File size: 2,678 Bytes
0e8a891
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
feb49b3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
---

base_model:
- Qwen/Qwen2.5-0.5B-Instruct
license: apache-2.0
pipeline_tag: image-text-to-text
library_name: slimm
language:
- zho
- eng
- fra
- spa
- por
- deu
- ita
- rus
- jpn
- kor
- vie
- tha
- ara
---


# Model Card for CoMP-MM-1B

<!-- Provide a quick summary of what the model is/does. -->
This is an LMM that supports **native image resolution inputs**, composed of [CoMP-SigLIP](https://huggingface.co/SliMM-X/CoMP-SigLIP-So400M) and [Qwen2.5](https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct).

## Model Sources

<!-- Provide the basic links for the model. -->

- **Repository:** https://github.com/SliMM-X/CoMP-MM
- **Paper:** https://arxiv.org/abs/2503.18931
- **Project Page:** https://slimm-x.github.io/comp
  
## How to Get Started with the Model

Install the github repo, and use the code below to get started with the model.

```python

# this is very similar to qwen2-vl

from slimm.model.processor import SliMMQwen2VLProcessor

from slimm.model.slimm import SliMMForConditionalGeneration

from slimm.model.utils_vl import process_vision_info



model_path = "SliMM-X/CoMP-MM-1B"



model = SliMMForConditionalGeneration.from_pretrained(

    model_path, torch_dtype="auto", device_map="cuda"

)

processor = SliMMQwen2VLProcessor.from_pretrained(model_path)



messages = [

    {

        "role": "user",

        "content": [

            {

                "type": "image",

                "image": "https://slimm-x.github.io/comp/figs/teaser.png",

            },

            {"type": "text", "text": "Describe this image."},

        ],

    }

]



# Preparation for inference

text = processor.apply_chat_template(

    messages, tokenize=False, add_generation_prompt=True

)

image_inputs, video_inputs = process_vision_info(messages)

inputs = processor(

    text=[text],

    images=image_inputs,

    videos=video_inputs,

    padding=True,

    return_tensors="pt",

)

inputs = inputs.to("cuda")



# Inference: Generation of the output

generated_ids = model.generate(**inputs, max_new_tokens=128)

generated_ids_trimmed = [

    out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)

]

output_text = processor.batch_decode(

    generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False

)

print(output_text)

```

## Citation

**BibTeX:**

```bibtex

@article{comp2025,

      title={CoMP: Continual Multimodal Pre-training for Vision Foundation Models}, 

      author={Chen, Yitong and Meng, Lingchen and Peng, Wujian and Wu, Zuxuan and Jiang, Yu-Gang},

      year={2025},

      journal={arXiv preprint arXiv:2503.18931}, 

}

```