x2, x1), dim=-1)
|
274 |
+
|
275 |
+
|
276 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
277 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
278 |
+
|
279 |
+
Args:
|
280 |
+
q (`torch.Tensor`): The query tensor.
|
281 |
+
k (`torch.Tensor`): The key tensor.
|
282 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
283 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
284 |
+
position_ids (`torch.Tensor`, *optional*):
|
285 |
+
Deprecated and unused.
|
286 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
287 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
288 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
289 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
290 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
291 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
292 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
293 |
+
Returns:
|
294 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
295 |
+
"""
|
296 |
+
cos = cos.unsqueeze(unsqueeze_dim)
|
297 |
+
sin = sin.unsqueeze(unsqueeze_dim)
|
298 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
299 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
300 |
+
return q_embed, k_embed
|
301 |
+
|
302 |
+
|
303 |
+
class LlamaMLP(nn.Module):
|
304 |
+
def __init__(self, config):
|
305 |
+
super().__init__()
|
306 |
+
self.config = config
|
307 |
+
self.hidden_size = config.hidden_size
|
308 |
+
self.intermediate_size = config.intermediate_size
|
309 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
|
310 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
|
311 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.mlp_bias)
|
312 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
313 |
+
|
314 |
+
def forward(self, x):
|
315 |
+
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
316 |
+
return down_proj
|
317 |
+
|
318 |
+
|
319 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
320 |
+
"""
|
321 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
322 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
323 |
+
"""
|
324 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
325 |
+
if n_rep == 1:
|
326 |
+
return hidden_states
|
327 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
328 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
329 |
+
|
330 |
+
|
331 |
+
def eager_attention_forward(
|
332 |
+
module: nn.Module,
|
333 |
+
query: torch.Tensor,
|
334 |
+
key: torch.Tensor,
|
335 |
+
value: torch.Tensor,
|
336 |
+
attention_mask: Optional[torch.Tensor],
|
337 |
+
scaling: float,
|
338 |
+
dropout: float = 0.0,
|
339 |
+
**kwargs,
|
340 |
+
):
|
341 |
+
key_states = repeat_kv(key, module.num_key_value_groups)
|
342 |
+
value_states = repeat_kv(value, module.num_key_value_groups)
|
343 |
+
|
344 |
+
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
|
345 |
+
if attention_mask is not None:
|
346 |
+
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
347 |
+
attn_weights = attn_weights + causal_mask
|
348 |
+
|
349 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
|
350 |
+
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
|
351 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
352 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
353 |
+
|
354 |
+
return attn_output, attn_weights
|
355 |
+
|
356 |
+
|
357 |
+
|
358 |
+
class LlamaSeerAttention(nn.Module):
|
359 |
+
"""SeerAttention: Learning Sparse Attention for Transformers"""
|
360 |
+
|
361 |
+
def __init__(self, config: SeerAttnLlamaConfig, layer_idx: int):
|
362 |
+
super().__init__()
|
363 |
+
self.config = config
|
364 |
+
self.layer_idx = layer_idx
|
365 |
+
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
|
366 |
+
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
|
367 |
+
self.scaling = self.head_dim**-0.5
|
368 |
+
self.attention_dropout = config.attention_dropout
|
369 |
+
self.is_causal = True
|
370 |
+
|
371 |
+
self.q_proj = nn.Linear(
|
372 |
+
config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias
|
373 |
+
)
|
374 |
+
self.k_proj = nn.Linear(
|
375 |
+
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
|
376 |
+
)
|
377 |
+
self.v_proj = nn.Linear(
|
378 |
+
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
|
379 |
+
)
|
380 |
+
self.o_proj = nn.Linear(
|
381 |
+
config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.attention_bias
|
382 |
+
)
|
383 |
+
|
384 |
+
|
385 |
+
self.attn_gate = ATTNGATE_CLASSES[config.seerattn_gate_type](
|
386 |
+
config.seerattn_gate_block_size,
|
387 |
+
self.head_dim,
|
388 |
+
config.seerattn_gate_hidden_size,
|
389 |
+
num_k_head=config.num_key_value_heads,
|
390 |
+
num_q_head=config.num_attention_heads
|
391 |
+
)
|
392 |
+
|
393 |
+
self.attn_func = sparse_attention_factory(config.seerattn_gate_block_size, config.seerattn_gate_block_size)
|
394 |
+
self.mask_loss_func = torch.nn.KLDivLoss()
|
395 |
+
self.profile_file = os.environ.get("PROFILE_FILE", None)
|
396 |
+
|
397 |
+
def forward(
|
398 |
+
self,
|
399 |
+
hidden_states: torch.Tensor,
|
400 |
+
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
|
401 |
+
attention_mask: Optional[torch.Tensor],
|
402 |
+
past_key_value: Optional[Cache] = None,
|
403 |
+
cache_position: Optional[torch.LongTensor] = None,
|
404 |
+
block_position_embeddings: Tuple[torch.Tensor, torch.Tensor] = None,
|
405 |
+
block_attention_mask: Optional[torch.Tensor] = None,
|
406 |
+
**kwargs,
|
407 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
408 |
+
input_shape = hidden_states.shape[:-1]
|
409 |
+
hidden_shape = (*input_shape, -1, self.head_dim)
|
410 |
+
|
411 |
+
query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
|
412 |
+
key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
|
413 |
+
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
|
414 |
+
|
415 |
+
q_len = query_states.shape[-2]
|
416 |
+
|
417 |
+
# get the block mask prediction from gate [before ROPE]
|
418 |
+
if q_len > 1:
|
419 |
+
use_softmax = not self.training and self.config.seerattn_sparsity_method == "threshold"
|
420 |
+
mask_gate_prediction = self.attn_gate(query_states, key_states, block_attention_mask, block_position_embeddings, use_softmax)
|
421 |
+
|
422 |
+
cos, sin = position_embeddings
|
423 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
424 |
+
|
425 |
+
if past_key_value is not None:
|
426 |
+
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
427 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
428 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
429 |
+
|
430 |
+
k_len = query_states.shape[-2]
|
431 |
+
if not self.training and q_len > 1 and q_len == k_len:
|
432 |
+
# get the sparse mask
|
433 |
+
if self.config.seerattn_sparsity_method == "nz_ratio":
|
434 |
+
downsampled_len = math.ceil(key_states.shape[-2] / self.config.seerattn_gate_block_size)
|
435 |
+
topk_nz_ratio = 1 - math.sqrt(1 - self.config.seerattn_nz_ratio)
|
436 |
+
topk = int(topk_nz_ratio * downsampled_len)
|
437 |
+
topk = 1 if topk == 0 else topk
|
438 |
+
## This attention mask actually a bool type block sparse attention
|
439 |
+
sparse_attn_mask = get_sparse_attn_mask_from_topk(mask_gate_prediction, topk, self.config.seerattn_last_block_dense)
|
440 |
+
elif self.config.seerattn_sparsity_method == "threshold":
|
441 |
+
sparse_attn_mask = get_sparse_attn_mask_from_threshold(mask_gate_prediction, self.config.seerattn_threshold, self.config.seerattn_last_block_dense)
|
442 |
+
downsampled_len = sparse_attn_mask.shape[-1]
|
443 |
+
total_causal_size = ((1 + downsampled_len) * downsampled_len / 2) * sparse_attn_mask.shape[0] * sparse_attn_mask.shape[1]
|
444 |
+
if self.profile_file is not None:
|
445 |
+
with open(self.profile_file, "a") as f:
|
446 |
+
f.write(f"{hidden_states.shape[1]}: {sparse_attn_mask.sum().item() / total_causal_size}\n")
|
447 |
+
|
448 |
+
else:
|
449 |
+
raise NotImplementedError("The sparsity method is not implemented")
|
450 |
+
|
451 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
452 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
453 |
+
|
454 |
+
query_states = query_states.contiguous()
|
455 |
+
key_states = key_states.contiguous()
|
456 |
+
value_states = value_states.contiguous()
|
457 |
+
|
458 |
+
mask_loss = 0
|
459 |
+
attn_weights = None
|
460 |
+
mask_ground_truth = None
|
461 |
+
|
462 |
+
if self.training:
|
463 |
+
# get the block (pooled) mask ground truth
|
464 |
+
attn_output, mask_ground_truth = attn_with_pooling(
|
465 |
+
query_states,
|
466 |
+
key_states,
|
467 |
+
value_states,
|
468 |
+
True,
|
469 |
+
1.0 / math.sqrt(self.head_dim),
|
470 |
+
self.config.seerattn_gate_block_size,
|
471 |
+
)
|
472 |
+
elif q_len > 1 and q_len == k_len: ## prefill inference
|
473 |
+
attn_output = self.attn_func(
|
474 |
+
query_states,
|
475 |
+
key_states,
|
476 |
+
value_states,
|
477 |
+
sparse_attn_mask,
|
478 |
+
1.0 / math.sqrt(self.head_dim),
|
479 |
+
)
|
480 |
+
else:
|
481 |
+
causal_mask = attention_mask
|
482 |
+
if attention_mask is not None:
|
483 |
+
causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]
|
484 |
+
|
485 |
+
is_causal = True if causal_mask is None and q_len > 1 else False
|
486 |
+
|
487 |
+
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
488 |
+
query_states,
|
489 |
+
key_states,
|
490 |
+
value_states,
|
491 |
+
attn_mask=causal_mask,
|
492 |
+
dropout_p=self.attention_dropout if self.training else 0.0,
|
493 |
+
is_causal=is_causal,
|
494 |
+
)
|
495 |
+
|
496 |
+
|
497 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
498 |
+
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
|
499 |
+
attn_output = self.o_proj(attn_output)
|
500 |
+
|
501 |
+
|
502 |
+
if self.training:
|
503 |
+
# remove the first quarter of the data for training stability
|
504 |
+
mask_ground_truth = mask_ground_truth[:, :, mask_ground_truth.shape[2]//4:].to(torch.float32)
|
505 |
+
mask_gate_prediction = mask_gate_prediction[:, :, mask_gate_prediction.shape[2]//4:].to(torch.float32)
|
506 |
+
mask_gate_prediction = F.log_softmax(mask_gate_prediction, dim=-1)
|
507 |
+
mask_loss = self.mask_loss_func(mask_gate_prediction, mask_ground_truth)
|
508 |
+
|
509 |
+
# In SeerAttention, output_attentions also means output mask_gate_prediction and mask_ground_truth
|
510 |
+
if not kwargs.get("output_attentions", False):
|
511 |
+
attn_weights = None
|
512 |
+
mask_gate_prediction = None
|
513 |
+
mask_ground_truth = None
|
514 |
+
return attn_output, mask_loss, attn_weights, mask_gate_prediction, mask_ground_truth
|
515 |
+
|
516 |
+
|
517 |
+
class SeerAttnLlamaDecoderLayer(nn.Module):
|
518 |
+
def __init__(self, config: SeerAttnLlamaConfig, layer_idx: int):
|
519 |
+
super().__init__()
|
520 |
+
self.hidden_size = config.hidden_size
|
521 |
+
self.self_attn = LlamaSeerAttention(config=config, layer_idx=layer_idx)
|
522 |
+
|
523 |
+
self.mlp = LlamaMLP(config)
|
524 |
+
self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
525 |
+
self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
526 |
+
|
527 |
+
def forward(
|
528 |
+
self,
|
529 |
+
hidden_states: torch.Tensor,
|
530 |
+
attention_mask: Optional[torch.Tensor] = None,
|
531 |
+
position_ids: Optional[torch.LongTensor] = None,
|
532 |
+
past_key_value: Optional[Cache] = None,
|
533 |
+
output_attentions: Optional[bool] = False,
|
534 |
+
use_cache: Optional[bool] = False,
|
535 |
+
cache_position: Optional[torch.LongTensor] = None,
|
536 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
|
537 |
+
block_position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
538 |
+
block_attention_mask: Optional[torch.Tensor] = None,
|
539 |
+
**kwargs,
|
540 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
541 |
+
residual = hidden_states
|
542 |
+
|
543 |
+
hidden_states = self.input_layernorm(hidden_states)
|
544 |
+
|
545 |
+
# Self Attention
|
546 |
+
hidden_states, seerattn_mask_loss, self_attn_weights, mask_gate_prediction, mask_ground_truth = self.self_attn(
|
547 |
+
hidden_states=hidden_states,
|
548 |
+
attention_mask=attention_mask,
|
549 |
+
position_ids=position_ids,
|
550 |
+
past_key_value=past_key_value,
|
551 |
+
output_attentions=output_attentions,
|
552 |
+
use_cache=use_cache,
|
553 |
+
cache_position=cache_position,
|
554 |
+
position_embeddings=position_embeddings,
|
555 |
+
block_position_embeddings=block_position_embeddings,
|
556 |
+
block_attention_mask=block_attention_mask,
|
557 |
+
**kwargs,
|
558 |
+
)
|
559 |
+
hidden_states = residual + hidden_states
|
560 |
+
|
561 |
+
# Fully Connected
|
562 |
+
residual = hidden_states
|
563 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
564 |
+
hidden_states = self.mlp(hidden_states)
|
565 |
+
hidden_states = residual + hidden_states
|
566 |
+
|
567 |
+
outputs = (hidden_states, seerattn_mask_loss)
|
568 |
+
if output_attentions:
|
569 |
+
outputs += (self_attn_weights, mask_gate_prediction, mask_ground_truth)
|
570 |
+
|
571 |
+
return outputs
|
572 |
+
|
573 |
+
|
574 |
+
|
575 |
+
LLAMA_START_DOCSTRING = r"""
|
576 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
577 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
578 |
+
etc.)
|
579 |
+
|
580 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
581 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
582 |
+
and behavior.
|
583 |
+
|
584 |
+
Parameters:
|
585 |
+
config ([`LlamaConfig`]):
|
586 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
587 |
+
load the weights associated with the model, only the configuration. Check out the
|
588 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
589 |
+
"""
|
590 |
+
|
591 |
+
|
592 |
+
@add_start_docstrings(
|
593 |
+
"The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
|
594 |
+
LLAMA_START_DOCSTRING,
|
595 |
+
)
|
596 |
+
class SeerAttnLlamaPreTrainedModel(PreTrainedModel):
|
597 |
+
config_class = SeerAttnLlamaConfig
|
598 |
+
base_model_prefix = "model"
|
599 |
+
supports_gradient_checkpointing = True
|
600 |
+
_no_split_modules = ["SeerAttnLlamaDecoderLayer"]
|
601 |
+
_skip_keys_device_placement = ["past_key_values"]
|
602 |
+
_supports_flash_attn_2 = True
|
603 |
+
_supports_sdpa = True
|
604 |
+
_supports_cache_class = True
|
605 |
+
_supports_quantized_cache = True
|
606 |
+
_supports_static_cache = True
|
607 |
+
|
608 |
+
def _init_weights(self, module):
|
609 |
+
std = self.config.initializer_range
|
610 |
+
if isinstance(module, nn.Linear):
|
611 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
612 |
+
if module.bias is not None:
|
613 |
+
module.bias.data.zero_()
|
614 |
+
elif isinstance(module, nn.Embedding):
|
615 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
616 |
+
if module.padding_idx is not None:
|
617 |
+
module.weight.data[module.padding_idx].zero_()
|
618 |
+
|
619 |
+
|
620 |
+
|
621 |
+
|
622 |
+
LLAMA_INPUTS_DOCSTRING = r"""
|
623 |
+
Args:
|
624 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
625 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
626 |
+
it.
|
627 |
+
|
628 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
629 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
630 |
+
|
631 |
+
[What are input IDs?](../glossary#input-ids)
|
632 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
633 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
634 |
+
|
635 |
+
- 1 for tokens that are **not masked**,
|
636 |
+
- 0 for tokens that are **masked**.
|
637 |
+
|
638 |
+
[What are attention masks?](../glossary#attention-mask)
|
639 |
+
|
640 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
641 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
642 |
+
|
643 |
+
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
|
644 |
+
`past_key_values`).
|
645 |
+
|
646 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
647 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
648 |
+
information on the default strategy.
|
649 |
+
|
650 |
+
- 1 indicates the head is **not masked**,
|
651 |
+
- 0 indicates the head is **masked**.
|
652 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
653 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
654 |
+
config.n_positions - 1]`.
