Seungyoun commited on
Commit
5dacd74
·
verified ·
1 Parent(s): 8cfaceb

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +145 -181
README.md CHANGED
@@ -1,199 +1,163 @@
1
- ---
2
- library_name: transformers
3
- tags: []
4
- ---
5
-
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
 
 
 
92
 
93
- #### Training Hyperparameters
94
 
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
 
171
- ## Citation [optional]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
172
 
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
 
175
- **BibTeX:**
176
 
177
- [More Information Needed]
 
 
 
 
 
 
 
 
178
 
179
- **APA:**
180
 
181
- [More Information Needed]
182
 
183
- ## Glossary [optional]
 
 
 
 
 
 
 
 
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
 
187
- [More Information Needed]
188
 
189
- ## More Information [optional]
190
 
191
- [More Information Needed]
 
 
 
192
 
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
 
 
 
 
 
 
 
 
1
+ # Qwen2.5‑3B Search‑R1‑Multiturn (reproduce)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
 
3
+ > **Author · Seungyoun Shin**
4
+ > 🤗 Model Hub: [https://huggingface.co/Seungyoun/qwen2.5-3b-it\_searchR1-like-multiturn](https://huggingface.co/Seungyoun/qwen2.5-3b-it_searchR1-like-multiturn)
5
 
6
+ A faithful re‑implementation of the *Search‑R1* on **Qwen 2.5‑3B**, trained purely on the Wikipedia‑based Search‑R1 corpus (HotpotQA train split) with GRPO via the open‑source [VERL](https://github.com/volcengine/verl) framework.
7
 
8
+ ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
 
10
+ ## 🚀 Quick start
11
+
12
+
13
+ ### Full inference script (Using duck-duck-go)
14
+
15
+ Below is the exact script used in our experiments—drop it next to the model weights and run.
16
+
17
+ ```python
18
+ #!/usr/bin/env python3
19
+ """
20
+ Minimal **multi‑turn tool‑calling** demo for the Qwen2.5‑3B Search‑R1 model
21
+
22
+ Highlights
23
+ -----------
24
+ * Presents the `search` function schema via `tools=[…]` so the model emits JSON calls.
25
+ * Detects `<tool_call>` → parses `{name:"search", arguments:{query_list:[…]}}` and runs DuckDuckGo.
26
+ * Streams results back in `<tool_response>` until an `<answer>` block appears.
27
+ """
28
+ from __future__ import annotations
29
+ import json, re, sys
30
+ from typing import List
31
+ import torch
32
+ from transformers import AutoTokenizer, AutoModelForCausalLM
33
+ from duckduckgo_search import DDGS
34
+
35
+ DEFAULT_SYSTEM_CONTENT = "You are a helpful and harmless assistant."
36
+ DEFAULT_USER_CONTENT_PREFIX = (
37
+ "Answer the given question. You must conduct reasoning inside <think> and "
38
+ "</think> first every time you get new information. After reasoning, if you "
39
+ "find you lack some knowledge, you can call a search engine by <tool_call> "
40
+ "query </tool_call> and it will return the top searched results between "
41
+ "<tool_response> and </tool_response>. You can search as many times as your "
42
+ "want. If you find no further external knowledge needed, you can directly "
43
+ "provide the answer inside <answer> and </answer>, without detailed "
44
+ "illustrations. For example, <answer> Beijing </answer>. Question: "
45
+ )
46
+ MODEL_NAME = "Seungyoun/qwen2.5-3b-it_searchR1-like-multiturn"
47
+ MAX_TURNS, MAX_RESPONSE_TOKENS = 4, 512
48
+ DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
49
+
50
+ SEARCH_SCHEMA = {
51
+ "type": "function",
52
+ "function": {
53
+ "name": "search",
54
+ "description": "DuckDuckGo web search",
55
+ "parameters": {
56
+ "type": "object",
57
+ "properties": {
58
+ "query_list": {
59
+ "type": "array",
60
+ "items": {"type": "string"},
61
+ "description": "Fully‑formed semantic queries."
62
+ }
63
+ },
64
+ "required": ["query_list"],
65
+ },
66
+ },
67
+ }
68
+
69
+ def create_prompt(q: str) -> List[dict]:
70
+ return [
71
+ {"role": "system", "content": DEFAULT_SYSTEM_CONTENT},
72
+ {"role": "user", "content": DEFAULT_USER_CONTENT_PREFIX + q},
73
+ ]
74
+
75
+ def ddg_search(query: str, k: int = 5) -> str:
76
+ with DDGS() as ddgs:
77
+ hits = list(ddgs.text(query, safesearch="moderate", max_results=k))
78
+ return "\n".join(f"{i+1}. {h['title']} – {h['body']} ({h['href']})" for i,h in enumerate(hits))
79
+
80
+ def extract_queries(raw: str) -> List[str]:
81
+ try:
82
+ payload = json.loads(raw)
83
+ if payload.get("name") == "search":
84
+ return payload.get("arguments", {}).get("query_list", [])
85
+ except json.JSONDecodeError:
86
+ pass
87
+ return [raw]
88
+
89
+ def main() -> None:
90
+ q = sys.argv[1] if len(sys.argv) > 1 else "How is the weather in Seoul?"
91
+ tok = AutoTokenizer.from_pretrained(MODEL_NAME, padding_side="left")
92
+ model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype=torch.bfloat16, device_map="auto")
93
+ msgs = create_prompt(q)
94
+ history = tok.apply_chat_template(msgs, tools=[SEARCH_SCHEMA], add_generation_prompt=True, tokenize=False)
95
+ pattern = re.compile(r"<tool_call>\s*(.*?)\s*</tool_call>", re.S)
96
+ for turn in range(MAX_TURNS):
97
+ enc = tok(history, return_tensors="pt").to(DEVICE)
98
+ out = model.generate(**enc, max_new_tokens=MAX_RESPONSE_TOKENS, temperature=0.7, do_sample=True)
99
+ new = tok.decode(out[0][enc.input_ids.shape[1]:], skip_special_tokens=True)
100
+ print(f"\n===== Assistant (turn {turn+1}) =====\n{new}\n")
101
+ history += new
102
+ m = pattern.search(new)
103
+ if not m: break
104
+ results = "\n---\n".join(ddg_search(q,5) for q in extract_queries(m.group(1)))
105
+ history += f"<tool_response>\n{results}\n</tool_response>"
106
+
107
+ if __name__ == "__main__":
108
+ main()
109
+ ```
110
 
