Update README.md
Browse files
README.md
CHANGED
@@ -69,13 +69,56 @@ pip install -r requirements.txt
|
|
69 |
|
70 |
### 3.Text-to-Image Generation
|
71 |
```bash
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
```
|
80 |
|
81 |
|
@@ -83,14 +126,37 @@ python scripts/text2image.py configs/models/qwen2_5_1_5b_kl16_mar_h.py \
|
|
83 |
The image editing feature within this unified model is an exploratory module at the forefront of research. And it is not yet production-ready.
|
84 |
|
85 |
```bash
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
```
|
95 |
|
96 |
## 📄 License
|
|
|
69 |
|
70 |
### 3.Text-to-Image Generation
|
71 |
```bash
|
72 |
+
import torch
|
73 |
+
from PIL import Image
|
74 |
+
from unipicv2.pipeline_stable_diffusion_3_kontext import StableDiffusion3KontextPipeline
|
75 |
+
from unipicv2.transformer_sd3_kontext import SD3Transformer2DKontextModel
|
76 |
+
from diffusers import FlowMatchEulerDiscreteScheduler, AutoencoderKL
|
77 |
+
from transformers import CLIPTextModelWithProjection, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
|
78 |
+
|
79 |
+
# Load model components
|
80 |
+
pretrained_model_name_or_path = "/path/to/unipicv2_sd_3_5m_kontext"
|
81 |
+
|
82 |
+
transformer = SD3Transformer2DKontextModel.from_pretrained(
|
83 |
+
pretrained_model_name_or_path, subfolder="transformer", torch_dtype=torch.bfloat16).cuda()
|
84 |
+
|
85 |
+
vae = AutoencoderKL.from_pretrained(
|
86 |
+
pretrained_model_name_or_path, subfolder="vae", torch_dtype=torch.bfloat16).cuda()
|
87 |
+
|
88 |
+
# Load text encoders
|
89 |
+
text_encoder = CLIPTextModelWithProjection.from_pretrained(
|
90 |
+
pretrained_model_name_or_path, subfolder="text_encoder", torch_dtype=torch.bfloat16).cuda()
|
91 |
+
tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_name_or_path, subfolder="tokenizer")
|
92 |
+
|
93 |
+
text_encoder_2 = CLIPTextModelWithProjection.from_pretrained(
|
94 |
+
pretrained_model_name_or_path, subfolder="text_encoder_2", torch_dtype=torch.bfloat16).cuda()
|
95 |
+
tokenizer_2 = CLIPTokenizer.from_pretrained(pretrained_model_name_or_path, subfolder="tokenizer_2")
|
96 |
+
|
97 |
+
text_encoder_3 = T5EncoderModel.from_pretrained(
|
98 |
+
pretrained_model_name_or_path, subfolder="text_encoder_3", torch_dtype=torch.bfloat16).cuda()
|
99 |
+
tokenizer_3 = T5TokenizerFast.from_pretrained(pretrained_model_name_or_path, subfolder="tokenizer_3")
|
100 |
+
|
101 |
+
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(pretrained_model_name_or_path, subfolder="scheduler")
|
102 |
+
|
103 |
+
# Create pipeline
|
104 |
+
pipeline = StableDiffusion3KontextPipeline(
|
105 |
+
transformer=transformer, vae=vae,
|
106 |
+
text_encoder=text_encoder, tokenizer=tokenizer,
|
107 |
+
text_encoder_2=text_encoder_2, tokenizer_2=tokenizer_2,
|
108 |
+
text_encoder_3=text_encoder_3, tokenizer_3=tokenizer_3,
|
109 |
+
scheduler=scheduler)
|
110 |
+
|
111 |
+
# Generate image
|
112 |
+
image = pipeline(
|
113 |
+
prompt='a pig with wings and a top hat flying over a happy futuristic scifi city',
|
114 |
+
negative_prompt='',
|
115 |
+
height=512, width=384,
|
116 |
+
num_inference_steps=50,
|
117 |
+
guidance_scale=3.5,
|
118 |
+
generator=torch.Generator(device=transformer.device).manual_seed(42)
|
119 |
+
).images[0]
|
120 |
+
|
121 |
+
image.save("text2image.png")
|
122 |
```
|
123 |
|
124 |
|
|
|
126 |
The image editing feature within this unified model is an exploratory module at the forefront of research. And it is not yet production-ready.
|
127 |
|
128 |
```bash
|
129 |
+
# Load and preprocess image
|
130 |
+
def fix_longer_edge(x, image_size, factor=32):
|
131 |
+
w, h = x.size
|
132 |
+
if w >= h:
|
133 |
+
target_w = image_size
|
134 |
+
target_h = h * (target_w / w)
|
135 |
+
target_h = round(target_h / factor) * factor
|
136 |
+
else:
|
137 |
+
target_h = image_size
|
138 |
+
target_w = w * (target_h / h)
|
139 |
+
target_w = round(target_w / factor) * factor
|
140 |
+
x = x.resize(size=(target_w, target_h))
|
141 |
+
return x
|
142 |
+
|
143 |
+
image = Image.open("text2image.png")
|
144 |
+
image = fix_longer_edge(image, image_size=512)
|
145 |
+
|
146 |
+
negative_prompt = "blurry, low quality, low resolution, distorted, deformed, broken content, missing parts, damaged details, artifacts, glitch, noise, pixelated, grainy, compression artifacts, bad composition, wrong proportion, incomplete editing, unfinished, unedited areas."
|
147 |
+
|
148 |
+
# Edit image
|
149 |
+
edited_image = pipeline(
|
150 |
+
image=image,
|
151 |
+
prompt="remove the pig's hat",
|
152 |
+
negative_prompt=negative_prompt,
|
153 |
+
height=image.height, width=image.width,
|
154 |
+
num_inference_steps=50,
|
155 |
+
guidance_scale=3.5,
|
156 |
+
generator=torch.Generator(device=transformer.device).manual_seed(42)
|
157 |
+
).images[0]
|
158 |
+
|
159 |
+
edited_image.save("image_editing.png")
|
160 |
```
|
161 |
|
162 |
## 📄 License
|