|
655 |
+
|
656 |
+
[What are position IDs?](../glossary#position-ids)
|
657 |
+
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
|
658 |
+
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
659 |
+
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
660 |
+
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
661 |
+
|
662 |
+
Two formats are allowed:
|
663 |
+
- a [`~cache_utils.Cache`] instance, see our
|
664 |
+
[kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache);
|
665 |
+
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
666 |
+
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
|
667 |
+
cache format.
|
668 |
+
|
669 |
+
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
|
670 |
+
legacy cache format will be returned.
|
671 |
+
|
672 |
+
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
673 |
+
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
674 |
+
of shape `(batch_size, sequence_length)`.
|
675 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
676 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
677 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
678 |
+
model's internal embedding lookup matrix.
|
679 |
+
use_cache (`bool`, *optional*):
|
680 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
681 |
+
`past_key_values`).
|
682 |
+
output_attentions (`bool`, *optional*):
|
683 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
684 |
+
tensors for more detail.
|
685 |
+
output_hidden_states (`bool`, *optional*):
|
686 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
687 |
+
more detail.
|
688 |
+
return_dict (`bool`, *optional*):
|
689 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
690 |
+
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
691 |
+
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
|
692 |
+
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
|
693 |
+
the complete sequence length.
|
694 |
+
"""
|
695 |
+
|
696 |
+
|
697 |
+
@add_start_docstrings(
|
698 |
+
"The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
|
699 |
+
LLAMA_START_DOCSTRING,
|
700 |
+
)
|
701 |
+
class SeerAttnLlamaModel(SeerAttnLlamaPreTrainedModel):
|
702 |
+
"""
|
703 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`SeerAttnLlamaDecoderLayer`]
|
704 |
+
|
705 |
+
Args:
|
706 |
+
config: SeerAttnLlamaConfig
|
707 |
+
"""
|
708 |
+
|
709 |
+
def __init__(self, config: SeerAttnLlamaConfig):
|
710 |
+
super().__init__(config)
|
711 |
+
self.padding_idx = config.pad_token_id
|
712 |
+
self.vocab_size = config.vocab_size
|
713 |
+
|
714 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
715 |
+
self.layers = nn.ModuleList(
|
716 |
+
[SeerAttnLlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
717 |
+
)
|
718 |
+
self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
719 |
+
self.rotary_emb = LlamaRotaryEmbedding(config=config)
|
720 |
+
|
721 |
+
#Added for seerattn, block rotary embedding
|
722 |
+
block_config = copy.deepcopy(config)
|
723 |
+
block_config.hidden_size = config.seerattn_gate_hidden_size * config.num_attention_heads
|
724 |
+
self.block_rotary_emb = LlamaRotaryEmbedding(config=block_config)
|
725 |
+
|
726 |
+
self.gradient_checkpointing = False
|
727 |
+
|
728 |
+
# Initialize weights and apply final processing
|
729 |
+
self.post_init()
|
730 |
+
|
731 |
+
def get_input_embeddings(self):
|
732 |
+
return self.embed_tokens
|
733 |
+
|
734 |
+
def set_input_embeddings(self, value):
|
735 |
+
self.embed_tokens = value
|
736 |
+
|
737 |
+
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
738 |
+
def forward(
|
739 |
+
self,
|
740 |
+
input_ids: torch.LongTensor = None,
|
741 |
+
attention_mask: Optional[torch.Tensor] = None,
|
742 |
+
position_ids: Optional[torch.LongTensor] = None,
|
743 |
+
past_key_values: Optional[Cache] = None,
|
744 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
745 |
+
use_cache: Optional[bool] = None,
|
746 |
+
output_attentions: Optional[bool] = None,
|
747 |
+
output_hidden_states: Optional[bool] = None,
|
748 |
+
return_dict: Optional[bool] = None,
|
749 |
+
cache_position: Optional[torch.LongTensor] = None,
|
750 |
+
) -> Union[Tuple, BaseModelOutputWithPastAndSeer]:
|
751 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
752 |
+
output_hidden_states = (
|
753 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
754 |
+
)
|
755 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
756 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
757 |
+
|
758 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
759 |
+
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
|
760 |
+
|
761 |
+
if self.gradient_checkpointing and self.training and use_cache:
|
762 |
+
logger.warning_once(
|
763 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
|
764 |
+
)
|
765 |
+
use_cache = False
|
766 |
+
|
767 |
+
if inputs_embeds is None:
|
768 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
769 |
+
|
770 |
+
if use_cache and past_key_values is None:
|
771 |
+
past_key_values = DynamicCache()
|
772 |
+
|
773 |
+
if cache_position is None:
|
774 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
775 |
+
cache_position = torch.arange(
|
776 |
+
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
777 |
+
)
|
778 |
+
|
779 |
+
if position_ids is None:
|
780 |
+
position_ids = cache_position.unsqueeze(0)
|
781 |
+
|
782 |
+
causal_mask = self._update_causal_mask(
|
783 |
+
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
|
784 |
+
)
|
785 |
+
|
786 |
+
|
787 |
+
block_attention_mask = self._seerattn_update_causal_mask(
|
788 |
+
inputs_embeds, causal_mask,
|
789 |
+
)
|
790 |
+
|
791 |
+
hidden_states = inputs_embeds
|
792 |
+
|
793 |
+
# create position embeddings to be shared across the decoder layers
|
794 |
+
position_embeddings = self.rotary_emb(hidden_states, position_ids)
|
795 |
+
|
796 |
+
#Added for seerattn
|
797 |
+
block_position_ids = position_ids[:, 0::self.config.seerattn_gate_block_size] ## downsampled position ids
|
798 |
+
block_position_embeddings = self.block_rotary_emb(hidden_states, block_position_ids) # downsampled position embeddings
|
799 |
+
|
800 |
+
|
801 |
+
# decoder layers
|
802 |
+
all_hidden_states = () if output_hidden_states else None
|
803 |
+
all_self_attns = () if output_attentions else None
|
804 |
+
all_mask_gate_predictions = () if output_attentions else None
|
805 |
+
all_mask_ground_truths = () if output_attentions else None
|
806 |
+
|
807 |
+
# added for seerattn
|
808 |
+
total_mask_loss = 0.0
|
809 |
+
|
810 |
+
for decoder_layer in self.layers[: self.config.num_hidden_layers]:
|
811 |
+
if output_hidden_states:
|
812 |
+
all_hidden_states += (hidden_states,)
|
813 |
+
|
814 |
+
if self.gradient_checkpointing and self.training:
|
815 |
+
layer_outputs = self._gradient_checkpointing_func(
|
816 |
+
decoder_layer.__call__,
|
817 |
+
hidden_states,
|
818 |
+
causal_mask,
|
819 |
+
position_ids,
|
820 |
+
past_key_values,
|
821 |
+
output_attentions,
|
822 |
+
use_cache,
|
823 |
+
cache_position,
|
824 |
+
position_embeddings,
|
825 |
+
block_position_embeddings,
|
826 |
+
block_attention_mask,
|
827 |
+
)
|
828 |
+
else:
|
829 |
+
layer_outputs = decoder_layer(
|
830 |
+
hidden_states,
|
831 |
+
attention_mask=causal_mask,
|
832 |
+
position_ids=position_ids,
|
833 |
+
past_key_value=past_key_values,
|
834 |
+
output_attentions=output_attentions,
|
835 |
+
use_cache=use_cache,
|
836 |
+
cache_position=cache_position,
|
837 |
+
position_embeddings=position_embeddings,
|
838 |
+
block_position_embeddings=block_position_embeddings,
|
839 |
+
block_attention_mask=block_attention_mask,
|
840 |
+
)
|
841 |
+
|
842 |
+
hidden_states = layer_outputs[0]
|
843 |
+
|
844 |
+
mask_loss = layer_outputs[1]
|
845 |
+
total_mask_loss += mask_loss
|
846 |
+
|
847 |
+
if output_attentions:
|
848 |
+
all_self_attns += (layer_outputs[2],)
|
849 |
+
all_mask_gate_predictions += (layer_outputs[3],)
|
850 |
+
all_mask_ground_truths += (layer_outputs[4],)
|
851 |
+
|
852 |
+
hidden_states = self.norm(hidden_states)
|
853 |
+
|
854 |
+
# add hidden states from the last decoder layer
|
855 |
+
if output_hidden_states:
|
856 |
+
all_hidden_states += (hidden_states,)
|
857 |
+
|
858 |
+
output = BaseModelOutputWithPastAndSeer(
|
859 |
+
last_hidden_state=hidden_states,
|
860 |
+
past_key_values=past_key_values if use_cache else None,
|
861 |
+
hidden_states=all_hidden_states,
|
862 |
+
attentions=all_self_attns,
|
863 |
+
mask_gate_predictions=all_mask_gate_predictions,
|
864 |
+
mask_ground_truths=all_mask_ground_truths,
|
865 |
+
mask_loss=total_mask_loss,
|
866 |
+
)
|
867 |
+
return output if return_dict else output.to_tuple()
|
868 |
+
|
869 |
+
def _update_causal_mask(
|
870 |
+
self,
|
871 |
+
attention_mask: torch.Tensor,
|
872 |
+
input_tensor: torch.Tensor,
|
873 |
+
cache_position: torch.Tensor,
|
874 |
+
past_key_values: Cache,
|
875 |
+
output_attentions: bool,
|
876 |
+
):
|
877 |
+
if self.config._attn_implementation == "flash_attention_2":
|
878 |
+
if attention_mask is not None and (attention_mask == 0.0).any():
|
879 |
+
return attention_mask
|
880 |
+
return None
|
881 |
+
|
882 |
+
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
|
883 |
+
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
|
884 |
+
# to infer the attention mask.
|
885 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
886 |
+
using_static_cache = isinstance(past_key_values, StaticCache)
|
887 |
+
|
888 |
+
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
|
889 |
+
if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
|
890 |
+
if AttentionMaskConverter._ignore_causal_mask_sdpa(
|
891 |
+
attention_mask,
|
892 |
+
inputs_embeds=input_tensor,
|
893 |
+
past_key_values_length=past_seen_tokens,
|
894 |
+
is_training=self.training,
|
895 |
+
):
|
896 |
+
return None
|
897 |
+
|
898 |
+
dtype, device = input_tensor.dtype, input_tensor.device
|
899 |
+
sequence_length = input_tensor.shape[1]
|
900 |
+
if using_static_cache:
|
901 |
+
target_length = past_key_values.get_max_cache_shape()
|
902 |
+
else:
|
903 |
+
target_length = (
|
904 |
+
attention_mask.shape[-1]
|
905 |
+
if isinstance(attention_mask, torch.Tensor)
|
906 |
+
else past_seen_tokens + sequence_length + 1
|
907 |
+
)
|
908 |
+
|
909 |
+
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
|
910 |
+
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
|
911 |
+
attention_mask,
|
912 |
+
sequence_length=sequence_length,
|
913 |
+
target_length=target_length,
|
914 |
+
dtype=dtype,
|
915 |
+
device=device,
|
916 |
+
cache_position=cache_position,
|
917 |
+
batch_size=input_tensor.shape[0],
|
918 |
+
)
|
919 |
+
|
920 |
+
if (
|
921 |
+
self.config._attn_implementation == "sdpa"
|
922 |
+
and attention_mask is not None
|
923 |
+
and attention_mask.device.type == "cuda"
|
924 |
+
and not output_attentions
|
925 |
+
):
|
926 |
+
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
|
927 |
+
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
928 |
+
# Details: https://github.com/pytorch/pytorch/issues/110213
|
929 |
+
min_dtype = torch.finfo(dtype).min
|
930 |
+
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
|
931 |
+
|
932 |
+
return causal_mask
|
933 |
+
|
934 |
+
def _seerattn_update_causal_mask(
|
935 |
+
self,
|
936 |
+
input_tensor: torch.Tensor,
|
937 |
+
attention_mask: torch.Tensor,
|
938 |
+
):
|
939 |
+
"""
|
940 |
+
Currently our kernel only supports causal masking, which does not cover the cases when batching inputs with attention masks.
|
941 |
+
"""
|
942 |
+
|
943 |
+
def gen_attn_mask(seq_len):
|
944 |
+
attention_mask = torch.full((seq_len, seq_len), -1e20)
|
945 |
+
attention_mask = torch.triu(attention_mask, diagonal=1)
|
946 |
+
return attention_mask
|
947 |
+
|
948 |
+
def gen_attn_mask_bool(seq_len):
|
949 |
+
attention_mask = torch.full((seq_len, seq_len), True, dtype=torch.bool)
|
950 |
+
attention_mask.triu_(diagonal=1)
|
951 |
+
attention_mask.bitwise_not_()
|
952 |
+
return attention_mask
|
953 |
+
|
954 |
+
if attention_mask is not None:
|
955 |
+
gate_mask = torch.nn.functional.max_pool2d(attention_mask, (self.config.seerattn_gate_block_size, self.config.seerattn_gate_block_size), stride=(self.config.seerattn_gate_block_size, self.config.seerattn_gate_block_size), ceil_mode=True)
|
956 |
+
else:
|
957 |
+
downsample_len = math.ceil(input_tensor.shape[1] / self.config.seerattn_gate_block_size)
|
958 |
+
gate_mask = gen_attn_mask(downsample_len).to(device=input_tensor.device)
|
959 |
+
return gate_mask
|
960 |
+
|
961 |
+
@staticmethod
|
962 |
+
def _prepare_4d_causal_attention_mask_with_cache_position(
|
963 |
+
attention_mask: torch.Tensor,
|
964 |
+
sequence_length: int,
|
965 |
+
target_length: int,
|
966 |
+
dtype: torch.dtype,
|
967 |
+
device: torch.device,
|
968 |
+
cache_position: torch.Tensor,
|
969 |
+
batch_size: int,
|
970 |
+
**kwargs,
|
971 |
+
):
|
972 |
+
"""
|
973 |
+
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
|
974 |
+
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
|
975 |
+
|
976 |
+
Args:
|
977 |
+
attention_mask (`torch.Tensor`):
|
978 |
+
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
|
979 |
+
`(batch_size, 1, query_length, key_value_length)`.
|
980 |
+
sequence_length (`int`):
|
981 |
+
The sequence length being processed.
|
982 |
+
target_length (`int`):
|
983 |
+
The target length: when generating with static cache, the mask should be as long as the static cache,
|
984 |
+
to account for the 0 padding, the part of the cache that is not filled yet.
|
985 |
+
dtype (`torch.dtype`):
|
986 |
+
The dtype to use for the 4D attention mask.
|
987 |
+
device (`torch.device`):
|
988 |
+
The device to plcae the 4D attention mask on.
|
989 |
+
cache_position (`torch.Tensor`):
|
990 |
+
Indices depicting the position of the input sequence tokens in the sequence.
|
991 |
+
batch_size (`torch.Tensor`):
|
992 |
+
Batch size.
