File size: 1,841 Bytes
ec3da7f
 
 
01c65f7
ec3da7f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01c65f7
ec3da7f
 
 
 
 
 
 
01c65f7
ec3da7f
01c65f7
 
ec3da7f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01c65f7
 
 
ec3da7f
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
---
library_name: transformers
license: apache-2.0
base_model: bert-large-uncased
tags:
- generated_from_trainer
datasets:
- conll2003
metrics:
- f1
model-index:
- name: BERT-NER-CoNLL
  results:
  - task:
      name: Token Classification
      type: token-classification
    dataset:
      name: conll2003
      type: conll2003
      config: conll2003
      split: test
      args: conll2003
    metrics:
    - name: F1
      type: f1
      value: 0.9105776839883936
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# BERT-NER-CoNLL

This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on the conll2003 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1243
- F1: 0.9106

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss | F1     |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.115         | 1.0   | 878  | 0.1003          | 0.8983 |
| 0.0276        | 2.0   | 1756 | 0.1157          | 0.9081 |
| 0.0128        | 3.0   | 2634 | 0.1243          | 0.9106 |


### Framework versions

- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0