Update README.md
Browse files
README.md
CHANGED
@@ -75,60 +75,34 @@ import torch
|
|
75 |
from PIL import Image
|
76 |
from unipicv2.pipeline_stable_diffusion_3_kontext import StableDiffusion3KontextPipeline
|
77 |
from unipicv2.transformer_sd3_kontext import SD3Transformer2DKontextModel
|
78 |
-
from diffusers import FlowMatchEulerDiscreteScheduler, AutoencoderKL
|
79 |
from transformers import CLIPTextModelWithProjection, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
|
80 |
|
81 |
# Load model components
|
82 |
-
pretrained_model_name_or_path = "/
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
# BitsAndBytes config
|
87 |
-
bnb4 = BitsAndBytesConfig(
|
88 |
-
load_in_4bit=True,
|
89 |
-
bnb_4bit_use_double_quant=True,
|
90 |
-
bnb_4bit_quant_type="nf4",
|
91 |
-
bnb_4bit_compute_dtype=torch.bfloat16,
|
92 |
-
)
|
93 |
-
bnb8 = BitsAndBytesConfig(load_in_8bit=True)
|
94 |
-
|
95 |
-
if quant == "int4":
|
96 |
-
transformer = SD3Transformer2DKontextModel.from_pretrained(
|
97 |
-
pretrained_model_name_or_path, subfolder="transformer",
|
98 |
-
quantization_config=bnb4, device_map="auto", low_cpu_mem_usage=True
|
99 |
-
).cuda()
|
100 |
-
text_qconf = bnb8
|
101 |
-
vae_dtype = torch.float16
|
102 |
-
else: # fp16
|
103 |
-
transformer = SD3Transformer2DKontextModel.from_pretrained(
|
104 |
-
pretrained_model_name_or_path, subfolder="transformer",
|
105 |
-
torch_dtype=torch.float16, device_map="auto", low_cpu_mem_usage=True
|
106 |
-
).cuda()
|
107 |
-
text_qconf = None
|
108 |
-
vae_dtype = torch.float16
|
109 |
|
110 |
vae = AutoencoderKL.from_pretrained(
|
111 |
pretrained_model_name_or_path, subfolder="vae",
|
112 |
-
torch_dtype=
|
113 |
-
)
|
114 |
|
115 |
# Load text encoders
|
116 |
text_encoder = CLIPTextModelWithProjection.from_pretrained(
|
117 |
-
pretrained_model_name_or_path, subfolder="text_encoder",
|
118 |
-
|
119 |
-
)
|
120 |
tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_name_or_path, subfolder="tokenizer")
|
121 |
|
122 |
text_encoder_2 = CLIPTextModelWithProjection.from_pretrained(
|
123 |
-
pretrained_model_name_or_path, subfolder="text_encoder_2",
|
124 |
-
|
125 |
-
)
|
126 |
tokenizer_2 = CLIPTokenizer.from_pretrained(pretrained_model_name_or_path, subfolder="tokenizer_2")
|
127 |
|
128 |
text_encoder_3 = T5EncoderModel.from_pretrained(
|
129 |
-
pretrained_model_name_or_path, subfolder="text_encoder_3",
|
130 |
-
|
131 |
-
)
|
132 |
tokenizer_3 = T5TokenizerFast.from_pretrained(pretrained_model_name_or_path, subfolder="tokenizer_3")
|
133 |
|
134 |
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(
|
|
|
75 |
from PIL import Image
|
76 |
from unipicv2.pipeline_stable_diffusion_3_kontext import StableDiffusion3KontextPipeline
|
77 |
from unipicv2.transformer_sd3_kontext import SD3Transformer2DKontextModel
|
78 |
+
from diffusers import FlowMatchEulerDiscreteScheduler, AutoencoderKL
|
79 |
from transformers import CLIPTextModelWithProjection, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
|
80 |
|
81 |
# Load model components
|
82 |
+
pretrained_model_name_or_path = "Skywork/UniPic2-SD3.5M-Kontext-2B"
|
83 |
+
|
84 |
+
transformer = SD3Transformer2DKontextModel.from_pretrained(
|
85 |
+
pretrained_model_name_or_path, subfolder="transformer", torch_dtype=torch.bfloat16).cuda()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
vae = AutoencoderKL.from_pretrained(
|
88 |
pretrained_model_name_or_path, subfolder="vae",
|
89 |
+
torch_dtype=torch.bfloat16, device_map="auto", low_cpu_mem_usage=True
|
90 |
+
).cuda()
|
91 |
|
92 |
# Load text encoders
|
93 |
text_encoder = CLIPTextModelWithProjection.from_pretrained(
|
94 |
+
pretrained_model_name_or_path, subfolder="text_encoder", torch_dtype=torch.bfloat16, device_map="auto", low_cpu_mem_usage=True
|
95 |
+
).cuda()
|
|
|
96 |
tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_name_or_path, subfolder="tokenizer")
|
97 |
|
98 |
text_encoder_2 = CLIPTextModelWithProjection.from_pretrained(
|
99 |
+
pretrained_model_name_or_path, subfolder="text_encoder_2", torch_dtype=torch.bfloat16, device_map="auto", low_cpu_mem_usage=True
|
100 |
+
).cuda()
|
|
|
101 |
tokenizer_2 = CLIPTokenizer.from_pretrained(pretrained_model_name_or_path, subfolder="tokenizer_2")
|
102 |
|
103 |
text_encoder_3 = T5EncoderModel.from_pretrained(
|
104 |
+
pretrained_model_name_or_path, subfolder="text_encoder_3", torch_dtype=torch.bfloat16, device_map="auto", low_cpu_mem_usage=True
|
105 |
+
).cuda()
|
|
|
106 |
tokenizer_3 = T5TokenizerFast.from_pretrained(pretrained_model_name_or_path, subfolder="tokenizer_3")
|
107 |
|
108 |
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(
|