|
993 |
+
"""
|
994 |
+
if attention_mask is not None and attention_mask.dim() == 4:
|
995 |
+
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
|
996 |
+
causal_mask = attention_mask
|
997 |
+
else:
|
998 |
+
min_dtype = torch.finfo(dtype).min
|
999 |
+
causal_mask = torch.full(
|
1000 |
+
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
|
1001 |
+
)
|
1002 |
+
if sequence_length != 1:
|
1003 |
+
causal_mask = torch.triu(causal_mask, diagonal=1)
|
1004 |
+
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
|
1005 |
+
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
|
1006 |
+
if attention_mask is not None:
|
1007 |
+
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
|
1008 |
+
mask_length = attention_mask.shape[-1]
|
1009 |
+
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
|
1010 |
+
padding_mask = padding_mask == 0
|
1011 |
+
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
|
1012 |
+
padding_mask, min_dtype
|
1013 |
+
)
|
1014 |
+
|
1015 |
+
return causal_mask
|
1016 |
+
|
1017 |
+
|
1018 |
+
class SeerAttnLlamaForCausalLM(SeerAttnLlamaPreTrainedModel, GenerationMixin):
|
1019 |
+
_tied_weights_keys = ["lm_head.weight"]
|
1020 |
+
_tp_plan = {"lm_head": "colwise_rep"}
|
1021 |
+
|
1022 |
+
def __init__(self, config):
|
1023 |
+
super().__init__(config)
|
1024 |
+
self.model = SeerAttnLlamaModel(config)
|
1025 |
+
self.vocab_size = config.vocab_size
|
1026 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
1027 |
+
|
1028 |
+
# Initialize weights and apply final processing
|
1029 |
+
self.post_init()
|
1030 |
+
|
1031 |
+
def get_input_embeddings(self):
|
1032 |
+
return self.model.embed_tokens
|
1033 |
+
|
1034 |
+
def set_input_embeddings(self, value):
|
1035 |
+
self.model.embed_tokens = value
|
1036 |
+
|
1037 |
+
def get_output_embeddings(self):
|
1038 |
+
return self.lm_head
|
1039 |
+
|
1040 |
+
def set_output_embeddings(self, new_embeddings):
|
1041 |
+
self.lm_head = new_embeddings
|
1042 |
+
|
1043 |
+
def set_decoder(self, decoder):
|
1044 |
+
self.model = decoder
|
1045 |
+
|
1046 |
+
def get_decoder(self):
|
1047 |
+
return self.model
|
1048 |
+
|
1049 |
+
#@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
1050 |
+
#@replace_return_docstrings(output_type=CausalLMOutputWithPastAndSeer, config_class=_CONFIG_FOR_DOC)
|
1051 |
+
def forward(
|
1052 |
+
self,
|
1053 |
+
input_ids: torch.LongTensor = None,
|
1054 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1055 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1056 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
1057 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1058 |
+
labels: Optional[torch.LongTensor] = None,
|
1059 |
+
use_cache: Optional[bool] = None,
|
1060 |
+
output_attentions: Optional[bool] = None,
|
1061 |
+
output_hidden_states: Optional[bool] = None,
|
1062 |
+
return_dict: Optional[bool] = None,
|
1063 |
+
cache_position: Optional[torch.LongTensor] = None,
|
1064 |
+
num_logits_to_keep: int = 1,
|
1065 |
+
**kwargs,
|
1066 |
+
) -> Union[Tuple, CausalLMOutputWithPastAndSeer]:
|
1067 |
+
r"""
|
1068 |
+
Args:
|
1069 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1070 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
1071 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
1072 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
1073 |
+
|
1074 |
+
num_logits_to_keep (`int`, *optional*):
|
1075 |
+
Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
|
1076 |
+
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
|
1077 |
+
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
|
1078 |
+
|
1079 |
+
Returns:
|
1080 |
+
|
1081 |
+
Example:
|
1082 |
+
|
1083 |
+
```python
|
1084 |
+
>>> from transformers import AutoTokenizer, SeerAttnLlamaForCausalLM
|
1085 |
+
|
1086 |
+
>>> model = SeerAttnLlamaForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf")
|
1087 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf")
|
1088 |
+
|
1089 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
1090 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
1091 |
+
|
1092 |
+
>>> # Generate
|
1093 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
1094 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
1095 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
1096 |
+
```"""
|
1097 |
+
|
1098 |
+
if attention_mask!= None and torch.any(attention_mask == False):
|
1099 |
+
raise ValueError("Batched inference with Attention mask not supported yet")
|
1100 |
+
|
1101 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1102 |
+
output_hidden_states = (
|
1103 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1104 |
+
)
|
1105 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1106 |
+
|
1107 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
1108 |
+
outputs = self.model(
|
1109 |
+
input_ids=input_ids,
|
1110 |
+
attention_mask=attention_mask,
|
1111 |
+
position_ids=position_ids,
|
1112 |
+
past_key_values=past_key_values,
|
1113 |
+
inputs_embeds=inputs_embeds,
|
1114 |
+
use_cache=use_cache,
|
1115 |
+
output_attentions=output_attentions,
|
1116 |
+
output_hidden_states=output_hidden_states,
|
1117 |
+
return_dict=return_dict,
|
1118 |
+
cache_position=cache_position,
|
1119 |
+
**kwargs,
|
1120 |
+
)
|
1121 |
+
hidden_states = outputs[0]
|
1122 |
+
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
1123 |
+
logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])
|
1124 |
+
|
1125 |
+
loss = None
|
1126 |
+
if labels is not None:
|
1127 |
+
loss_fct = torch.nn.CrossEntropyLoss(reduction='sum')
|
1128 |
+
valid_seq_len = input_ids.shape[-1] - 1
|
1129 |
+
valid_seq_len_slide_win = torch.sum(labels[:, 1:] >= 0).item()
|
1130 |
+
loss = 0.0
|
1131 |
+
for start_idx in range(0, valid_seq_len, 16384):
|
1132 |
+
end_idx = min(start_idx + 16384, valid_seq_len)
|
1133 |
+
shift_logits = self.lm_head(hidden_states[..., start_idx:end_idx, :]).float()
|
1134 |
+
shift_labels = labels[..., start_idx + 1:end_idx + 1].contiguous()
|
1135 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
1136 |
+
shift_labels = shift_labels.view(-1)
|
1137 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
1138 |
+
loss += loss_fct(shift_logits, shift_labels)
|
1139 |
+
loss /= valid_seq_len_slide_win
|
1140 |
+
#print("loss:", loss)
|
1141 |
+
if not return_dict:
|
1142 |
+
output = (logits,) + outputs[1:]
|
1143 |
+
return (loss,) + output if loss is not None else output
|
1144 |
+
|
1145 |
+
return CausalLMOutputWithPastAndSeer(
|
1146 |
+
loss=loss,
|
1147 |
+
logits=logits,
|
1148 |
+
past_key_values=outputs.past_key_values,
|
1149 |
+
hidden_states=outputs.hidden_states,
|
1150 |
+
attentions=outputs.attentions,
|
1151 |
+
mask_gate_predictions=outputs.mask_gate_predictions,
|
1152 |
+
mask_ground_truths=outputs.mask_ground_truths,
|
1153 |
+
mask_loss=outputs.mask_loss,
|
1154 |
+
)
|
1155 |
+
|
1156 |
+
def prepare_inputs_for_generation(
|
1157 |
+
self,
|
1158 |
+
input_ids,
|
1159 |
+
past_key_values=None,
|
1160 |
+
attention_mask=None,
|
1161 |
+
inputs_embeds=None,
|
1162 |
+
cache_position=None,
|
1163 |
+
position_ids=None,
|
1164 |
+
use_cache=True,
|
1165 |
+
**kwargs,
|
1166 |
+
):
|
1167 |
+
# If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens
|
1168 |
+
# Exception 1: when passing input_embeds, input_ids may be missing entries
|
1169 |
+
# Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here
|
1170 |
+
if past_key_values is not None:
|
1171 |
+
if inputs_embeds is not None: # Exception 1
|
1172 |
+
input_ids = input_ids[:, -cache_position.shape[0] :]
|
1173 |
+
elif input_ids.shape[1] != cache_position.shape[0]: # Default case (the "else", a no op, is Exception 2)
|
1174 |
+
input_ids = input_ids[:, cache_position]
|
1175 |
+
|
1176 |
+
if attention_mask is not None and position_ids is None:
|
1177 |
+
# create position_ids on the fly for batch generation
|
1178 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
1179 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
1180 |
+
if past_key_values:
|
1181 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
1182 |
+
|
1183 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
1184 |
+
if inputs_embeds is not None and cache_position[0] == 0:
|
1185 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
1186 |
+
else:
|
1187 |
+
model_inputs = {"input_ids": input_ids.contiguous()} # `contiguous()` needed for compilation use cases
|
1188 |
+
|
1189 |
+
model_inputs.update(
|
1190 |
+
{
|
1191 |
+
"position_ids": position_ids,
|
1192 |
+
"cache_position": cache_position,
|
1193 |
+
"past_key_values": past_key_values,
|
1194 |
+
"use_cache": use_cache,
|
1195 |
+
"attention_mask": attention_mask,
|
1196 |
+
}
|
1197 |
+
)
|
1198 |
+
return model_inputs
|
1199 |
+
|
special_tokens_map.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<|begin_of_text|>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "<|eot_id|>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"unk_token": {
|
24 |
+
"content": "<unk>",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
}
|
30 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,2081 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"128000": {
|
4 |
+
"content": "<|begin_of_text|>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"128001": {
|
12 |
+
"content": "<|end_of_text|>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"128002": {
|
20 |
+
"content": "<|reserved_special_token_0|>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"128003": {
|
28 |
+
"content": "<|reserved_special_token_1|>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"128004": {
|
36 |
+
"content": "<|finetune_right_pad_id|>",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
},
|
43 |
+
"128005": {
|
44 |
+
"content": "<|reserved_special_token_2|>",
|
45 |
+
"lstrip": false,
|
46 |
+
"normalized": false,
|
47 |
+
"rstrip": false,
|
48 |
+
"single_word": false,
|
49 |
+
"special": true
|
50 |
+
},
|
51 |
+
"128006": {
|
52 |
+
"content": "<|start_header_id|>",
|
53 |
+
"lstrip": false,
|
54 |
+
"normalized": false,
|
55 |
+
"rstrip": false,
|
56 |
+
"single_word": false,
|
57 |
+
"special": true
|
58 |
+
},
|
59 |
+
"128007": {
|
60 |
+
"content": "<|end_header_id|>",
|
61 |
+
"lstrip": false,
|
62 |
+
"normalized": false,
|
63 |
+
"rstrip": false,
|
64 |
+
"single_word": false,
|
65 |
+
"special": true
|
66 |
+
},
|
67 |
+
"128008": {
|
68 |
+
"content": "<|eom_id|>",
|
69 |
+
"lstrip": false,
|
70 |
+
"normalized": false,
|
71 |
+
"rstrip": false,
|
72 |
+
"single_word": false,
|
73 |
+
"special": true
|
74 |
+
},
|
75 |
+
"128009": {
|
76 |
+
"content": "<|eot_id|>",
|
77 |
+
"lstrip": false,
|
78 |
+
"normalized": false,
|
79 |
+
"rstrip": false,
|
80 |
+
"single_word": false,
|
81 |
+
"special": true
|
82 |
+
},
|
83 |
+
"128010": {
|
84 |
+
"content": "<|python_tag|>",
|
85 |
+
"lstrip": false,
|
86 |
+
"normalized": false,
|
87 |
+
"rstrip": false,
|
88 |
+
"single_word": false,
|
89 |
+
"special": true
|
90 |
+
},
|
91 |
+
"128011": {
|
92 |
+
"content": "<|reserved_special_token_3|>",
|
93 |
+
"lstrip": false,
|
94 |
+
"normalized": false,
|
95 |
+
"rstrip": false,
|
96 |
+
"single_word": false,
|
97 |
+
"special": true
|
98 |
+
},
|
99 |
+
"128012": {
|
100 |
+
"content": "<|reserved_special_token_4|>",
|
101 |
+
"lstrip": false,
|
102 |
+
"normalized": false,
|
103 |
+
"rstrip": false,
|
104 |
+
"single_word": false,
|
105 |
+
"special": true
|
106 |
+
},
|
107 |
+
"128013": {
|
108 |
+
"content": "<|reserved_special_token_5|>",
|
109 |
+
"lstrip": false,
|
110 |
+
"normalized": false,
|
111 |
+
"rstrip": false,
|
112 |
+
"single_word": false,
|
113 |
+
"special": true
|
114 |
+
},
|
115 |
+
"128014": {
|
116 |
+
"content": "<|reserved_special_token_6|>",
|
117 |
+
"lstrip": false,
|
118 |
+
"normalized": false,
|
119 |
+
"rstrip": false,
|
120 |
+
"single_word": false,
|
121 |
+
"special": true
|
122 |
+
},
|
123 |
+
"128015": {
|
124 |
+
"content": "<|reserved_special_token_7|>",
|
125 |
+
"lstrip": false,
|
126 |
+
"normalized": false,
|
127 |
+
"rstrip": false,
|
128 |
+
"single_word": false,
|
129 |
+
"special": true
|
130 |
+
},
|
131 |
+
"128016": {
|
132 |
+
"content": "<|reserved_special_token_8|>",
|
133 |
+
"lstrip": false,
|
134 |
+
"normalized": false,
|
135 |
+
"rstrip": false,
|
136 |
+
"single_word": false,
|
137 |
+
"special": true
|
138 |
+
},
|
139 |
+
"128017": {
|
140 |
+
"content": "<|reserved_special_token_9|>",
|
141 |
+
"lstrip": false,
|
142 |
+
"normalized": false,
|
143 |
+
