diff --git "a/modeling_doge.py" "b/modeling_doge.py" --- "a/modeling_doge.py" +++ "b/modeling_doge.py" @@ -1,1198 +1,1198 @@ -# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨 -# This file was automatically generated from src/transformers/models/doge/modular_doge.py. -# Do NOT edit this file manually as any edits will be overwritten by the generation of -# the file from the modular. If any change should be done, please apply the change to the -# modular_doge.py file directly. One of our CI enforces this. -# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨 -# coding=utf-8 -# Copyright 2024 Jingze Shi and the HuggingFace Inc. team. All rights reserved. -# -# This code is based on the Wonderful Matrices paper implementation. -# The Doge family of small language models is trained by Jingze Shi. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import math -from typing import Callable, List, Optional, Tuple, Union - -import torch -import torch.nn.functional as F -from torch import nn - -from transformers.activations import ACT2FN -from transformers.cache_utils import Cache, DynamicCache, StaticCache -from transformers.generation import GenerationMixin -from transformers.modeling_attn_mask_utils import AttentionMaskConverter -from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast -from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS -from transformers.modeling_utils import PreTrainedModel -from transformers.processing_utils import Unpack -from transformers.utils import ( - LossKwargs, - add_start_docstrings, - add_start_docstrings_to_model_forward, - is_torch_flex_attn_available, - logging, - replace_return_docstrings, -) -from .configuration_doge import DogeConfig - -if is_torch_flex_attn_available(): - from torch.nn.attention.flex_attention import flex_attention - -logger = logging.get_logger(__name__) - -_CONFIG_FOR_DOC = "DogeConfig" - - -class DogeRMSNorm(nn.Module): - def __init__(self, hidden_size, eps=1e-6): - """ - DogeRMSNorm is equivalent to T5LayerNorm - """ - super().__init__() - self.weight = nn.Parameter(torch.ones(hidden_size)) - self.variance_epsilon = eps - - def forward(self, hidden_states): - input_dtype = hidden_states.dtype - hidden_states = hidden_states.to(torch.float32) - variance = hidden_states.pow(2).mean(-1, keepdim=True) - hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) - return self.weight * hidden_states.to(input_dtype) - - def extra_repr(self): - return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}" - - -class DogeResidual(nn.Module): - def __init__(self, hidden_size): - super().__init__() - self.weight = nn.Parameter(torch.ones(hidden_size)) - - def forward(self, residual_states, hidden_states): - return self.weight * residual_states + hidden_states - - def extra_repr(self): - return f"{tuple(self.weight.shape)}" - - -class DogeRotaryEmbedding(nn.Module): - def __init__(self, config: DogeConfig, device=None): - super().__init__() - # BC: "rope_type" was originally "type" - if hasattr(config, "rope_scaling") and config.rope_scaling is not None: - self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type")) - else: - self.rope_type = "default" - self.max_seq_len_cached = config.max_position_embeddings - self.original_max_seq_len = config.max_position_embeddings - - self.config = config - self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] - - inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device) - self.register_buffer("inv_freq", inv_freq, persistent=False) - self.original_inv_freq = self.inv_freq - - def _dynamic_frequency_update(self, position_ids, device): - """ - dynamic RoPE layers should recompute `inv_freq` in the following situations: - 1 - growing beyond the cached sequence length (allow scaling) - 2 - the current sequence length is in the original scale (avoid losing precision with small sequences) - """ - seq_len = torch.max(position_ids) + 1 - if seq_len > self.max_seq_len_cached: # growth - inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, seq_len=seq_len) - self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation - self.max_seq_len_cached = seq_len - - if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset - # This .to() is needed if the model has been moved to a device after being initialized (because - # the buffer is automatically moved, but not the original copy) - self.original_inv_freq = self.original_inv_freq.to(device) - self.register_buffer("inv_freq", self.original_inv_freq, persistent=False) - self.max_seq_len_cached = self.original_max_seq_len - - @torch.no_grad() - def forward(self, x, position_ids): - if "dynamic" in self.rope_type: - self._dynamic_frequency_update(position_ids, device=x.device) - - # Core RoPE block - inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1) - position_ids_expanded = position_ids[:, None, :].float() - # Force float32 (see https://github.com/huggingface/transformers/pull/29285) - device_type = x.device.type - device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu" - with torch.autocast(device_type=device_type, enabled=False): - freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) - emb = torch.cat((freqs, freqs), dim=-1) - cos = emb.cos() - sin = emb.sin() - - # Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention - cos = cos * self.attention_scaling - sin = sin * self.attention_scaling - - return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) - - -def rotate_half(x): - """Rotates half the hidden dims of the input.""" - x1 = x[..., : x.shape[-1] // 2] - x2 = x[..., x.shape[-1] // 2 :] - return torch.cat((-x2, x1), dim=-1) - - -def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): - """Applies Rotary Position Embedding to the query and key tensors. - - Args: - q (`torch.Tensor`): The query tensor. - k (`torch.Tensor`): The key tensor. - cos (`torch.Tensor`): The cosine part of the rotary embedding. - sin (`torch.Tensor`): The sine part of the rotary embedding. - position_ids (`torch.Tensor`, *optional*): - Deprecated and unused. - unsqueeze_dim (`int`, *optional*, defaults to 1): - The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and - sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note - that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and - k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes - cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have - the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. - Returns: - `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. - """ - cos = cos.unsqueeze(unsqueeze_dim) - sin = sin.unsqueeze(unsqueeze_dim) - q_embed = (q * cos) + (rotate_half(q) * sin) - k_embed = (k * cos) + (rotate_half(k) * sin) - return q_embed, k_embed - - -def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: - """ - This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, - num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) - """ - batch, num_key_value_heads, slen, head_dim = hidden_states.shape - if n_rep == 1: - return hidden_states - hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) - return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) - - -def eager_attention_forward( - module: nn.Module, - query: torch.Tensor, - key: torch.Tensor, - value: torch.Tensor, - attention_mask: Optional[torch.Tensor], - scaling: float, - dropout: float = 0.0, - **kwargs, -) -> Tuple[torch.Tensor, torch.Tensor]: - key_states = repeat_kv(key, module.num_key_value_groups) - value_states = repeat_kv(value, module.num_key_value_groups) - - attn_weights = torch.matmul(query, key_states.transpose(-1, -2)) * scaling - if attention_mask is not None: - causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] - attn_weights = attn_weights + causal_mask - - attn_weights = F.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype) - attn_weights = F.dropout(attn_weights, p=dropout, training=module.training) - attn_output = torch.matmul(attn_weights, value_states) - attn_output = attn_output.transpose(1, 2).contiguous() - - return attn_output, attn_weights - - -def sdpa_attention_forward( - module: nn.Module, - query: torch.Tensor, - key: torch.Tensor, - value: torch.Tensor, - attention_mask: Optional[torch.Tensor], - dropout: float = 0.0, - scaling: Optional[float] = None, - is_causal: Optional[bool] = None, - **kwargs, -) -> Tuple[torch.Tensor, None]: - key = repeat_kv(key, module.num_key_value_groups) - value = repeat_kv(value, module.num_key_value_groups) - - causal_mask = attention_mask - if attention_mask is not None: - causal_mask = causal_mask[:, :, :, : key.shape[-2]] - - # SDPA with memory-efficient backend is bugged with non-contiguous inputs and custom attn_mask for some torch versions - # Reference: https://github.com/pytorch/pytorch/issues/112577. - query = query.contiguous() - key = key.contiguous() - value = value.contiguous() - - # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment - # in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling. - if is_causal is None: - is_causal = causal_mask is None and query.shape[2] > 1 - - # Shapes (e.g. query.shape[2]) are tensors during jit tracing, resulting in `is_causal` being a tensor. - # We convert it to a bool for the SDPA kernel that only accepts bools. - if torch.jit.is_tracing() and isinstance(is_causal, torch.Tensor): - is_causal = is_causal.item() - - # NOTE: As of pytorch 2.5.1, SDPA backward pass of cuDNN is still incorrect, so we disable cuDNN SDPA (see https://github.com/pytorch/pytorch/issues/138581) - torch.backends.cuda.enable_cudnn_sdp(False) - attn_output = F.scaled_dot_product_attention( - query=query, - key=key, - value=value, - attn_mask=causal_mask, - dropout_p=dropout, - scale=scaling, - is_causal=is_causal, - ) - attn_output = attn_output.transpose(1, 2).contiguous() - - return attn_output, None - - -def flex_attention_forward( - module: nn.Module, - query: torch.Tensor, - key: torch.Tensor, - value: torch.Tensor, - attention_mask: Optional[torch.Tensor], - scaling: Optional[float] = None, - is_causal: Optional[bool] = None, - softcap: Optional[float] = None, - head_mask: Optional[torch.Tensor] = None, - **kwargs, -) -> Tuple[torch.Tensor, torch.Tensor]: - causal_mask = attention_mask - if attention_mask is not None: - causal_mask = causal_mask[:, :, :, : key.shape[-2]] - - if is_causal is None: - is_causal = causal_mask is None and query.shape[2] > 1 - - def causal_mod(score, batch, head, q_idx, kv_idx): - if softcap is not None: - score = softcap * torch.tanh(score / softcap) - if causal_mask is not None: - score = score + causal_mask[batch][0][q_idx][kv_idx] - if head_mask is not None: - score = score + head_mask[batch][head][0][0] - return score - - def dynamic_mod(score, batch, head, q_idx, kv_idx): - if softcap is not None: - score = softcap * torch.tanh(score / softcap) - if causal_mask is not None: - score = score + causal_mask[batch][head][q_idx][kv_idx] - if head_mask is not None: - score = score + head_mask[batch][head][0][0] - return score - - # TODO: flex_attention: As of pytorch 2.5.1, captured buffers that require grad are not yet supported. - # NOTE: So we only use flex_attention in inference mode. - mask_mod = causal_mod if is_causal or module.training else dynamic_mod - - attn_output, attention_weights = flex_attention( - query=query, - key=key, - value=value, - score_mod=mask_mod, - enable_gqa=True, - scale=scaling, - # Last time checked on PyTorch == 2.5.1: Flex Attention always computes the lse regardless. - # For simplification, we thus always return it as no additional computations are introduced. - return_lse=True, - ) - # lse is returned in float32 - attention_weights = attention_weights.to(value.dtype) - attn_output = attn_output.transpose(1, 2).contiguous() - - return attn_output, attention_weights - - -ALL_ATTENTION_FUNCTIONS = { - "eager": eager_attention_forward, - "sdpa": sdpa_attention_forward, - "flex_attention": flex_attention_forward, -} - - -class DogeDynamicMaskAttention(nn.Module): - """Dynamic Mask Attention from 'Wonderful Matrices' paper.""" - - def __init__(self, config: DogeConfig, layer_idx: Optional[int] = None): - super().__init__() - self.config = config - self.layer_idx = layer_idx - self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads) - self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads - self.scaling = self.head_dim**-0.5 - self.attention_dropout = config.attention_dropout - self.dynamic_mask_ratio = config.dynamic_mask_ratio - - self.q_proj = nn.Linear( - config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.hidden_bias - ) - self.k_proj = nn.Linear( - config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.hidden_bias - ) - self.v_proj = nn.Linear( - config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.hidden_bias - ) - # dynamic mask for the QK^T attention weights matrix - self.A = nn.Parameter(torch.zeros(config.num_attention_heads)) - self.dt_proj = nn.Linear( - config.num_key_value_heads * self.head_dim, config.num_attention_heads, bias=config.hidden_bias - ) - self.o_proj = nn.Linear( - config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.hidden_bias - ) - - def forward( - self, - hidden_states: torch.Tensor, - position_embeddings: Tuple[torch.Tensor, torch.Tensor], - attention_mask: Optional[torch.Tensor] = None, - past_key_value: Optional[Cache] = None, - cache_position: Optional[torch.LongTensor] = None, - **kwargs, - ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: - input_shape = hidden_states.shape[:-1] - hidden_shape = (*input_shape, -1, self.head_dim) - - query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2) - key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2) - value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2) - - cos, sin = position_embeddings - query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) - - if past_key_value is not None: - # sin and cos are specific to RoPE models; cache_position needed for the static cache - cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} - key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) - - # calculate dynamic mask from value_states - dt_states = self.dt_proj( - value_states.transpose(1, 2).reshape(value_states.shape[0], value_states.shape[-2], -1) - ) - dynamic_mask = torch.exp(self.A * F.softplus(dt_states)).transpose(-1, -2) - attn_mask = self.prepare_dynamic_mask( - hidden_states=hidden_states, - dynamic_mask=dynamic_mask, - dynamic_mask_ratio=self.dynamic_mask_ratio, - attention_mask=attention_mask, - ) - - attention_interface: Callable = eager_attention_forward - if self.config._attn_implementation != "eager": - if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False): - logger.warning_once( - "`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to " - 'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' - ) - else: - attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] - - attn_output, attn_weights = attention_interface( - self, - query_states, - key_states, - value_states, - attention_mask=attn_mask, - dropout=0.0 if not self.training else self.attention_dropout, - scaling=self.scaling, - **kwargs, - ) - - attn_output = attn_output.reshape(*input_shape, -1).contiguous() - attn_output = self.o_proj(attn_output) - return attn_output, attn_weights - - def prepare_dynamic_mask( - self, - hidden_states: torch.Tensor, - dynamic_mask: torch.Tensor, - dynamic_mask_ratio: float = 0.0, - attention_mask: Optional[torch.Tensor] = None, - ): - """ - Combine `dynamic_mask` with `attention_mask` to generate the final `attn_mask`. - - Args: - hidden_states (`torch.Tensor`): The input hidden_states, used to determine the minimum value of the current input precision. - dynamic_mask (`torch.Tensor`): dynamic mask of shape `(batch_size, num_heads, key_sequence_length)`. - dynamic_mask_ratio (`float`, *optional*): Ratio from 0.0 to 1.0 used to control the proportion of the dynamic mask filled with the minimum value. - attention_mask (`torch.Tensor`, *optional*): attention mask of shape `(batch_size, 1, query_sequence_length, key_sequence_length)`. - """ - attn_mask = None - if dynamic_mask is not None: - attn_mask = dynamic_mask[:, :, None, :] - if 0.0 < dynamic_mask_ratio < 1.0: - min_type = torch.finfo(hidden_states.dtype).min - num_dynamic_mask = int(attn_mask.shape[-1] * dynamic_mask_ratio) - if num_dynamic_mask > 0: - rate_value = torch.kthvalue(attn_mask, num_dynamic_mask, dim=-1, keepdim=True).values - attn_mask = attn_mask.masked_fill(attn_mask < rate_value, min_type) - if attention_mask is not None: - attn_mask = attn_mask + attention_mask[:, :, :, : attn_mask.shape[-1]] - else: - attn_mask = attention_mask - - return attn_mask - - -class DogeMLP(nn.Module): - def __init__(self, config: DogeConfig): - super().__init__() - self.hidden_dim = config.hidden_size - self.intermediate_dim = config.intermediate_size - self.act_fn = ACT2FN[config.hidden_act] - - self.gate_proj = nn.Linear(self.hidden_dim, self.intermediate_dim, bias=config.hidden_bias) - self.up_proj = nn.Linear(self.hidden_dim, self.intermediate_dim, bias=config.hidden_bias) - self.down_proj = nn.Linear(self.intermediate_dim, self.hidden_dim, bias=config.hidden_bias) - - def forward( - self, - hidden_states: torch.Tensor, - **kwargs, - ) -> torch.Tensor: - hidden_states = self.down_proj(self.act_fn(self.gate_proj(hidden_states)) * self.up_proj(hidden_states)) - return hidden_states - - -class DogeCDMoE(DogeMLP): - """Cross Domain Mixture of Experts from 'Wonderful Matrices' paper.""" - - def __init__(self, config: DogeConfig): - super().__init__(config) - self.hidden_dim = config.hidden_size - self.act_fn = ACT2FN[config.hidden_act] - - self.expert_retrieval_dim = config.expert_retrieval_size - self.num_cdmoe_experts = config.num_cdmoe_experts - self.num_cdmoe_heads = config.num_cdmoe_heads - self.num_cdmoe_experts_per_head = config.num_cdmoe_experts_per_head - self.num_keys = int(math.sqrt(self.num_cdmoe_experts)) - - # queries and keys for retrieval experts - self.queries_proj = nn.Linear(self.hidden_dim, self.num_cdmoe_heads * self.expert_retrieval_dim, bias=False) - self.keys = nn.Parameter(torch.zeros(self.num_cdmoe_heads, self.expert_retrieval_dim, self.num_keys)) - - # experts - self.down_embed = nn.Embedding(self.num_cdmoe_experts, self.hidden_dim) - self.up_embed = nn.Embedding(self.num_cdmoe_experts, self.hidden_dim) - - def forward( - self, - hidden_states: torch.Tensor, - **kwargs, - ) -> torch.Tensor: - bsz, seq_len, _ = hidden_states.shape - - # get routing weights with queries and keys - queries = self.queries_proj(hidden_states) - queries = queries.view(2, self.num_cdmoe_heads, bsz * seq_len, -1) - keys = self.keys.view(2, self.num_cdmoe_heads, -1, self.num_keys) - routing_weights = torch.matmul(queries, keys) - routing_weights = routing_weights.transpose(-2, -3).view(2, bsz, seq_len, self.num_cdmoe_heads, self.num_keys) - - # get experts with the highest routing weights - (scores_x, scores_y), (indices_x, indices_y) = routing_weights.topk(self.num_cdmoe_experts_per_head, dim=-1) - all_scores = scores_x.unsqueeze(-1) + scores_y.unsqueeze(-2) - all_scores = all_scores.view(*scores_x.shape[:-1], -1) - all_indices = (indices_x.unsqueeze(-1) * self.num_keys) + indices_y.unsqueeze(-2) - all_indices = all_indices.view(*indices_x.shape[:-1], -1) - scores, pk_indices = all_scores.topk(self.num_cdmoe_experts_per_head, dim=-1) - indices = all_indices.gather(-1, pk_indices) - down_embed = self.down_embed(indices) - up_embed = self.up_embed(indices) - - # mix experts states with cross domain states - experts_weights = torch.sum(hidden_states[:, :, None, None, :] * down_embed, dim=-1) - experts_weights = self.act_fn(experts_weights) * scores.softmax(dim=-1) - experts_states = torch.sum(experts_weights[:, :, :, :, None] * up_embed, dim=(-2, -3)) - hidden_states = self.down_proj(self.act_fn(self.gate_proj(hidden_states)) * self.up_proj(hidden_states)) - hidden_states = hidden_states + experts_states - return hidden_states - - -class DogeDecoderLayer(nn.Module): - def __init__(self, config: DogeConfig, layer_idx: Optional[int] = None): - super().__init__() - self.hidden_dropout = config.hidden_dropout - - self.pre_layernorm = DogeRMSNorm(config.hidden_size, eps=config.rms_norm_eps) - self.self_attn = DogeDynamicMaskAttention(config=config, layer_idx=layer_idx) - self.pre_residual = DogeResidual(config.hidden_size) - - self.post_layernorm = DogeRMSNorm(config.hidden_size, eps=config.rms_norm_eps) - self.feed_forward = DogeMLP(config) if not config.is_moe else DogeCDMoE(config) - self.post_residual = DogeResidual(config.hidden_size) - - def forward( - self, - hidden_states: torch.Tensor, - attention_mask: Optional[torch.Tensor] = None, - position_ids: Optional[torch.LongTensor] = None, - past_key_value: Optional[Cache] = None, - output_attentions: Optional[bool] = False, - use_cache: Optional[bool] = False, - cache_position: Optional[torch.LongTensor] = None, - position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC - **kwargs, - ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: - # sequence transformation - residual = hidden_states - hidden_states = self.pre_layernorm(hidden_states) - hidden_states, self_attn_weights = self.self_attn( - hidden_states=hidden_states, - attention_mask=attention_mask, - position_ids=position_ids, - past_key_value=past_key_value, - output_attentions=output_attentions, - use_cache=use_cache, - cache_position=cache_position, - position_embeddings=position_embeddings, - **kwargs, - ) - self_attn_weights = None - hidden_states = F.dropout(hidden_states, p=self.hidden_dropout, training=self.training) - hidden_states = self.pre_residual(residual, hidden_states) - - # state transformation - residual = hidden_states - hidden_states = self.post_layernorm(hidden_states) - hidden_states = self.feed_forward(hidden_states) - hidden_states = F.dropout(hidden_states, p=self.hidden_dropout, training=self.training) - hidden_states = self.post_residual(residual, hidden_states) - - outputs = (hidden_states,) - if output_attentions: - outputs += (self_attn_weights,) - - return outputs - - -DOGE_START_DOCSTRING = r""" - This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the - library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads - etc.) - - This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. - Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage - and behavior. - - Parameters: - config ([`DogeConfig`]): - Model configuration class with all the parameters of the model. Initializing with a config file does not - load the weights associated with the model, only the configuration. Check out the - [`~PreTrainedModel.from_pretrained`] method to load the model weights. -""" - - -@add_start_docstrings( - "The bare Doge Model outputting raw hidden-states without any specific head on top.", - DOGE_START_DOCSTRING, -) -class DogePreTrainedModel(PreTrainedModel): - config_class = DogeConfig - base_model_prefix = "model" - supports_gradient_checkpointing = True - _no_split_modules = ["DogeDecoderLayer"] - _skip_keys_device_placement = ["past_key_values"] - _supports_sdpa = True - # _supports_flex_attn = True # TODO: enable this when flex_attention is fully supported - _supports_cache_class = True - _supports_quantized_cache = True - _supports_static_cache = True - - def _init_weights(self, module): - std = self.config.initializer_range - if isinstance(module, (nn.Linear)): - module.weight.data.normal_(mean=0.0, std=std) - if module.bias is not None: - module.bias.data.zero_() - elif isinstance(module, nn.Embedding): - module.weight.data.normal_(mean=0.0, std=std) - if module.padding_idx is not None: - module.weight.data[module.padding_idx].zero_() - - -DOGE_INPUTS_DOCSTRING = r""" - Args: - input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): - Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide - it. - - Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and - [`PreTrainedTokenizer.