File size: 9,378 Bytes
17151d8
6101d62
 
 
 
 
 
17151d8
 
6101d62
17151d8
6101d62
 
 
 
17151d8
6101d62
17151d8
6101d62
17151d8
6101d62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a51abcd
6101d62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17151d8
6101d62
17151d8
6101d62
17151d8
6101d62
 
 
 
 
 
 
 
 
17151d8
6101d62
17151d8
6101d62
17151d8
6101d62
 
 
 
 
 
 
 
 
 
17151d8
6101d62
17151d8
6101d62
17151d8
6101d62
 
 
 
17151d8
6101d62
17151d8
6101d62
17151d8
6101d62
17151d8
6101d62
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
---
datasets:
- PeterJinGo/nq_hotpotqa_train
language:
- en
base_model:
- Qwen/Qwen2.5-7B-Instruct
---

# Qwen2.5‑7B Search‑R1‑Multiturn (reproduce)

> **Author · Seungyoun Shin**
> 
> 🤗 Model Hub: [hf](https://huggingface.co/Seungyoun/qwen2.5-7b-it_searchR1-like-sgl-multiturn)
> 

A faithful re‑implementation of the *Search‑R1* on **Qwen 2.5‑7B-instruct**, trained purely on `nq-hotpotqa-train` with GRPO via the open‑source [VERL](https://github.com/volcengine/verl) framework.

---

## 🚀 Quick start

```bash
pip install "transformers>=4.41" torch duckduckgo_search>=6.3.5 accelerate
```

### Full inference script

Below is the exact script used in our experiments—drop it next to the model weights and run.

```python
#!/usr/bin/env python3
"""
Minimal **multi‑turn tool‑calling** demo for the Qwen2.5‑3b‑it_searchR1‑like model

Key points
-----------
* Supplies the DuckDuckGo *search* tool schema via `tools=[…]` so the model emits JSON‑style calls.
* Detects `<tool_call>` → parses JSON `{name:…, arguments:{query_list:[…]}}` and runs DuckDuckGo for each query.
* Streams the results back inside `<tool_response>` so the model can reason again, up to `MAX_TURNS`.

Install once:
    pip install "duckduckgo_search>=6.3.5"

Run:
    python3 search_r1_infer.py "How is the weather in Seoul?"
"""

from __future__ import annotations

import json
import re
import sys
from typing import List

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from duckduckgo_search import DDGS

# ----------------------------------------------------------------------------
# Color codes for terminal output
# ----------------------------------------------------------------------------
class Colors:
    RESET = '\033[0m'
    BOLD = '\033[1m'
    RED = '\033[91m'
    GREEN = '\033[92m'
    YELLOW = '\033[93m'
    BLUE = '\033[94m'
    MAGENTA = '\033[95m'
    CYAN = '\033[96m'

# ----------------------------------------------------------------------------
# Constants & Prompt Template
# ----------------------------------------------------------------------------
DEFAULT_SYSTEM_CONTENT = "You are a helpful and harmless assistant."
DEFAULT_USER_CONTENT_PREFIX = (
    "Answer the given question. You must conduct reasoning inside <think> and "
    "</think> first every time you get new information. After reasoning, if you "
    "find you lack some knowledge, you can call a search engine by <tool_call> "
    "query </tool_call> and it will return the top searched results between "
    "<tool_response> and </tool_response>. You can search as many times as your "
    "want. If you find no further external knowledge needed, you can directly "
    "provide the answer inside <answer> and </answer>, without detailed "
    "illustrations. For example, <answer> Beijing </answer>. Question: "
)

MODEL_NAME = "Seungyoun/qwen2.5-7b-it_searchR1-like-sgl-multiturn"
MAX_TURNS = 5
MAX_RESPONSE_TOKENS = 8192
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"

# ----------------------------------------------------------------------------
# Tool schema (JSON mirror of search_tool_config.yaml)
# ----------------------------------------------------------------------------
SEARCH_SCHEMA = {
    "type": "function",
    "function": {
        "name": "search",
        "description": "Searches the web for relevant information based on the given query.",
        "parameters": {
            "type": "object",
            "properties": {
                "query_list": {
                    "type": "array",
                    "items": {"type": "string"},
                    "description": (
                        "A list of fully‑formed semantic queries. The tool will return "
                        "search results for each query."
                    ),
                }
            },
            "required": ["query_list"],
        },
    },
}

# ----------------------------------------------------------------------------
# Helper functions
# ----------------------------------------------------------------------------

def create_prompt(question: str) -> List[dict]:
    """Build the initial chat prompt."""
    return [
        {"role": "system", "content": DEFAULT_SYSTEM_CONTENT},
        {"role": "user", "content": DEFAULT_USER_CONTENT_PREFIX + question},
    ]


def ddg_search_one(query: str, k: int = 5) -> str:
    """Return top‑k DuckDuckGo results joined by newlines."""
    with DDGS() as ddgs:
        hits = list(ddgs.text(query, safesearch="moderate", max_results=k))
    return "\n".join(
        f"{i+1}. {h['title']} – {h['body']} ({h['href']})" for i, h in enumerate(hits)
    )


def extract_queries(raw: str) -> List[str]:
    """Parse the JSON inside <tool_call> and return the `query_list`. Fallback to raw."""
    try:
        payload = json.loads(raw)
        if (
            isinstance(payload, dict)
            and payload.get("name") == "search"
            and isinstance(payload.get("arguments"), dict)
        ):
            qlist = payload["arguments"].get("query_list", [])
            return [q for q in qlist if isinstance(q, str)]
    except json.JSONDecodeError:
        pass  # raw is not JSON → treat as literal
    return [raw]


# ----------------------------------------------------------------------------
# Main driver
# ----------------------------------------------------------------------------

def main() -> None:
    question = sys.argv[1] if len(sys.argv) > 1 else "Who is the president of Korea?"

    tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, padding_side="left")
    model = AutoModelForCausalLM.from_pretrained(
        MODEL_NAME, torch_dtype=torch.bfloat16, device_map="auto"
    )

    messages = create_prompt(question)
    chat_history = tokenizer.apply_chat_template(
        messages,
        tools=[SEARCH_SCHEMA],  # expose tool to the model
        add_generation_prompt=True,
        tokenize=False,
    )

    tool_call_pattern = re.compile(r"<tool_call>\s*(.*?)\s*</tool_call>", re.S)

    for turn in range(MAX_TURNS):
        chat_history = tokenizer.apply_chat_template(
            messages,
            tools=[SEARCH_SCHEMA],  # expose tool to the model
            add_generation_prompt=True,
            tokenize=False,
        )
        enc = tokenizer(chat_history, return_tensors="pt").to(DEVICE)
        out = model.generate(
            **enc,
            max_new_tokens=MAX_RESPONSE_TOKENS,
            temperature=0.1,
            top_p=0.9,
            do_sample=True,
        )
        new_text = tokenizer.decode(out[0][enc.input_ids.shape[1] :], skip_special_tokens=True)
        print(f"\n===== Assistant (turn {turn+1}) =====\n{new_text}\n")
        chat_history += new_text

        m = tool_call_pattern.search(new_text)
        if not m:
            break  # finished – no tool call

        queries = extract_queries(m.group(1))
        all_results: list[str] = []
        for q in queries:
            print(f"{Colors.CYAN}{Colors.BOLD}[Tool Call] 검색 쿼리: {q}{Colors.RESET}")
            search_result = ddg_search_one(q, k=5)
            all_results.append(search_result)
            print(f"{Colors.GREEN}[Tool Response]{Colors.RESET}")
            print(f"{Colors.GREEN}{search_result}{Colors.RESET}")
            print(f"{Colors.GREEN}{'='*50}{Colors.RESET}\n")
        
        tool_response_block = "<tool_response>\n" + "\n---\n".join(all_results) + "\n</tool_response>"
        messages.append({"role": "user", "content": tool_response_block})
        chat_history += tool_response_block  # feed back into next turn

if __name__ == "__main__":
    main()
```