"rstrip": false,
|
144 |
+
"single_word": false,
|
145 |
+
"special": true
|
146 |
+
},
|
147 |
+
"128018": {
|
148 |
+
"content": "<|reserved_special_token_10|>",
|
149 |
+
"lstrip": false,
|
150 |
+
"normalized": false,
|
151 |
+
"rstrip": false,
|
152 |
+
"single_word": false,
|
153 |
+
"special": true
|
154 |
+
},
|
155 |
+
"128019": {
|
156 |
+
"content": "<|reserved_special_token_11|>",
|
157 |
+
"lstrip": false,
|
158 |
+
"normalized": false,
|
159 |
+
"rstrip": false,
|
160 |
+
"single_word": false,
|
161 |
+
"special": true
|
162 |
+
},
|
163 |
+
"128020": {
|
164 |
+
"content": "<|reserved_special_token_12|>",
|
165 |
+
"lstrip": false,
|
166 |
+
"normalized": false,
|
167 |
+
"rstrip": false,
|
168 |
+
"single_word": false,
|
169 |
+
"special": true
|
170 |
+
},
|
171 |
+
"128021": {
|
172 |
+
"content": "<|reserved_special_token_13|>",
|
173 |
+
"lstrip": false,
|
174 |
+
"normalized": false,
|
175 |
+
"rstrip": false,
|
176 |
+
"single_word": false,
|
177 |
+
"special": true
|
178 |
+
},
|
179 |
+
"128022": {
|
180 |
+
"content": "<|reserved_special_token_14|>",
|
181 |
+
"lstrip": false,
|
182 |
+
"normalized": false,
|
183 |
+
"rstrip": false,
|
184 |
+
"single_word": false,
|
185 |
+
"special": true
|
186 |
+
},
|
187 |
+
"128023": {
|
188 |
+
"content": "<|reserved_special_token_15|>",
|
189 |
+
"lstrip": false,
|
190 |
+
"normalized": false,
|
191 |
+
"rstrip": false,
|
192 |
+
"single_word": false,
|
193 |
+
"special": true
|
194 |
+
},
|
195 |
+
"128024": {
|
196 |
+
"content": "<|reserved_special_token_16|>",
|
197 |
+
"lstrip": false,
|
198 |
+
"normalized": false,
|
199 |
+
"rstrip": false,
|
200 |
+
"single_word": false,
|
201 |
+
"special": true
|
202 |
+
},
|
203 |
+
"128025": {
|
204 |
+
"content": "<|reserved_special_token_17|>",
|
205 |
+
"lstrip": false,
|
206 |
+
"normalized": false,
|
207 |
+
"rstrip": false,
|
208 |
+
"single_word": false,
|
209 |
+
"special": true
|
210 |
+
},
|
211 |
+
"128026": {
|
212 |
+
"content": "<|reserved_special_token_18|>",
|
213 |
+
"lstrip": false,
|
214 |
+
"normalized": false,
|
215 |
+
"rstrip": false,
|
216 |
+
"single_word": false,
|
217 |
+
"special": true
|
218 |
+
},
|
219 |
+
"128027": {
|
220 |
+
"content": "<|reserved_special_token_19|>",
|
221 |
+
"lstrip": false,
|
222 |
+
"normalized": false,
|
223 |
+
"rstrip": false,
|
224 |
+
"single_word": false,
|
225 |
+
"special": true
|
226 |
+
},
|
227 |
+
"128028": {
|
228 |
+
"content": "<|reserved_special_token_20|>",
|
229 |
+
"lstrip": false,
|
230 |
+
"normalized": false,
|
231 |
+
"rstrip": false,
|
232 |
+
"single_word": false,
|
233 |
+
"special": true
|
234 |
+
},
|
235 |
+
"128029": {
|
236 |
+
"content": "<|reserved_special_token_21|>",
|
237 |
+
"lstrip": false,
|
238 |
+
"normalized": false,
|
239 |
+
"rstrip": false,
|
240 |
+
"single_word": false,
|
241 |
+
"special": true
|
242 |
+
},
|
243 |
+
"128030": {
|
244 |
+
"content": "<|reserved_special_token_22|>",
|
245 |
+
"lstrip": false,
|
246 |
+
"normalized": false,
|
247 |
+
"rstrip": false,
|
248 |
+
"single_word": false,
|
249 |
+
"special": true
|
250 |
+
},
|
251 |
+
"128031": {
|
252 |
+
"content": "<|reserved_special_token_23|>",
|
253 |
+
"lstrip": false,
|
254 |
+
"normalized": false,
|
255 |
+
"rstrip": false,
|
256 |
+
"single_word": false,
|
257 |
+
"special": true
|
258 |
+
},
|
259 |
+
"128032": {
|
260 |
+
"content": "<|reserved_special_token_24|>",
|
261 |
+
"lstrip": false,
|
262 |
+
"normalized": false,
|
263 |
+
"rstrip": false,
|
264 |
+
"single_word": false,
|
265 |
+
"special": true
|
266 |
+
},
|
267 |
+
"128033": {
|
268 |
+
"content": "<|reserved_special_token_25|>",
|
269 |
+
"lstrip": false,
|
270 |
+
"normalized": false,
|
271 |
+
"rstrip": false,
|
272 |
+
"single_word": false,
|
273 |
+
"special": true
|
274 |
+
},
|
275 |
+
"128034": {
|
276 |
+
"content": "<|reserved_special_token_26|>",
|
277 |
+
"lstrip": false,
|
278 |
+
"normalized": false,
|
279 |
+
"rstrip": false,
|
280 |
+
"single_word": false,
|
281 |
+
"special": true
|
282 |
+
},
|
283 |
+
"128035": {
|
284 |
+
"content": "<|reserved_special_token_27|>",
|
285 |
+
"lstrip": false,
|
286 |
+
"normalized": false,
|
287 |
+
"rstrip": false,
|
288 |
+
"single_word": false,
|
289 |
+
"special": true
|
290 |
+
},
|
291 |
+
"128036": {
|
292 |
+
"content": "<|reserved_special_token_28|>",
|
293 |
+
"lstrip": false,
|
294 |
+
"normalized": false,
|
295 |
+
"rstrip": false,
|
296 |
+
"single_word": false,
|
297 |
+
"special": true
|
298 |
+
},
|
299 |
+
"128037": {
|
300 |
+
"content": "<|reserved_special_token_29|>",
|
301 |
+
"lstrip": false,
|
302 |
+
"normalized": false,
|
303 |
+
"rstrip": false,
|
304 |
+
"single_word": false,
|
305 |
+
"special": true
|
306 |
+
},
|
307 |
+
"128038": {
|
308 |
+
"content": "<|reserved_special_token_30|>",
|
309 |
+
"lstrip": false,
|
310 |
+
"normalized": false,
|
311 |
+
"rstrip": false,
|
312 |
+
"single_word": false,
|
313 |
+
"special": true
|
314 |
+
},
|
315 |
+
"128039": {
|
316 |
+
"content": "<|reserved_special_token_31|>",
|
317 |
+
"lstrip": false,
|
318 |
+
"normalized": false,
|
319 |
+
"rstrip": false,
|
320 |
+
"single_word": false,
|
321 |
+
"special": true
|
322 |
+
},
|
323 |
+
"128040": {
|
324 |
+
"content": "<|reserved_special_token_32|>",
|
325 |
+
"lstrip": false,
|
326 |
+
"normalized": false,
|
327 |
+
"rstrip": false,
|
328 |
+
"single_word": false,
|
329 |
+
"special": true
|
330 |
+
},
|
331 |
+
"128041": {
|
332 |
+
"content": "<|reserved_special_token_33|>",
|
333 |
+
"lstrip": false,
|
334 |
+
"normalized": false,
|
335 |
+
"rstrip": false,
|
336 |
+
"single_word": false,
|
337 |
+
"special": true
|
338 |
+
},
|
339 |
+
"128042": {
|
340 |
+
"content": "<|reserved_special_token_34|>",
|
341 |
+
"lstrip": false,
|
342 |
+
"normalized": false,
|
343 |
+
"rstrip": false,
|
344 |
+
"single_word": false,
|
345 |
+
"special": true
|
346 |
+
},
|
347 |
+
"128043": {
|
348 |
+
"content": "<|reserved_special_token_35|>",
|
349 |
+
"lstrip": false,
|
350 |
+
"normalized": false,
|
351 |
+
"rstrip": false,
|
352 |
+
"single_word": false,
|
353 |
+
"special": true
|
354 |
+
},
|
355 |
+
"128044": {
|
356 |
+
"content": "<|reserved_special_token_36|>",
|
357 |
+
"lstrip": false,
|
358 |
+
"normalized": false,
|
359 |
+
"rstrip": false,
|
360 |
+
"single_word": false,
|
361 |
+
"special": true
|
362 |
+
},
|
363 |
+
"128045": {
|
364 |
+
"content": "<|reserved_special_token_37|>",
|
365 |
+
"lstrip": false,
|
366 |
+
"normalized": false,
|
367 |
+
"rstrip": false,
|
368 |
+
"single_word": false,
|
369 |
+
"special": true
|
370 |
+
},
|
371 |
+
"128046": {
|
372 |
+
"content": "<|reserved_special_token_38|>",
|
373 |
+
"lstrip": false,
|
374 |
+
"normalized": false,
|
375 |
+
"rstrip": false,
|
376 |
+
"single_word": false,
|
377 |
+
"special": true
|
378 |
+
},
|
379 |
+
"128047": {
|
380 |
+
"content": "<|reserved_special_token_39|>",
|
381 |
+
"lstrip": false,
|
382 |
+
"normalized": false,
|
383 |
+
"rstrip": false,
|
384 |
+
"single_word": false,
|
385 |
+
"special": true
|
386 |
+
},
|
387 |
+
"128048": {
|
388 |
+
"content": "<|reserved_special_token_40|>",
|
389 |
+
"lstrip": false,
|
390 |
+
"normalized": false,
|
391 |
+
"rstrip": false,
|
392 |
+
"single_word": false,
|
393 |
+
"special": true
|
394 |
+
},
|
395 |
+
"128049": {
|
396 |
+
"content": "<|reserved_special_token_41|>",
|
397 |
+
"lstrip": false,
|
398 |
+
"normalized": false,
|
399 |
+
"rstrip": false,
|
400 |
+
"single_word": false,
|
401 |
+
"special": true
|
402 |
+
},
|
403 |
+
"128050": {
|
404 |
+
"content": "<|reserved_special_token_42|>",
|
405 |
+
"lstrip": false,
|
406 |
+
"normalized": false,
|
407 |
+
"rstrip": false,
|
408 |
+
"single_word": false,
|
409 |
+
"special": true
|
410 |
+
},
|
411 |
+
"128051": {
|
412 |
+
"content": "<|reserved_special_token_43|>",
|
413 |
+
"lstrip": false,
|
414 |
+
"normalized": false,
|
415 |
+
"rstrip": false,
|
416 |
+
"single_word": false,
|
417 |
+
"special": true
|
418 |
+
},
|
419 |
+
"128052": {
|
420 |
+
"content": "<|reserved_special_token_44|>",
|
421 |
+
"lstrip": false,
|
422 |
+
"normalized": false,
|
423 |
+
"rstrip": false,
|
424 |
+
"single_word": false,
|
425 |
+
"special": true
|
426 |
+
},
|
427 |
+
"128053": {
|
428 |
+
"content": "<|reserved_special_token_45|>",
|
429 |
+
"lstrip": false,
|
430 |
+
"normalized": false,
|
431 |
+
"rstrip": false,
|
432 |
+
"single_word": false,
|
433 |
+
"special": true
|
434 |
+
},
|
435 |
+
"128054": {
|
436 |
+
"content": "<|reserved_special_token_46|>",
|
437 |
+
"lstrip": false,
|
438 |
+
"normalized": false,
|
439 |
+
"rstrip": false,
|
440 |
+
"single_word": false,
|
441 |
+
"special": true
|
442 |
+
},
|
443 |
+
"128055": {
|
444 |
+
"content": "<|reserved_special_token_47|>",
|
445 |
+
"lstrip": false,
|
446 |
+
"normalized": false,
|
447 |
+
"rstrip": false,
|
448 |
+
"single_word": false,
|
449 |
+
"special": true
|
450 |
+
},
|
451 |
+
"128056": {
|
452 |
+
"content": "<|reserved_special_token_48|>",
|
453 |
+
"lstrip": false,
|
454 |
+
"normalized": false,
|
455 |
+
"rstrip": false,
|
456 |
+
"single_word": false,
|
457 |
+
"special": true
|
458 |
+
},
|
459 |
+
"128057": {
|
460 |
+
"content": "<|reserved_special_token_49|>",
|
461 |
+
"lstrip": false,
|
462 |
+
"normalized": false,
|
463 |
+
"rstrip": false,
|
464 |
+
"single_word": false,
|
465 |
+
"special": true
|
466 |
+
},
|
467 |
+
"128058": {
|
468 |
+
"content": "<|reserved_special_token_50|>",
|
469 |
+
"lstrip": false,
|
470 |
+
"normalized": false,
|
471 |
+
"rstrip": false,
|
472 |
+
"single_word": false,
|
473 |
+
"special": true
|
474 |
+
},
|
475 |
+
"128059": {
|
476 |
+
"content": "<|reserved_special_token_51|>",
|
477 |
+
"lstrip": false,
|
478 |
+
"normalized": false,
|
479 |
+
"rstrip": false,
|
480 |
+
"single_word": false,
|
481 |
+
"special": true
|
482 |
+
},
|
483 |
+
"128060": {
|
484 |
+
"content": "<|reserved_special_token_52|>",
|
485 |
+
"lstrip": false,
|
486 |
+
"normalized": false,
|
487 |
+
"rstrip": false,
|
488 |
+
"single_word": false,
|
489 |
+
"special": true
|
490 |
+
},
|
491 |
+
"128061": {
|
492 |
+
"content": "<|reserved_special_token_53|>",
|
493 |
+
"lstrip": false,
|
494 |
+
"normalized": false,
|
495 |
+
"rstrip": false,
|
496 |
+
"single_word": false,
|
497 |
+
"special": true
|
498 |
+
},
|
499 |
+
"128062": {
|
500 |
+
"content": "<|reserved_special_token_54|>",
|
501 |
+
"lstrip": false,
|
502 |
+
"normalized": false,
|
503 |
+
"rstrip": false,
|
504 |
+
"single_word": false,
|
505 |
+
"special": true
|
506 |
+
},
|
507 |
+
"128063": {
|
508 |
+
"content": "<|reserved_special_token_55|>",
|
509 |
+
"lstrip": false,
|
510 |
+
"normalized": false,
|
511 |
+
"rstrip": false,
|
512 |
+
"single_word": false,
|
513 |
+
"special": true
|
514 |
+
},
|
515 |
+
"128064": {
|
516 |
+
"content": "<|reserved_special_token_56|>",
|
517 |
+
"lstrip": false,
|
518 |
+
"normalized": false,
|
519 |
+
"rstrip": false,
|
520 |
+
"single_word": false,
|
521 |
+
"special": true
|
522 |
+
},
|
523 |
+
"128065": {
|
524 |
+
"content": "<|reserved_special_token_57|>",
|
525 |
+
"lstrip": false,
|
526 |
+
"normalized": false,
|
527 |
+
"rstrip": false,
|
528 |
+
"single_word": false,
|
529 |
+
"special": true
|
530 |
+
},
|
531 |
+
"128066": {
|
532 |
+
"content": "<|reserved_special_token_58|>",
|
533 |
+
"lstrip": false,
|
534 |
+
"normalized": false,
|
535 |
+
"rstrip": false,
|
536 |
+
"single_word": false,
|
537 |
+
"special": true
|
538 |
+
},
|
539 |
+
"128067": {
|
540 |
+
"content": "<|reserved_special_token_59|>",
|
541 |
+
"lstrip": false,
|
542 |
+
"normalized": false,
|
543 |
+
"rstrip": false,
|
544 |
+
"single_word": false,
|
545 |
+
"special": true
|
546 |
+
},
|
547 |
+
"128068": {
|
548 |
+
"content": "<|reserved_special_token_60|>",
|
549 |
+
"lstrip": false,
|
550 |
+
"normalized": false,
|
551 |
+
"rstrip": false,
|
552 |
+
"single_word": false,
|
553 |
+
"special": true
|
554 |
+
},
|
555 |
+
"128069": {
|
556 |
+
"content": "<|reserved_special_token_61|>",
|
557 |
+
"lstrip": false,
|
558 |
+
"normalized": false,
|
559 |
+
"rstrip": false,
|
560 |
+
"single_word": false,
|
561 |
+
"special": true
|
562 |
+
},
|
563 |
+
"128070": {
|
564 |
+
"content": "<|reserved_special_token_62|>",
|
565 |
+
"lstrip": false,
|
566 |
+
"normalized": false,
|
567 |
+
"rstrip": false,
|
568 |
+
"single_word": false,
|
569 |
+
"special": true
|
570 |
+
},
|
571 |
+
"128071": {
|
572 |
+
"content": "<|reserved_special_token_63|>",
|
573 |
+
"lstrip": false,
|
574 |
+
"normalized": false,