111
+ ---
112
 
113
+ ## 🧠 Reasoning style
114
 
115
+ ```
116
+ <think> … chain‑of‑thought … </think>
117
+ <tool_call>{"name":"search", "arguments":{"query_list":["…"]}}</tool_call>
118
+ <tool_response>
119
+ 1. web result
120
+
121
+ </tool_response>
122
+ <answer> final concise answer </answer>
123
+ ```
124
 
125
+ ---
126
 
127
+ ## 📊 Evaluation (Pass@1)
128
 
129
+ | Dataset | Original Search‑R1 (Qwen2.5‑3B) | **This work** |
130
+ | --------- | ------------------------------- | ------------- |
131
+ | NQ | 0.397 | **0.406** |
132
+ | TriviaQA | 0.565 | **0.582** |
133
+ | PopQA | 0.391 | **0.420** |
134
+ | HotpotQA | 0.331 | **0.338** |
135
+ | 2Wiki | 0.310 | **0.332** |
136
+ | Musique | **0.124** | 0.111 |
137
+ | Bamboogle | 0.232 | **0.296** |
138
 
 
139
 
140
+ ---
141
 
142
+ ## 🤝 Acknowledgements
143
 
144
+ * [Qwen LM](https://github.com/QwenLM) for the base model.
145
+ * [Search‑R1 authors](https://github.com/PeterGriffinJin/Search-R1) for the dataset & baseline.
146
+ * [Volcengine **VERL**](https://github.com/volcengine/verl) for the GRPO training toolkit.
147
+ * HuggingFace for the open ecosystem.
148
 
149
+ ---
150
 
151
+ ## 📄 License & citation
152
 
153
+ Code is released under **MIT**; model weights under the original **Qwen open‑source license**.
154
 
155
+ ```bibtex
156
+ @misc{shin2025qwen25_searchr1_multiturn,
157
+ author = {Seungyoun Shin},
158
+ title = {Qwen2.5-3B Search-R1-Multiturn (reproduce)},
159
+ year = 2025,
160
+ howpublished = {HuggingFace Model Hub},
161
+ url = {https://huggingface.co/Seungyoun/qwen2.5-3b-it_searchR1-like-multiturn}
162
+ }
163
+ ```