---

## 🧠 Reasoning style

```
<think> … chain‑of‑thought … </think>
<tool_call>{"name":"search", "arguments":{"query_list":["…"]}}</tool_call>
<tool_response>
1. web result

</tool_response>
<answer> final concise answer </answer>
```

---

## 📊 Evaluation (Pass@1)

| Dataset   | Original Search‑R1 (Qwen2.5‑7B-it) | **This work** |
| --------- | ------------------------------- | ------------- |
| NQ        | 0.393                           | **0.422**     |
| TriviaQA  | 0.610                           | **0.612**     |
| PopQA     | 0.397                           | **0.450**     |
| HotpotQA  | **0.370**                       | 0.366         |
| 2Wiki     | **0.414**                       | 0.371         |
| Musique   | **0.143**                       | 0.124         |
| Bamboogle | 0.368                           | **0.376**     |
| Avg.      | 0.385                           | **0.389**     |

---

## 🤝 Acknowledgements

* [Qwen LM](https://github.com/QwenLM) for the base model.
* [Search‑R1 authors](https://github.com/PeterGriffinJin/Search-R1) for the dataset & baseline.
* [Volcengine **VERL**](https://github.com/volcengine/verl) for the GRPO training toolkit.
* HuggingFace for the open ecosystem.

---

## 📄 License & citation

Code is released under **MIT**; model weights under the original **Qwen open‑source license**.

```bibtex
@misc{shin2025qwen25_searchr1_multiturn,
  author       = {Seungyoun Shin},
  title        = {Qwen2.5-3B Search-R1-Multiturn (reproduce)},
  year         = 2025,
  howpublished = {HuggingFace Model Hub},
  url          = {https://huggingface.co/Seungyoun/qwen2.5-3b-it_searchR1-like-multiturn}
}
```