|
575 |
+
"rstrip": false,
|
576 |
+
"single_word": false,
|
577 |
+
"special": true
|
578 |
+
},
|
579 |
+
"128072": {
|
580 |
+
"content": "<|reserved_special_token_64|>",
|
581 |
+
"lstrip": false,
|
582 |
+
"normalized": false,
|
583 |
+
"rstrip": false,
|
584 |
+
"single_word": false,
|
585 |
+
"special": true
|
586 |
+
},
|
587 |
+
"128073": {
|
588 |
+
"content": "<|reserved_special_token_65|>",
|
589 |
+
"lstrip": false,
|
590 |
+
"normalized": false,
|
591 |
+
"rstrip": false,
|
592 |
+
"single_word": false,
|
593 |
+
"special": true
|
594 |
+
},
|
595 |
+
"128074": {
|
596 |
+
"content": "<|reserved_special_token_66|>",
|
597 |
+
"lstrip": false,
|
598 |
+
"normalized": false,
|
599 |
+
"rstrip": false,
|
600 |
+
"single_word": false,
|
601 |
+
"special": true
|
602 |
+
},
|
603 |
+
"128075": {
|
604 |
+
"content": "<|reserved_special_token_67|>",
|
605 |
+
"lstrip": false,
|
606 |
+
"normalized": false,
|
607 |
+
"rstrip": false,
|
608 |
+
"single_word": false,
|
609 |
+
"special": true
|
610 |
+
},
|
611 |
+
"128076": {
|
612 |
+
"content": "<|reserved_special_token_68|>",
|
613 |
+
"lstrip": false,
|
614 |
+
"normalized": false,
|
615 |
+
"rstrip": false,
|
616 |
+
"single_word": false,
|
617 |
+
"special": true
|
618 |
+
},
|
619 |
+
"128077": {
|
620 |
+
"content": "<|reserved_special_token_69|>",
|
621 |
+
"lstrip": false,
|
622 |
+
"normalized": false,
|
623 |
+
"rstrip": false,
|
624 |
+
"single_word": false,
|
625 |
+
"special": true
|
626 |
+
},
|
627 |
+
"128078": {
|
628 |
+
"content": "<|reserved_special_token_70|>",
|
629 |
+
"lstrip": false,
|
630 |
+
"normalized": false,
|
631 |
+
"rstrip": false,
|
632 |
+
"single_word": false,
|
633 |
+
"special": true
|
634 |
+
},
|
635 |
+
"128079": {
|
636 |
+
"content": "<|reserved_special_token_71|>",
|
637 |
+
"lstrip": false,
|
638 |
+
"normalized": false,
|
639 |
+
"rstrip": false,
|
640 |
+
"single_word": false,
|
641 |
+
"special": true
|
642 |
+
},
|
643 |
+
"128080": {
|
644 |
+
"content": "<|reserved_special_token_72|>",
|
645 |
+
"lstrip": false,
|
646 |
+
"normalized": false,
|
647 |
+
"rstrip": false,
|
648 |
+
"single_word": false,
|
649 |
+
"special": true
|
650 |
+
},
|
651 |
+
"128081": {
|
652 |
+
"content": "<|reserved_special_token_73|>",
|
653 |
+
"lstrip": false,
|
654 |
+
"normalized": false,
|
655 |
+
"rstrip": false,
|
656 |
+
"single_word": false,
|
657 |
+
"special": true
|
658 |
+
},
|
659 |
+
"128082": {
|
660 |
+
"content": "<|reserved_special_token_74|>",
|
661 |
+
"lstrip": false,
|
662 |
+
"normalized": false,
|
663 |
+
"rstrip": false,
|
664 |
+
"single_word": false,
|
665 |
+
"special": true
|
666 |
+
},
|
667 |
+
"128083": {
|
668 |
+
"content": "<|reserved_special_token_75|>",
|
669 |
+
"lstrip": false,
|
670 |
+
"normalized": false,
|
671 |
+
"rstrip": false,
|
672 |
+
"single_word": false,
|
673 |
+
"special": true
|
674 |
+
},
|
675 |
+
"128084": {
|
676 |
+
"content": "<|reserved_special_token_76|>",
|
677 |
+
"lstrip": false,
|
678 |
+
"normalized": false,
|
679 |
+
"rstrip": false,
|
680 |
+
"single_word": false,
|
681 |
+
"special": true
|
682 |
+
},
|
683 |
+
"128085": {
|
684 |
+
"content": "<|reserved_special_token_77|>",
|
685 |
+
"lstrip": false,
|
686 |
+
"normalized": false,
|
687 |
+
"rstrip": false,
|
688 |
+
"single_word": false,
|
689 |
+
"special": true
|
690 |
+
},
|
691 |
+
"128086": {
|
692 |
+
"content": "<|reserved_special_token_78|>",
|
693 |
+
"lstrip": false,
|
694 |
+
"normalized": false,
|
695 |
+
"rstrip": false,
|
696 |
+
"single_word": false,
|
697 |
+
"special": true
|
698 |
+
},
|
699 |
+
"128087": {
|
700 |
+
"content": "<|reserved_special_token_79|>",
|
701 |
+
"lstrip": false,
|
702 |
+
"normalized": false,
|
703 |
+
"rstrip": false,
|
704 |
+
"single_word": false,
|
705 |
+
"special": true
|
706 |
+
},
|
707 |
+
"128088": {
|
708 |
+
"content": "<|reserved_special_token_80|>",
|
709 |
+
"lstrip": false,
|
710 |
+
"normalized": false,
|
711 |
+
"rstrip": false,
|
712 |
+
"single_word": false,
|
713 |
+
"special": true
|
714 |
+
},
|
715 |
+
"128089": {
|
716 |
+
"content": "<|reserved_special_token_81|>",
|
717 |
+
"lstrip": false,
|
718 |
+
"normalized": false,
|
719 |
+
"rstrip": false,
|
720 |
+
"single_word": false,
|
721 |
+
"special": true
|
722 |
+
},
|
723 |
+
"128090": {
|
724 |
+
"content": "<|reserved_special_token_82|>",
|
725 |
+
"lstrip": false,
|
726 |
+
"normalized": false,
|
727 |
+
"rstrip": false,
|
728 |
+
"single_word": false,
|
729 |
+
"special": true
|
730 |
+
},
|
731 |
+
"128091": {
|
732 |
+
"content": "<|reserved_special_token_83|>",
|
733 |
+
"lstrip": false,
|
734 |
+
"normalized": false,
|
735 |
+
"rstrip": false,
|
736 |
+
"single_word": false,
|
737 |
+
"special": true
|
738 |
+
},
|
739 |
+
"128092": {
|
740 |
+
"content": "<|reserved_special_token_84|>",
|
741 |
+
"lstrip": false,
|
742 |
+
"normalized": false,
|
743 |
+
"rstrip": false,
|
744 |
+
"single_word": false,
|
745 |
+
"special": true
|
746 |
+
},
|
747 |
+
"128093": {
|
748 |
+
"content": "<|reserved_special_token_85|>",
|
749 |
+
"lstrip": false,
|
750 |
+
"normalized": false,
|
751 |
+
"rstrip": false,
|
752 |
+
"single_word": false,
|
753 |
+
"special": true
|
754 |
+
},
|
755 |
+
"128094": {
|
756 |
+
"content": "<|reserved_special_token_86|>",
|
757 |
+
"lstrip": false,
|
758 |
+
"normalized": false,
|
759 |
+
"rstrip": false,
|
760 |
+
"single_word": false,
|
761 |
+
"special": true
|
762 |
+
},
|
763 |
+
"128095": {
|
764 |
+
"content": "<|reserved_special_token_87|>",
|
765 |
+
"lstrip": false,
|
766 |
+
"normalized": false,
|
767 |
+
"rstrip": false,
|
768 |
+
"single_word": false,
|
769 |
+
"special": true
|
770 |
+
},
|
771 |
+
"128096": {
|
772 |
+
"content": "<|reserved_special_token_88|>",
|
773 |
+
"lstrip": false,
|
774 |
+
"normalized": false,
|
775 |
+
"rstrip": false,
|
776 |
+
"single_word": false,
|
777 |
+
"special": true
|
778 |
+
},
|
779 |
+
"128097": {
|
780 |
+
"content": "<|reserved_special_token_89|>",
|
781 |
+
"lstrip": false,
|
782 |
+
"normalized": false,
|
783 |
+
"rstrip": false,
|
784 |
+
"single_word": false,
|
785 |
+
"special": true
|
786 |
+
},
|
787 |
+
"128098": {
|
788 |
+
"content": "<|reserved_special_token_90|>",
|
789 |
+
"lstrip": false,
|
790 |
+
"normalized": false,
|
791 |
+
"rstrip": false,
|
792 |
+
"single_word": false,
|
793 |
+
"special": true
|
794 |
+
},
|
795 |
+
"128099": {
|
796 |
+
"content": "<|reserved_special_token_91|>",
|
797 |
+
"lstrip": false,
|
798 |
+
"normalized": false,
|
799 |
+
"rstrip": false,
|
800 |
+
"single_word": false,
|
801 |
+
"special": true
|
802 |
+
},
|
803 |
+
"128100": {
|
804 |
+
"content": "<|reserved_special_token_92|>",
|
805 |
+
"lstrip": false,
|
806 |
+
"normalized": false,
|
807 |
+
"rstrip": false,
|
808 |
+
"single_word": false,
|
809 |
+
"special": true
|
810 |
+
},
|
811 |
+
"128101": {
|
812 |
+
"content": "<|reserved_special_token_93|>",
|
813 |
+
"lstrip": false,
|
814 |
+
"normalized": false,
|
815 |
+
"rstrip": false,
|
816 |
+
"single_word": false,
|
817 |
+
"special": true
|
818 |
+
},
|
819 |
+
"128102": {
|
820 |
+
"content": "<|reserved_special_token_94|>",
|
821 |
+
"lstrip": false,
|
822 |
+
"normalized": false,
|
823 |
+
"rstrip": false,
|
824 |
+
"single_word": false,
|
825 |
+
"special": true
|
826 |
+
},
|
827 |
+
"128103": {
|
828 |
+
"content": "<|reserved_special_token_95|>",
|
829 |
+
"lstrip": false,
|
830 |
+
"normalized": false,
|
831 |
+
"rstrip": false,
|
832 |
+
"single_word": false,
|
833 |
+
"special": true
|
834 |
+
},
|
835 |
+
"128104": {
|
836 |
+
"content": "<|reserved_special_token_96|>",
|
837 |
+
"lstrip": false,
|
838 |
+
"normalized": false,
|
839 |
+
"rstrip": false,
|
840 |
+
"single_word": false,
|
841 |
+
"special": true
|
842 |
+
},
|
843 |
+
"128105": {
|
844 |
+
"content": "<|reserved_special_token_97|>",
|
845 |
+
"lstrip": false,
|
846 |
+
"normalized": false,
|
847 |
+
"rstrip": false,
|
848 |
+
"single_word": false,
|
849 |
+
"special": true
|
850 |
+
},
|
851 |
+
"128106": {
|
852 |
+
"content": "<|reserved_special_token_98|>",
|
853 |
+
"lstrip": false,
|
854 |
+
"normalized": false,
|
855 |
+
"rstrip": false,
|
856 |
+
"single_word": false,
|
857 |
+
"special": true
|
858 |
+
},
|
859 |
+
"128107": {
|
860 |
+
"content": "<|reserved_special_token_99|>",
|
861 |
+
"lstrip": false,
|
862 |
+
"normalized": false,
|
863 |
+
"rstrip": false,
|
864 |
+
"single_word": false,
|
865 |
+
"special": true
|
866 |
+
},
|
867 |
+
"128108": {
|
868 |
+
"content": "<|reserved_special_token_100|>",
|
869 |
+
"lstrip": false,
|
870 |
+
"normalized": false,
|
871 |
+
"rstrip": false,
|
872 |
+
"single_word": false,
|
873 |
+
"special": true
|
874 |
+
},
|
875 |
+
"128109": {
|
876 |
+
"content": "<|reserved_special_token_101|>",
|
877 |
+
"lstrip": false,
|
878 |
+
"normalized": false,
|
879 |
+
"rstrip": false,
|
880 |
+
"single_word": false,
|
881 |
+
"special": true
|
882 |
+
},
|
883 |
+
"128110": {
|
884 |
+
"content": "<|reserved_special_token_102|>",
|
885 |
+
"lstrip": false,
|
886 |
+
"normalized": false,
|
887 |
+
"rstrip": false,
|
888 |
+
"single_word": false,
|
889 |
+
"special": true
|
890 |
+
},
|
891 |
+
"128111": {
|
892 |
+
"content": "<|reserved_special_token_103|>",
|
893 |
+
"lstrip": false,
|
894 |
+
"normalized": false,
|
895 |
+
"rstrip": false,
|
896 |
+
"single_word": false,
|
897 |
+
"special": true
|
898 |
+
},
|
899 |
+
"128112": {
|
900 |
+
"content": "<|reserved_special_token_104|>",
|
901 |
+
"lstrip": false,
|
902 |
+
"normalized": false,
|
903 |
+
"rstrip": false,
|
904 |
+
"single_word": false,
|
905 |
+
"special": true
|
906 |
+
},
|
907 |
+
"128113": {
|
908 |
+
"content": "<|reserved_special_token_105|>",
|
909 |
+
"lstrip": false,
|
910 |
+
"normalized": false,
|
911 |
+
"rstrip": false,
|
912 |
+
"single_word": false,
|
913 |
+
"special": true
|
914 |
+
},
|
915 |
+
"128114": {
|
916 |
+
"content": "<|reserved_special_token_106|>",
|
917 |
+
"lstrip": false,
|
918 |
+
"normalized": false,
|
919 |
+
"rstrip": false,
|
920 |
+
"single_word": false,
|
921 |
+
"special": true
|
922 |
+
},
|
923 |
+
"128115": {
|
924 |
+
"content": "<|reserved_special_token_107|>",
|
925 |
+
"lstrip": false,
|
926 |
+
"normalized": false,
|
927 |
+
"rstrip": false,
|
928 |
+
"single_word": false,
|
929 |
+
"special": true
|
930 |
+
},
|
931 |
+
"128116": {
|
932 |
+
"content": "<|reserved_special_token_108|>",
|
933 |
+
"lstrip": false,
|
934 |
+
"normalized": false,
|
935 |
+
"rstrip": false,
|
936 |
+
"single_word": false,
|
937 |
+
"special": true
|
938 |
+
},
|
939 |
+
"128117": {
|
940 |
+
"content": "<|reserved_special_token_109|>",
|
941 |
+
"lstrip": false,
|
942 |
+
"normalized": false,
|
943 |
+
"rstrip": false,
|
944 |
+
"single_word": false,
|
945 |
+
"special": true
|
946 |
+
},
|
947 |
+
"128118": {
|
948 |
+
"content": "<|reserved_special_token_110|>",
|
949 |
+
"lstrip": false,
|
950 |
+
"normalized": false,
|
951 |
+
"rstrip": false,
|
952 |
+
"single_word": false,
|
953 |
+
"special": true
|
954 |
+
},
|
955 |
+
"128119": {
|
956 |
+
"content": "<|reserved_special_token_111|>",
|
957 |
+
"lstrip": false,
|
958 |
+
"normalized": false,
|
959 |
+
"rstrip": false,
|
960 |
+
"single_word": false,
|
961 |
+
"special": true
|
962 |
+
},
|
963 |
+
"128120": {
|
964 |
+
"content": "<|reserved_special_token_112|>",
|
965 |
+
"lstrip": false,
|
966 |
+
"normalized": false,
|
967 |
+
"rstrip": false,
|
968 |
+
"single_word": false,
|
969 |
+
"special": true
|
970 |
+
},
|
971 |
+
"128121": {
|
972 |
+
"content": "<|reserved_special_token_113|>",
|
973 |
+
"lstrip": false,
|
974 |
+
"normalized": false,
|
975 |
+
"rstrip": false,
|
976 |
+
"single_word": false,
|
977 |
+
"special": true
|
978 |
+
},
|
979 |
+
"128122": {
|
980 |
+
"content": "<|reserved_special_token_114|>",
|
981 |
+
"lstrip": false,
|
982 |
+
"normalized": false,
|
983 |
+
"rstrip": false,
|
984 |
+
"single_word": false,
|
985 |
+
"special": true
|
986 |
+
},
|
987 |
+
"128123": {
|
988 |
+
"content": "<|reserved_special_token_115|>",
|
989 |
+
"lstrip": false,
|
990 |
+
"normalized": false,
|
991 |
+
"rstrip": false,
|
992 |
+
"single_word": false,
|
993 |
+
"special": true
|
994 |
+
},
|
995 |
+
"128124": {
|
996 |
+
"content": "<|reserved_special_token_116|>",
|
997 |
+
"lstrip": false,
|
998 |
+
"normalized": false,
|
999 |
+
"rstrip": false,
|
1000 |
+
"single_word": false,
|
1001 |
+
"special": true
|
1002 |
+
},
|
1003 |
+
"128125": {
|
1004 |
+
"content": "<|reserved_special_token_117|>",
|
1005 |
