File size: 1,841 Bytes
ec3da7f 01c65f7 ec3da7f 01c65f7 ec3da7f 01c65f7 ec3da7f 01c65f7 ec3da7f 01c65f7 ec3da7f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
---
library_name: transformers
license: apache-2.0
base_model: bert-large-uncased
tags:
- generated_from_trainer
datasets:
- conll2003
metrics:
- f1
model-index:
- name: BERT-NER-CoNLL
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: conll2003
type: conll2003
config: conll2003
split: test
args: conll2003
metrics:
- name: F1
type: f1
value: 0.9105776839883936
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# BERT-NER-CoNLL
This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on the conll2003 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1243
- F1: 0.9106
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.115 | 1.0 | 878 | 0.1003 | 0.8983 |
| 0.0276 | 2.0 | 1756 | 0.1157 | 0.9081 |
| 0.0128 | 3.0 | 2634 | 0.1243 | 0.9106 |
### Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
|