+
"lstrip": false,
|
1006 |
+
"normalized": false,
|
1007 |
+
"rstrip": false,
|
1008 |
+
"single_word": false,
|
1009 |
+
"special": true
|
1010 |
+
},
|
1011 |
+
"128126": {
|
1012 |
+
"content": "<|reserved_special_token_118|>",
|
1013 |
+
"lstrip": false,
|
1014 |
+
"normalized": false,
|
1015 |
+
"rstrip": false,
|
1016 |
+
"single_word": false,
|
1017 |
+
"special": true
|
1018 |
+
},
|
1019 |
+
"128127": {
|
1020 |
+
"content": "<|reserved_special_token_119|>",
|
1021 |
+
"lstrip": false,
|
1022 |
+
"normalized": false,
|
1023 |
+
"rstrip": false,
|
1024 |
+
"single_word": false,
|
1025 |
+
"special": true
|
1026 |
+
},
|
1027 |
+
"128128": {
|
1028 |
+
"content": "<|reserved_special_token_120|>",
|
1029 |
+
"lstrip": false,
|
1030 |
+
"normalized": false,
|
1031 |
+
"rstrip": false,
|
1032 |
+
"single_word": false,
|
1033 |
+
"special": true
|
1034 |
+
},
|
1035 |
+
"128129": {
|
1036 |
+
"content": "<|reserved_special_token_121|>",
|
1037 |
+
"lstrip": false,
|
1038 |
+
"normalized": false,
|
1039 |
+
"rstrip": false,
|
1040 |
+
"single_word": false,
|
1041 |
+
"special": true
|
1042 |
+
},
|
1043 |
+
"128130": {
|
1044 |
+
"content": "<|reserved_special_token_122|>",
|
1045 |
+
"lstrip": false,
|
1046 |
+
"normalized": false,
|
1047 |
+
"rstrip": false,
|
1048 |
+
"single_word": false,
|
1049 |
+
"special": true
|
1050 |
+
},
|
1051 |
+
"128131": {
|
1052 |
+
"content": "<|reserved_special_token_123|>",
|
1053 |
+
"lstrip": false,
|
1054 |
+
"normalized": false,
|
1055 |
+
"rstrip": false,
|
1056 |
+
"single_word": false,
|
1057 |
+
"special": true
|
1058 |
+
},
|
1059 |
+
"128132": {
|
1060 |
+
"content": "<|reserved_special_token_124|>",
|
1061 |
+
"lstrip": false,
|
1062 |
+
"normalized": false,
|
1063 |
+
"rstrip": false,
|
1064 |
+
"single_word": false,
|
1065 |
+
"special": true
|
1066 |
+
},
|
1067 |
+
"128133": {
|
1068 |
+
"content": "<|reserved_special_token_125|>",
|
1069 |
+
"lstrip": false,
|
1070 |
+
"normalized": false,
|
1071 |
+
"rstrip": false,
|
1072 |
+
"single_word": false,
|
1073 |
+
"special": true
|
1074 |
+
},
|
1075 |
+
"128134": {
|
1076 |
+
"content": "<|reserved_special_token_126|>",
|
1077 |
+
"lstrip": false,
|
1078 |
+
"normalized": false,
|
1079 |
+
"rstrip": false,
|
1080 |
+
"single_word": false,
|
1081 |
+
"special": true
|
1082 |
+
},
|
1083 |
+
"128135": {
|
1084 |
+
"content": "<|reserved_special_token_127|>",
|
1085 |
+
"lstrip": false,
|
1086 |
+
"normalized": false,
|
1087 |
+
"rstrip": false,
|
1088 |
+
"single_word": false,
|
1089 |
+
"special": true
|
1090 |
+
},
|
1091 |
+
"128136": {
|
1092 |
+
"content": "<|reserved_special_token_128|>",
|
1093 |
+
"lstrip": false,
|
1094 |
+
"normalized": false,
|
1095 |
+
"rstrip": false,
|
1096 |
+
"single_word": false,
|
1097 |
+
"special": true
|
1098 |
+
},
|
1099 |
+
"128137": {
|
1100 |
+
"content": "<|reserved_special_token_129|>",
|
1101 |
+
"lstrip": false,
|
1102 |
+
"normalized": false,
|
1103 |
+
"rstrip": false,
|
1104 |
+
"single_word": false,
|
1105 |
+
"special": true
|
1106 |
+
},
|
1107 |
+
"128138": {
|
1108 |
+
"content": "<|reserved_special_token_130|>",
|
1109 |
+
"lstrip": false,
|
1110 |
+
"normalized": false,
|
1111 |
+
"rstrip": false,
|
1112 |
+
"single_word": false,
|
1113 |
+
"special": true
|
1114 |
+
},
|
1115 |
+
"128139": {
|
1116 |
+
"content": "<|reserved_special_token_131|>",
|
1117 |
+
"lstrip": false,
|
1118 |
+
"normalized": false,
|
1119 |
+
"rstrip": false,
|
1120 |
+
"single_word": false,
|
1121 |
+
"special": true
|
1122 |
+
},
|
1123 |
+
"128140": {
|
1124 |
+
"content": "<|reserved_special_token_132|>",
|
1125 |
+
"lstrip": false,
|
1126 |
+
"normalized": false,
|
1127 |
+
"rstrip": false,
|
1128 |
+
"single_word": false,
|
1129 |
+
"special": true
|
1130 |
+
},
|
1131 |
+
"128141": {
|
1132 |
+
"content": "<|reserved_special_token_133|>",
|
1133 |
+
"lstrip": false,
|
1134 |
+
"normalized": false,
|
1135 |
+
"rstrip": false,
|
1136 |
+
"single_word": false,
|
1137 |
+
"special": true
|
1138 |
+
},
|
1139 |
+
"128142": {
|
1140 |
+
"content": "<|reserved_special_token_134|>",
|
1141 |
+
"lstrip": false,
|
1142 |
+
"normalized": false,
|
1143 |
+
"rstrip": false,
|
1144 |
+
"single_word": false,
|
1145 |
+
"special": true
|
1146 |
+
},
|
1147 |
+
"128143": {
|
1148 |
+
"content": "<|reserved_special_token_135|>",
|
1149 |
+
"lstrip": false,
|
1150 |
+
"normalized": false,
|
1151 |
+
"rstrip": false,
|
1152 |
+
"single_word": false,
|
1153 |
+
"special": true
|
1154 |
+
},
|
1155 |
+
"128144": {
|
1156 |
+
"content": "<|reserved_special_token_136|>",
|
1157 |
+
"lstrip": false,
|
1158 |
+
"normalized": false,
|
1159 |
+
"rstrip": false,
|
1160 |
+
"single_word": false,
|
1161 |
+
"special": true
|
1162 |
+
},
|
1163 |
+
"128145": {
|
1164 |
+
"content": "<|reserved_special_token_137|>",
|
1165 |
+
"lstrip": false,
|
1166 |
+
"normalized": false,
|
1167 |
+
"rstrip": false,
|
1168 |
+
"single_word": false,
|
1169 |
+
"special": true
|
1170 |
+
},
|
1171 |
+
"128146": {
|
1172 |
+
"content": "<|reserved_special_token_138|>",
|
1173 |
+
"lstrip": false,
|
1174 |
+
"normalized": false,
|
1175 |
+
"rstrip": false,
|
1176 |
+
"single_word": false,
|
1177 |
+
"special": true
|
1178 |
+
},
|
1179 |
+
"128147": {
|
1180 |
+
"content": "<|reserved_special_token_139|>",
|
1181 |
+
"lstrip": false,
|
1182 |
+
"normalized": false,
|
1183 |
+
"rstrip": false,
|
1184 |
+
"single_word": false,
|
1185 |
+
"special": true
|
1186 |
+
},
|
1187 |
+
"128148": {
|
1188 |
+
"content": "<|reserved_special_token_140|>",
|
1189 |
+
"lstrip": false,
|
1190 |
+
"normalized": false,
|
1191 |
+
"rstrip": false,
|
1192 |
+
"single_word": false,
|
1193 |
+
"special": true
|
1194 |
+
},
|
1195 |
+
"128149": {
|
1196 |
+
"content": "<|reserved_special_token_141|>",
|
1197 |
+
"lstrip": false,
|
1198 |
+
"normalized": false,
|
1199 |
+
"rstrip": false,
|
1200 |
+
"single_word": false,
|
1201 |
+
"special": true
|
1202 |
+
},
|
1203 |
+
"128150": {
|
1204 |
+
"content": "<|reserved_special_token_142|>",
|
1205 |
+
"lstrip": false,
|
1206 |
+
"normalized": false,
|
1207 |
+
"rstrip": false,
|
1208 |
+
"single_word": false,
|
1209 |
+
"special": true
|
1210 |
+
},
|
1211 |
+
"128151": {
|
1212 |
+
"content": "<|reserved_special_token_143|>",
|
1213 |
+
"lstrip": false,
|
1214 |
+
"normalized": false,
|
1215 |
+
"rstrip": false,
|
1216 |
+
"single_word": false,
|
1217 |
+
"special": true
|
1218 |
+
},
|
1219 |
+
"128152": {
|
1220 |
+
"content": "<|reserved_special_token_144|>",
|
1221 |
+
"lstrip": false,
|
1222 |
+
"normalized": false,
|
1223 |
+
"rstrip": false,
|
1224 |
+
"single_word": false,
|
1225 |
+
"special": true
|
1226 |
+
},
|
1227 |
+
"128153": {
|
1228 |
+
"content": "<|reserved_special_token_145|>",
|
1229 |
+
"lstrip": false,
|
1230 |
+
"normalized": false,
|
1231 |
+
"rstrip": false,
|
1232 |
+
"single_word": false,
|
1233 |
+
"special": true
|
1234 |
+
},
|
1235 |
+
"128154": {
|
1236 |
+
"content": "<|reserved_special_token_146|>",
|
1237 |
+
"lstrip": false,
|
1238 |
+
"normalized": false,
|
1239 |
+
"rstrip": false,
|
1240 |
+
"single_word": false,
|
1241 |
+
"special": true
|
1242 |
+
},
|
1243 |
+
"128155": {
|
1244 |
+
"content": "<|reserved_special_token_147|>",
|
1245 |
+
"lstrip": false,
|
1246 |
+
"normalized": false,
|
1247 |
+
"rstrip": false,
|
1248 |
+
"single_word": false,
|
1249 |
+
"special": true
|
1250 |
+
},
|
1251 |
+
"128156": {
|
1252 |
+
"content": "<|reserved_special_token_148|>",
|
1253 |
+
"lstrip": false,
|
1254 |
+
"normalized": false,
|
1255 |
+
"rstrip": false,
|
1256 |
+
"single_word": false,
|
1257 |
+
"special": true
|
1258 |
+
},
|
1259 |
+
"128157": {
|
1260 |
+
"content": "<|reserved_special_token_149|>",
|
1261 |
+
"lstrip": false,
|
1262 |
+
"normalized": false,
|
1263 |
+
"rstrip": false,
|
1264 |
+
"single_word": false,
|
1265 |
+
"special": true
|
1266 |
+
},
|
1267 |
+
"128158": {
|
1268 |
+
"content": "<|reserved_special_token_150|>",
|
1269 |
+
"lstrip": false,
|
1270 |
+
"normalized": false,
|
1271 |
+
"rstrip": false,
|
1272 |
+
"single_word": false,
|
1273 |
+
"special": true
|
1274 |
+
},
|
1275 |
+
"128159": {
|
1276 |
+
"content": "<|reserved_special_token_151|>",
|
1277 |
+
"lstrip": false,
|
1278 |
+
"normalized": false,
|
1279 |
+
"rstrip": false,
|
1280 |
+
"single_word": false,
|
1281 |
+
"special": true
|
1282 |
+
},
|
1283 |
+
"128160": {
|
1284 |
+
"content": "<|reserved_special_token_152|>",
|
1285 |
+
"lstrip": false,
|
1286 |
+
"normalized": false,
|
1287 |
+
"rstrip": false,
|
1288 |
+
"single_word": false,
|
1289 |
+
"special": true
|
1290 |
+
},
|
1291 |
+
"128161": {
|
1292 |
+
"content": "<|reserved_special_token_153|>",
|
1293 |
+
"lstrip": false,
|
1294 |
+
"normalized": false,
|
1295 |
+
"rstrip": false,
|
1296 |
+
"single_word": false,
|
1297 |
+
"special": true
|
1298 |
+
},
|
1299 |
+
"128162": {
|
1300 |
+
"content": "<|reserved_special_token_154|>",
|
1301 |
+
"lstrip": false,
|
1302 |
+
"normalized": false,
|
1303 |
+
"rstrip": false,
|
1304 |
+
"single_word": false,
|
1305 |
+
"special": true
|
1306 |
+
},
|
1307 |
+
"128163": {
|
1308 |
+
"content": "<|reserved_special_token_155|>",
|
1309 |
+
"lstrip": false,
|
1310 |
+
"normalized": false,
|
1311 |
+
"rstrip": false,
|
1312 |
+
"single_word": false,
|
1313 |
+
"special": true
|
1314 |
+
},
|
1315 |
+
"128164": {
|
1316 |
+
"content": "<|reserved_special_token_156|>",
|
1317 |
+
"lstrip": false,
|
1318 |
+
"normalized": false,
|
1319 |
+
"rstrip": false,
|
1320 |
+
"single_word": false,
|
1321 |
+
"special": true
|
1322 |
+
},
|
1323 |
+
"128165": {
|
1324 |
+
"content": "<|reserved_special_token_157|>",
|
1325 |
+
"lstrip": false,
|
1326 |
+
"normalized": false,
|
1327 |
+
"rstrip": false,
|
1328 |
+
"single_word": false,
|
1329 |
+
"special": true
|
1330 |
+
},
|
1331 |
+
"128166": {
|
1332 |
+
"content": "<|reserved_special_token_158|>",
|
1333 |
+
"lstrip": false,
|
1334 |
+
"normalized": false,
|
1335 |
+
"rstrip": false,
|
1336 |
+
"single_word": false,
|
1337 |
+
"special": true
|
1338 |
+
},
|
1339 |
+
"128167": {
|
1340 |
+
"content": "<|reserved_special_token_159|>",
|
1341 |
+
"lstrip": false,
|
1342 |
+
"normalized": false,
|
1343 |
+
"rstrip": false,
|
1344 |
+
"single_word": false,
|
1345 |
+
"special": true
|
1346 |
+
},
|
1347 |
+
"128168": {
|
1348 |
+
"content": "<|reserved_special_token_160|>",
|
1349 |
+
"lstrip": false,
|
1350 |
+
"normalized": false,
|
1351 |
+
"rstrip": false,
|
1352 |
+
"single_word": false,
|
1353 |
+
"special": true
|
1354 |
+
},
|
1355 |
+
"128169": {
|
1356 |
+
"content": "<|reserved_special_token_161|>",
|
1357 |
+
"lstrip": false,
|
1358 |
+
"normalized": false,
|
1359 |
+
"rstrip": false,
|
1360 |
+
"single_word": false,
|
1361 |
+
"special": true
|
1362 |
+
},
|
1363 |
+
"128170": {
|
1364 |
+
"content": "<|reserved_special_token_162|>",
|
1365 |
+
"lstrip": false,
|
1366 |
+
"normalized": false,
|
1367 |
+
"rstrip": false,
|
1368 |
+
"single_word": false,
|
1369 |
+
"special": true
|
1370 |
+
},
|
1371 |
+
"128171": {
|
1372 |
+
"content": "<|reserved_special_token_163|>",
|
1373 |
+
"lstrip": false,
|
1374 |
+
"normalized": false,
|
1375 |
+
"rstrip": false,
|
1376 |
+
"single_word": false,
|
1377 |
+
"special": true
|
1378 |
+
},
|
1379 |
+
"128172": {
|
1380 |
+
"content": "<|reserved_special_token_164|>",
|
1381 |
+
"lstrip": false,
|
1382 |
+
"normalized": false,
|
1383 |
+
"rstrip": false,
|
1384 |
+
"single_word": false,
|
1385 |
+
"special": true
|
1386 |
+
},
|
1387 |
+
"128173": {
|
1388 |
+
"content": "<|reserved_special_token_165|>",
|
1389 |
+
"lstrip": false,
|
1390 |
+
"normalized": false,
|
1391 |
+
"rstrip": false,
|
1392 |
+
"single_word": false,
|
1393 |
+
"special": true
|
1394 |
+
},
|
1395 |
+
"128174": {
|
1396 |
+
"content": "<|reserved_special_token_166|>",
|
1397 |
+
"lstrip": false,
|
1398 |
+
"normalized": false,
|
1399 |
+
"rstrip": false,
|
1400 |
+
"single_word": false,
|
1401 |
+
"special": true
|
1402 |
+
},
|
1403 |
+
"128175": {
|
1404 |
+
"content": "<|reserved_special_token_167|>",
|
1405 |
+
"lstrip": false,
|
1406 |
+
"normalized": false,
|
1407 |
+
"rstrip": false,
|
1408 |
+
"single_word": false,
|
1409 |
+
"special": true
|
1410 |
+
},
|
1411 |
+
"128176": {
|
1412 |
+
"content": "<|reserved_special_token_168|>",
|
1413 |
+
"lstrip": false,
|
1414 |
+
"normalized": false,
|
1415 |
+
"rstrip": false,
|
1416 |
+
"single_word": false,
|
1417 |
+
"special": true
|
1418 |
+
},
|
1419 |
+
"128177": {
|
1420 |
+
"content": "<|reserved_special_token_169|>",
|
1421 |
+
"lstrip": false,
|
1422 |
+
"normalized": false,
|
1423 |
+
"rstrip": false,
|
1424 |
+
"single_word": false,
|
1425 |
+
"special": true
|
1426 |
+
},
|
1427 |
+
"128178": {
|
1428 |
+
"content": "<|reserved_special_token_170|>",
|
1429 |
+
"lstrip": false,
|
1430 |
+
"normalized": false,
|
1431 |
+
"rstrip": false,
|
1432 |
+
"single_word": false,
|
1433 |
+
"special": true
|
1434 |
+
},
|
1435 |
+
"128179": {
|
1436 |
+
"content": "<|reserved_special_token_171|>",
|
1437 |
+
"lstrip": false,
|
1438 |
+
"normalized": false,
|
1439 |
+
"rstrip": false,
|
1440 |
+
"single_word": false,
|
1441 |
+
"special": true
|
1442 |
+
},
|
1443 |
+
"128180": {
|
1444 |
+
"content": "<|reserved_special_token_172|>",
|
1445 |
+
"lstrip": false,
|
1446 |
+
"normalized": false,
|
1447 |
+
"rstrip": false,
|
1448 |
+
"single_word": false,
|
1449 |
+
"special": true
|
1450 |
+
},
|
1451 |
+
"128181": {
|
1452 |
+
"content": "<|reserved_special_token_173|>",
|
1453 |
+
"lstrip": false,
|
1454 |
+
"normalized": false,
|
1455 |
+
"rstrip": false,
|
1456 |
+
"single_word": false,
|
1457 |
+
"special": true
|
1458 |
+
},
|
1459 |
+
"128182": {
|
1460 |
+
"content": "<|reserved_special_token_174|>",
|
1461 |
+
"lstrip": false,
|
1462 |
+
"normalized": false,
|
1463 |
+
"rstrip": false,
|
1464 |
+
"single_word": false,
|
1465 |
+
"special": true
|
1466 |
+
},
|
1467 |
+
"128183": {
|
1468 |
+
"content": "<|reserved_special_token_175|>",
|
1469 |
+
"lstrip": false,
|
1470 |
+
"normalized": false,
|
1471 |
+
"rstrip": false,
|
1472 |
+
"single_word": false,
|
1473 |
+
"special": true
|
1474 |
+
},
|
1475 |
+
"128184": {
|
1476 |
+
"content": "<|reserved_special_token_176|>",
|
1477 |
+
"lstrip": false,
|
1478 |
+
"normalized": false,
|
1479 |
+
"rstrip": false,
|
1480 |
+
"single_word": false,
|
1481 |
+
"special": true
|
1482 |
+
},
|
1483 |
+
"128185": {
|
1484 |
+
"content": "<|reserved_special_token_177|>",
|
1485 |
+
"lstrip": false,
|
1486 |
+
"normalized": false,
|
1487 |
+
"rstrip": false,
|
1488 |
+
"single_word": false,
|
1489 |
+
"special": true
|
1490 |
+
},
|
1491 |
+
"128186": {
|
1492 |
+
"content": "<|reserved_special_token_178|>",
|
1493 |
+
"lstrip": false,
|
1494 |
+
"normalized": false,
|
1495 |
+
"rstrip": false,
|
1496 |
+
"single_word": false,
|
1497 |
+
"special": true
|
1498 |
+
},
|
1499 |
+
"128187": {
|
1500 |
+
"content": "<|reserved_special_token_179|>",
|
1501 |
+
"lstrip": false,
|
1502 |
+
"normalized": false,
|
1503 |
+
"rstrip": false,
|
1504 |
+
"single_word": false,
|
1505 |
+
"special": true
|
1506 |
+
},
|
1507 |
+
"128188": {
|
1508 |
+
"content": "<|reserved_special_token_180|>",
|
1509 |
+
"lstrip": false,
|
1510 |
+
"normalized": false,
|
1511 |
+
"rstrip": false,
|
1512 |
+
"single_word": false,
|
1513 |
+
"special": true
|
1514 |
+
},
|
1515 |
+
"128189": {
|
1516 |
+
"content": "<|reserved_special_token_181|>",
|
1517 |
+
"lstrip": false,
|
1518 |
+
"normalized": false,
|
1519 |
+
"rstrip": false,
|
1520 |
+
"single_word": false,
|
1521 |
+
"special": true
|
1522 |
+
},
|
1523 |
+
"128190": {
|
1524 |
+
"content": "<|reserved_special_token_182|>",
|
1525 |
+
"lstrip": false,
|
1526 |
+
"normalized": false,
|
1527 |
+
"rstrip": false,
|
1528 |
+
"single_word": false,
|
1529 |
+
"special": true
|
1530 |
+
},
|
1531 |
+
"128191": {
|
1532 |
+
"content": "<|reserved_special_token_183|>",
|
1533 |
+
"lstrip": false,
|
1534 |
+
"normalized": false,
|
1535 |
+
"rstrip": false,
|
1536 |
+
"single_word": false,
|
1537 |
+
"special": true
|
1538 |
+
},
|
1539 |
+
"128192": {
|
1540 |
+
"content": "<|reserved_special_token_184|>",
|
1541 |
+
"lstrip": false,
|
1542 |
+
"normalized": false,
|
1543 |
+
"rstrip": false,
|
1544 |
+
"single_word": false,
|
1545 |
+
"special": true
|
1546 |
+
},
|
1547 |
+
"128193": {
|
1548 |
+
"content": "<|reserved_special_token_185|>",
|
1549 |
+
"lstrip": false,
|
1550 |
+
"normalized": false,
|
1551 |
+
"rstrip": false,
|
1552 |
+
"single_word": false,
|
1553 |
+
"special": true
|
1554 |
+
},
|
1555 |
+
"128194": {
|
1556 |
+
"content": "<|reserved_special_token_186|>",
|
1557 |
+
"lstrip": false,
|
1558 |
+
"normalized": false,
|
1559 |
+
"rstrip": false,
|
1560 |
+
"single_word": false,
|
1561 |
+
"special": true
|
1562 |
+
},
|
1563 |
+
"128195": {
|
1564 |
+
"content": "<|reserved_special_token_187|>",
|
1565 |
+
"lstrip": false,
|
1566 |
+
"normalized": false,
|
1567 |
+
"rstrip": false,
|
1568 |
+
"single_word": false,
|
1569 |
+
"special": true
|
1570 |
+
},
|
1571 |
+
"128196": {
|
1572 |
+
"content": "<|reserved_special_token_188|>",
|
1573 |
+
"lstrip": false,
|
1574 |
+
"normalized": false,
|
1575 |
+
"rstrip": false,
|
1576 |
+
"single_word": false,
|
1577 |
+
"special": true
|
1578 |
+
},
|
1579 |
+
"128197": {
|
1580 |
+
"content": "<|reserved_special_token_189|>",
|
1581 |
+
"lstrip": false,
|
1582 |
+
"normalized": false,
|
1583 |
+
"rstrip": false,
|
1584 |
+
"single_word": false,
|
1585 |
+
"special": true
|
1586 |
+
},
|
1587 |
+
"128198": {
|
1588 |
+
"content": "<|reserved_special_token_190|>",
|
1589 |
+
"lstrip": false,
|
1590 |
+
"normalized": false,
|
1591 |
+
"rstrip": false,
|
1592 |
+
"single_word": false,
|
1593 |
+
"special": true
|
1594 |
+
},
|
1595 |
+
"128199": {
|
1596 |
+
"content": "<|reserved_special_token_191|>",
|
1597 |
+
"lstrip": false,
|
1598 |
+
"normalized": false,
|
1599 |
+
"rstrip": false,
|
1600 |
+
"single_word": false,
|
1601 |
+
"special": true
|
1602 |
+
},
|
1603 |
+
"128200": {
|
1604 |
+
"content": "<|reserved_special_token_192|>",
|
1605 |
+
"lstrip": false,
|
1606 |
+
"normalized": false,
|
1607 |
+
"rstrip": false,
|
1608 |
+
"single_word": false,
|
1609 |
+
"special": true
|
1610 |
+
},
|
1611 |
+
"128201": {
|
1612 |
+
"content": "<|reserved_special_token_193|>",
|
1613 |
+
"lstrip": false,
|
1614 |
+
"normalized": false,
|
1615 |
+
"rstrip": false,
|
1616 |
+
"single_word": false,
|
1617 |
+
"special": true
|
1618 |
+
},
|
1619 |
+
"128202": {
|
1620 |
+
"content": "<|reserved_special_token_194|>",
|
1621 |
+
"lstrip": false,
|
1622 |
+
"normalized": false,
|
1623 |
+
"rstrip": false,
|
1624 |
+
"single_word": false,
|
1625 |
+
"special": true
|
1626 |
+
},
|
1627 |
+
"128203": {
|
1628 |
+
"content": "<|reserved_special_token_195|>",
|
1629 |
+
"lstrip": false,
|
1630 |
+
"normalized": false,
|
1631 |
+
"rstrip": false,
|
1632 |
+
"single_word": false,
|
1633 |
+
"special": true
|
1634 |
+
},
|
1635 |
+
"128204": {
|
1636 |
+
"content": "<|reserved_special_token_196|>",
|
1637 |
+
"lstrip": false,
|
1638 |
+
"normalized": false,
|
1639 |
+
"rstrip": false,
|
1640 |
+
"single_word": false,
|
1641 |
+
"special": true
|
1642 |
+
},
|
1643 |
+
"128205": {
|
1644 |
+
"content": "<|reserved_special_token_197|>",
|
1645 |
+
"lstrip": false,
|
1646 |
+
"normalized": false,
|
1647 |
+
"rstrip": false,
|
1648 |
+
"single_word": false,
|
1649 |
+
"special": true
|
1650 |
+
},
|
1651 |
+
"128206": {
|
1652 |
+
"content": "<|reserved_special_token_198|>",
|
1653 |
+
"lstrip": false,
|
1654 |
+
"normalized": false,
|
1655 |
+
"rstrip": false,
|
1656 |
+
"single_word": false,
|
1657 |
+
"special": true
|
1658 |
+
},
|
1659 |
+
"128207": {
|
1660 |
+
"content": "<|reserved_special_token_199|>",
|
1661 |
+
"lstrip": false,
|
1662 |
+
"normalized": false,
|
1663 |
+
"rstrip": false,
|
1664 |
+
"single_word": false,
|
1665 |
+
"special": true
|
1666 |
+
},
|
1667 |
+
"128208": {
|
1668 |
+
"content": "<|reserved_special_token_200|>",
|
1669 |
+
"lstrip": false,
|
1670 |
+
"normalized": false,
|
1671 |
+
"rstrip": false,
|
1672 |
+
"single_word": false,
|
1673 |
+
"special": true
|
1674 |
+
},
|
1675 |
+
"128209": {
|
1676 |
+
"content": "<|reserved_special_token_201|>",
|
1677 |
+
"lstrip": false,
|
1678 |
+
"normalized": false,
|
1679 |
+
"rstrip": false,
|
1680 |
+
"single_word": false,
|
1681 |
+
"special": true
|
1682 |
+
},
|
1683 |
+
"128210": {
|
1684 |
+
"content": "<|reserved_special_token_202|>",
|
1685 |
+
"lstrip": false,
|
1686 |
+
"normalized": false,
|
1687 |
+
"rstrip": false,
|
1688 |
+
"single_word": false,
|
1689 |
+
"special": true
|
1690 |
+
},
|
1691 |
+
"128211": {
|
1692 |
+
"content": "<|reserved_special_token_203|>",
|
1693 |
+
"lstrip": false,
|
1694 |
+
"normalized": false,
|
1695 |
+
"rstrip": false,
|
1696 |
+
"single_word": false,
|
1697 |
+
"special": true
|
1698 |
+
},
|
1699 |
+
"128212": {
|
1700 |
+
"content": "<|reserved_special_token_204|>",
|
1701 |
+
"lstrip": false,
|
1702 |
+
"normalized": false,
|
1703 |
+
"rstrip": false,
|
1704 |
+
"single_word": false,
|
1705 |
+
"special": true
|
1706 |
+
},
|
1707 |
+
"128213": {
|
1708 |
+
"content": "<|reserved_special_token_205|>",
|
1709 |
+
"lstrip": false,
|
1710 |
+
"normalized": false,
|
1711 |
+
"rstrip": false,
|
1712 |
+
"single_word": false,
|
1713 |
+
"special": true
|
1714 |
+
},
|
1715 |
+
"128214": {
|
1716 |
+
"content": "<|reserved_special_token_206|>",
|
1717 |
+
"lstrip": false,
|
1718 |
+
"normalized": false,
|
1719 |
+
"rstrip": false,
|
1720 |
+
"single_word": false,
|
1721 |
+
"special": true
|
1722 |
+
},
|
1723 |
+
"128215": {
|
1724 |
+
"content": "<|reserved_special_token_207|>",
|
1725 |
+
"lstrip": false,
|
1726 |
+
"normalized": false,
|
1727 |
+
"rstrip": false,
|
1728 |
+
"single_word": false,
|
1729 |
+
"special": true
|
1730 |
+
},
|
1731 |
+
"128216": {
|
1732 |
+
"content": "<|reserved_special_token_208|>",
|
1733 |
+
"lstrip": false,
|
1734 |
+
"normalized": false,
|
1735 |
+
"rstrip": false,
|
1736 |
+
"single_word": false,
|
1737 |
+
"special": true
|
1738 |
+
},
|
1739 |
+
"128217": {
|
1740 |
+
"content": "<|reserved_special_token_209|>",
|
1741 |
+
"lstrip": false,
|
1742 |
+
"normalized": false,
|
1743 |
+
"rstrip": false,
|
1744 |
+
"single_word": false,
|
1745 |
+
"special": true
|
1746 |
+
},
|
1747 |
+
"128218": {
|
1748 |
+
"content": "<|reserved_special_token_210|>",
|
1749 |
+
"lstrip": false,
|
1750 |
+
"normalized": false,
|
1751 |
+
"rstrip": false,
|
1752 |
+
"single_word": false,
|
1753 |
+
"special": true
|
1754 |
+
},
|
1755 |
+
"128219": {
|
1756 |
+
"content": "<|reserved_special_token_211|>",
|
1757 |
+
"lstrip": false,
|
1758 |
+
"normalized": false,
|
1759 |
+
"rstrip": false,
|
1760 |
+
"single_word": false,
|
1761 |
+
"special": true
|
1762 |
+
},
|
1763 |
+
"128220": {
|
1764 |
+
"content": "<|reserved_special_token_212|>",
|
1765 |
+
"lstrip": false,
|
1766 |
+
"normalized": false,
|
1767 |
+
"rstrip": false,
|
1768 |
+
"single_word": false,
|
1769 |
+
"special": true
|
1770 |
+
},
|
1771 |
+
"128221": {
|
1772 |
+
"content": "<|reserved_special_token_213|>",
|
1773 |
+
"lstrip": false,
|
1774 |
+
"normalized": false,
|
1775 |
+
"rstrip": false,
|
1776 |
+
"single_word": false,
|
1777 |
+
"special": true
|
1778 |
+
},
|
1779 |
+
"128222": {
|
1780 |
+
"content": "<|reserved_special_token_214|>",
|
1781 |
+
"lstrip": false,
|
1782 |
+
"normalized": false,
|
1783 |
+
"rstrip": false,
|
1784 |
+
"single_word": false,
|
1785 |
+
"special": true
|
1786 |
+
},
|
1787 |
+
"128223": {
|
1788 |
+
"content": "<|reserved_special_token_215|>",
|
1789 |
+
"lstrip": false,
|
1790 |
+
"normalized": false,
|
1791 |
+
"rstrip": false,
|
1792 |
+
"single_word": false,
|
1793 |
+
"special": true
|
1794 |
+
},
|
1795 |
+
"128224": {
|
1796 |
+
"content": "<|reserved_special_token_216|>",
|
1797 |
+
"lstrip": false,
|
1798 |
+
"normalized": false,
|
1799 |
+
"rstrip": false,
|
1800 |
+
"single_word": false,
|
1801 |
+
"special": true
|
1802 |
+
},
|
1803 |
+
"128225": {
|
1804 |
+
"content": "<|reserved_special_token_217|>",
|
1805 |
+
"lstrip": false,
|
1806 |
+
"normalized": false,
|
1807 |
+
"rstrip": false,
|
1808 |
+
"single_word": false,
|
1809 |
+
"special": true
|
1810 |
+
},
|
1811 |
+
"128226": {
|
1812 |
+
"content": "<|reserved_special_token_218|>",
|
1813 |
+
"lstrip": false,
|
1814 |
+
"normalized": false,
|
1815 |
+
"rstrip": false,
|
1816 |
+
"single_word": false,
|
1817 |
+
"special": true
|
1818 |
+
},
|
1819 |
+
"128227": {
|
1820 |
+
"content": "<|reserved_special_token_219|>",
|
1821 |
+
"lstrip": false,
|
1822 |
+
"normalized": false,
|
1823 |
+
"rstrip": false,
|
1824 |
+
"single_word": false,
|
1825 |
+
"special": true
|
1826 |
+
},
|
1827 |
+
"128228": {
|
1828 |
+
"content": "<|reserved_special_token_220|>",
|
1829 |
+
"lstrip": false,
|
1830 |
+
"normalized": false,
|
1831 |
+
"rstrip": false,
|
1832 |
+
"single_word": false,
|
1833 |
+
"special": true
|
1834 |
+
},
|
1835 |
+
"128229": {
|
1836 |
+
"content": "<|reserved_special_token_221|>",
|
1837 |
+
"lstrip": false,
|
1838 |
+
"normalized": false,
|
1839 |
+
"rstrip": false,
|
1840 |
+
"single_word": false,
|
1841 |
+
"special": true
|
1842 |
+
},
|
1843 |
+
"128230": {
|
1844 |
+
"content": "<|reserved_special_token_222|>",
|
1845 |
+
"lstrip": false,
|
1846 |
+
"normalized": false,
|
1847 |
+
"rstrip": false,
|
1848 |
+
"single_word": false,
|
1849 |
+
"special": true
|
1850 |
+
},
|
1851 |
+
"128231": {
|
1852 |
+
"content": "<|reserved_special_token_223|>",
|
1853 |
+
"lstrip": false,
|
1854 |
+
"normalized": false,
|
1855 |
+
"rstrip": false,
|
1856 |
+
"single_word": false,
|
1857 |
+
"special": true
|
1858 |
+
},
|
1859 |
+
"128232": {
|
1860 |
+
"content": "<|reserved_special_token_224|>",
|
1861 |
+
"lstrip": false,
|
1862 |
+
"normalized": false,
|
1863 |
+
"rstrip": false,
|
1864 |
+
"single_word": false,
|
1865 |
+
"special": true
|
1866 |
+
},
|
1867 |
+
"128233": {
|
1868 |
+
"content": "<|reserved_special_token_225|>",
|
1869 |
+
"lstrip": false,
|
1870 |
+
"normalized": false,
|
1871 |
+
"rstrip": false,
|
1872 |
+
"single_word": false,
|
1873 |
+
"special": true
|
1874 |
+
},
|
1875 |
+
"128234": {
|
1876 |
+
"content": "<|reserved_special_token_226|>",
|
1877 |
+
"lstrip": false,
|
1878 |
+
"normalized": false,
|
1879 |
+
"rstrip": false,
|
1880 |
+
"single_word": false,
|
1881 |
+
"special": true
|
1882 |
+
},
|
1883 |
+
"128235": {
|
1884 |
+
"content": "<|reserved_special_token_227|>",
|
1885 |
+
"lstrip": false,
|
1886 |
+
"normalized": false,
|
1887 |
+
"rstrip": false,
|
1888 |
+
"single_word": false,
|
1889 |
+
"special": true
|
1890 |
+
},
|
1891 |
+
"128236": {
|
1892 |
+
"content": "<|reserved_special_token_228|>",
|
1893 |
+
"lstrip": false,
|
1894 |
+
"normalized": false,
|
1895 |
+
"rstrip": false,
|
1896 |
+
"single_word": false,
|
1897 |
+
"special": true
|
1898 |
+
},
|
1899 |
+
"128237": {
|
1900 |
+
"content": "<|reserved_special_token_229|>",
|
1901 |
+
"lstrip": false,
|
1902 |
+
"normalized": false,
|
1903 |
+
"rstrip": false,
|
1904 |
+
"single_word": false,
|
1905 |
+
"special": true
|
1906 |
+
},
|
1907 |
+
"128238": {
|
1908 |
+
"content": "<|reserved_special_token_230|>",
|
1909 |
+
"lstrip": false,
|
1910 |
+
"normalized": false,
|
1911 |
+
"rstrip": false,
|
1912 |
+
"single_word": false,
|
1913 |
+
"special": true
|
1914 |
+
},
|
1915 |
+
"128239": {
|
1916 |
+
"content": "<|reserved_special_token_231|>",
|
1917 |
+
"lstrip": false,
|
1918 |
+
"normalized": false,
|
1919 |
+
"rstrip": false,
|
1920 |
+
"single_word": false,
|
1921 |
+
"special": true
|
1922 |
+
},
|
1923 |
+
"128240": {
|
1924 |
+
"content": "<|reserved_special_token_232|>",
|
1925 |
+
"lstrip": false,
|
1926 |
+
"normalized": false,
|
1927 |
+
"rstrip": false,
|
1928 |
+
"single_word": false,
|
1929 |
+
"special": true
|
1930 |
+
},
|
1931 |
+
"128241": {
|
1932 |
+
"content": "<|reserved_special_token_233|>",
|
1933 |
+
"lstrip": false,
|
1934 |
+
"normalized": false,
|
1935 |
+
"rstrip": false,
|
1936 |
+
"single_word": false,
|
1937 |
+
"special": true
|
1938 |
+
},
|
1939 |
+
"128242": {
|
1940 |
+
"content": "<|reserved_special_token_234|>",
|
1941 |
+
"lstrip": false,
|
1942 |
+
"normalized": false,
|
1943 |
+
"rstrip": false,
|
1944 |
+
"single_word": false,
|
1945 |
+
"special": true
|
1946 |
+
},
|
1947 |
+
"128243": {
|
1948 |
+
"content": "<|reserved_special_token_235|>",
|
1949 |
+
"lstrip": false,
|
1950 |
+
"normalized": false,
|
1951 |
+
"rstrip": false,
|
1952 |
+
"single_word": false,
|
1953 |
+
"special": true
|
1954 |
+
},
|
1955 |
+
"128244": {
|
1956 |
+
"content": "<|reserved_special_token_236|>",
|
1957 |
+
"lstrip": false,
|
1958 |
+
"normalized": false,
|
1959 |
+
"rstrip": false,
|
1960 |
+
"single_word": false,
|
1961 |
+
"special": true
|
1962 |
+
},
|
1963 |
+
"128245": {
|
1964 |
+
"content": "<|reserved_special_token_237|>",
|
1965 |
+
"lstrip": false,
|
1966 |
+
"normalized": false,
|
1967 |
+
"rstrip": false,
|
1968 |
+
"single_word": false,
|
1969 |
+
"special": true
|
1970 |
+
},
|
1971 |
+
"128246": {
|
1972 |
+
"content": "<|reserved_special_token_238|>",
|
1973 |
+
"lstrip": false,
|
1974 |
+
"normalized": false,
|
1975 |
+
"rstrip": false,
|
1976 |
+
"single_word": false,
|
1977 |
+
"special": true
|
1978 |
+
},
|
1979 |
+
"128247": {
|
1980 |
+
"content": "<|reserved_special_token_239|>",
|
1981 |
+
"lstrip": false,
|
1982 |
+
"normalized": false,
|
1983 |
+
"rstrip": false,
|
1984 |
+
"single_word": false,
|
1985 |
+
"special": true
|
1986 |
+
},
|
1987 |
+
"128248": {
|
1988 |
+
"content": "<|reserved_special_token_240|>",
|
1989 |
+
"lstrip": false,
|
1990 |
+
"normalized": false,
|
1991 |
+
"rstrip": false,
|
1992 |
+
"single_word": false,
|
1993 |
+
"special": true
|
1994 |
+
},
|
1995 |
+
"128249": {
|
1996 |
+
"content": "<|reserved_special_token_241|>",
|
1997 |
+
"lstrip": false,
|
1998 |
+
"normalized": false,
|
1999 |
+
"rstrip": false,
|
2000 |
+
"single_word": false,
|
2001 |
+
"special": true
|
2002 |
+
},
|
2003 |
+
"128250": {
|
2004 |
+
"content": "<|reserved_special_token_242|>",
|
2005 |
+
"lstrip": false,
|
2006 |
+
"normalized": false,
|
2007 |
+
"rstrip": false,
|
2008 |
+
"single_word": false,
|
2009 |
+
"special": true
|
2010 |
+
},
|
2011 |
+
"128251": {
|
2012 |
+
"content": "<|reserved_special_token_243|>",
|
2013 |
+
"lstrip": false,
|
2014 |
+
"normalized": false,
|
2015 |
+
"rstrip": false,
|
2016 |
+
"single_word": false,
|
2017 |
+
"special": true
|
2018 |
+
},
|
2019 |
+
"128252": {
|
2020 |
+
"content": "<|reserved_special_token_244|>",
|
2021 |
+
"lstrip": false,
|
2022 |
+
"normalized": false,
|
2023 |
+
"rstrip": false,
|
2024 |
+
"single_word": false,
|
2025 |
+
"special": true
|
2026 |
+
},
|
2027 |
+
"128253": {
|
2028 |
+
"content": "<|reserved_special_token_245|>",
|
2029 |
+
"lstrip": false,
|
2030 |
+
"normalized": false,
|
2031 |
+
"rstrip": false,
|
2032 |
+
"single_word": false,
|
2033 |
+
"special": true
|
2034 |
+
},
|
2035 |
+
"128254": {
|
2036 |
+
"content": "<|reserved_special_token_246|>",
|
2037 |
+
"lstrip": false,
|
2038 |
+
"normalized": false,
|
2039 |
+
"rstrip": false,
|
2040 |
+
"single_word": false,
|
2041 |
+
"special": true
|
2042 |
+
},
|
2043 |
+
"128255": {
|
2044 |
+
"content": "<|reserved_special_token_247|>",
|
2045 |
+
"lstrip": false,
|
2046 |
+
"normalized": false,
|
2047 |
+
"rstrip": false,
|
2048 |
+
"single_word": false,
|
2049 |
+
"special": true
|
2050 |
+
},
|
2051 |
+
"128256": {
|
2052 |
+
"content": "[PAD]",
|
2053 |
+
"lstrip": false,
|
2054 |
+
"normalized": false,
|
2055 |
+
"rstrip": false,
|
2056 |
+
"single_word": false,
|
2057 |
+
"special": true
|
2058 |
+
},
|
2059 |
+
"128257": {
|
2060 |
+
"content": "<unk>",
|
2061 |
+
"lstrip": false,
|
2062 |
+
"normalized": false,
|
2063 |
+
"rstrip": false,
|
2064 |
+
"single_word": false,
|
2065 |
+
"special": true
|
2066 |
+
}
|
2067 |
+
},
|
2068 |
+
"bos_token": "<|begin_of_text|>",
|
2069 |
+
"chat_template": "{{- bos_token }}\n{%- if custom_tools is defined %}\n {%- set tools = custom_tools %}\n{%- endif %}\n{%- if not tools_in_user_message is defined %}\n {%- set tools_in_user_message = true %}\n{%- endif %}\n{%- if not date_string is defined %}\n {%- set date_string = \"26 Jul 2024\" %}\n{%- endif %}\n{%- if not tools is defined %}\n {%- set tools = none %}\n{%- endif %}\n\n{#- This block extracts the system message, so we can slot it into the right place. #}\n{%- if messages[0]['role'] == 'system' %}\n {%- set system_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n{%- else %}\n {%- set system_message = \"\" %}\n{%- endif %}\n\n{#- System message + builtin tools #}\n{{- \"<|start_header_id|>system<|end_header_id|>\\n\\n\" }}\n{%- if builtin_tools is defined or tools is not none %}\n {{- \"Environment: ipython\\n\" }}\n{%- endif %}\n{%- if builtin_tools is defined %}\n {{- \"Tools: \" + builtin_tools | reject('equalto', 'code_interpreter') | join(\", \") + \"\\n\\n\"}}\n{%- endif %}\n{{- \"Cutting Knowledge Date: December 2023\\n\" }}\n{{- \"Today Date: \" + date_string + \"\\n\\n\" }}\n{%- if tools is not none and not tools_in_user_message %}\n {{- \"You have access to the following functions. To call a function, please respond with JSON for a function call.\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n{%- endif %}\n{{- system_message }}\n{{- \"<|eot_id|>\" }}\n\n{#- Custom tools are passed in a user message with some extra guidance #}\n{%- if tools_in_user_message and not tools is none %}\n {#- Extract the first user message so we can plug it in here #}\n {%- if messages | length != 0 %}\n {%- set first_user_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n {%- else %}\n {{- raise_exception(\"Cannot put tools in the first user message when there's no first user message!\") }}\n{%- endif %}\n {{- '<|start_header_id|>user<|end_header_id|>\\n\\n' -}}\n {{- \"Given the following functions, please respond with a JSON for a function call \" }}\n {{- \"with its proper arguments that best answers the given prompt.\\n\\n\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n {{- first_user_message + \"<|eot_id|>\"}}\n{%- endif %}\n\n{%- for message in messages %}\n {%- if not (message.role == 'ipython' or message.role == 'tool' or 'tool_calls' in message) %}\n {{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\\n\\n'+ message['content'] | trim + '<|eot_id|>' }}\n {%- elif 'tool_calls' in message %}\n {%- if not message.tool_calls|length == 1 %}\n {{- raise_exception(\"This model only supports single tool-calls at once!\") }}\n {%- endif %}\n {%- set tool_call = message.tool_calls[0].function %}\n {%- if builtin_tools is defined and tool_call.name in builtin_tools %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- \"<|python_tag|>\" + tool_call.name + \".call(\" }}\n {%- for arg_name, arg_val in tool_call.arguments | items %}\n {{- arg_name + '=\"' + arg_val + '\"' }}\n {%- if not loop.last %}\n {{- \", \" }}\n {%- endif %}\n {%- endfor %}\n {{- \")\" }}\n {%- else %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- '{\"name\": \"' + tool_call.name + '\", ' }}\n {{- '\"parameters\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- \"}\" }}\n {%- endif %}\n {%- if builtin_tools is defined %}\n {#- This means we're in ipython mode #}\n {{- \"<|eom_id|>\" }}\n {%- else %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n {%- elif message.role == \"tool\" or message.role == \"ipython\" %}\n {{- \"<|start_header_id|>ipython<|end_header_id|>\\n\\n\" }}\n {%- if message.content is mapping or message.content is iterable %}\n {{- message.content | tojson }}\n {%- else %}\n {{- message.content }}\n {%- endif %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' }}\n{%- endif %}\n",
|
2070 |
+
"clean_up_tokenization_spaces": true,
|
2071 |
+
"eos_token": "<|eot_id|>",
|
2072 |
+
"model_input_names": [
|
2073 |
+
"input_ids",
|
2074 |
+
"attention_mask"
|
2075 |
+
],
|
2076 |
+
"model_max_length": 131072,
|
2077 |
+
"pad_token": "[PAD]",
|
2078 |
+
"padding_side": "right",
|
2079 |
+
"tokenizer_class": "PreTrainedTokenizerFast",
|
2080 |
+
"unk_token": "<unk>"
|
2081 |
+
}
|
utils.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import warnings
|
2 |
+
from dataclasses import dataclass
|
3 |
+
from typing import Optional, Tuple
|
4 |
+
|
5 |
+
import torch
|
6 |
+
|
7 |
+
from transformers.utils import ModelOutput
|
8 |
+
|
9 |
+
@dataclass
|
10 |
+
class BaseModelOutputWithPastAndSeer(ModelOutput):
|
11 |
+
last_hidden_state: torch.FloatTensor = None
|
12 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
|
13 |
+
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
14 |
+
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
|
15 |
+
mask_gate_predictions: Optional[Tuple[torch.FloatTensor, ...]] = None
|
16 |
+
mask_ground_truths: Optional[Tuple[torch.FloatTensor, ...]] = None
|
17 |
+
mask_loss: torch.FloatTensor = None
|
18 |
+
|
19 |
+
|
20 |
+
@dataclass
|
21 |
+
class CausalLMOutputWithPastAndSeer(ModelOutput):
|
22 |
+
loss: Optional[torch.FloatTensor] = None
|
23 |
+
logits: torch.FloatTensor = None
|
24 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
|
25 |
+
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
26 |
+
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
|
27 |
+
mask_gate_predictions: Optional[Tuple[torch.FloatTensor, ...]] = None
|
28 |
+
mask_ground_truths: Optional[Tuple[torch.FloatTensor, ...]] = None
|
29 |
+
mask_loss: torch.FloatTensor = None
|
30 |
+
|