__call__`] for details. - - [What are input IDs?](../glossary#input-ids) - attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): - Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - - - 1 for tokens that are **not masked**, - - 0 for tokens that are **masked**. - - [What are attention masks?](../glossary#attention-mask) - - Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and - [`PreTrainedTokenizer.__call__`] for details. - - If `past_key_values` is used, optionally only the last `input_ids` have to be input (see - `past_key_values`). - - If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] - and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more - information on the default strategy. - - - 1 indicates the head is **not masked**, - - 0 indicates the head is **masked**. - position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): - Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, - config.n_positions - 1]`. - - [What are position IDs?](../glossary#position-ids) - past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*): - Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention - blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` - returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. - - Two formats are allowed: - - a [`~cache_utils.Cache`] instance, see our - [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache); - - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of - shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy - cache format. - - The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the - legacy cache format will be returned. - - If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't - have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` - of shape `(batch_size, sequence_length)`. - inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): - Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This - is useful if you want more control over how to convert `input_ids` indices into associated vectors than the - model's internal embedding lookup matrix. - use_cache (`bool`, *optional*): - If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see - `past_key_values`). - output_attentions (`bool`, *optional*): - Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned - tensors for more detail. - output_hidden_states (`bool`, *optional*): - Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for - more detail. - return_dict (`bool`, *optional*): - Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. - cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): - Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`, - this tensor is not affected by padding. It is used to update the cache in the correct position and to infer - the complete sequence length. -""" - - -@add_start_docstrings( - "The bare Doge Model outputting raw hidden-states without any specific head on top.", - DOGE_START_DOCSTRING, -) -class DogeModel(DogePreTrainedModel): - """ - Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`DogeDecoderLayer`] - - Args: - config: DogeConfig - """ - - def __init__(self, config: DogeConfig): - super().__init__(config) - self.config = config - self.padding_idx = config.pad_token_id - self.vocab_size = config.vocab_size - - self.word_embed = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) - self.rotary_emb = DogeRotaryEmbedding(config) - self.layers = nn.ModuleList( - [DogeDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] - ) - self.final_layernorm = DogeRMSNorm(config.hidden_size, eps=config.rms_norm_eps) - self.gradient_checkpointing = False - - # Initialize weights and apply final processing - self.post_init() - - def get_input_embeddings(self): - return self.word_embed - - def set_input_embeddings(self, value): - self.word_embed = value - - @add_start_docstrings_to_model_forward(DOGE_INPUTS_DOCSTRING) - def forward( - self, - input_ids: torch.LongTensor = None, - attention_mask: Optional[torch.Tensor] = None, - position_ids: Optional[torch.LongTensor] = None, - past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, - inputs_embeds: Optional[torch.FloatTensor] = None, - use_cache: Optional[bool] = None, - output_attentions: Optional[bool] = None, - output_hidden_states: Optional[bool] = None, - return_dict: Optional[bool] = None, - cache_position: Optional[torch.LongTensor] = None, - **kwargs, - ) -> Union[Tuple, BaseModelOutputWithPast]: - output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions - output_hidden_states = ( - output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states - ) - use_cache = use_cache if use_cache is not None else self.config.use_cache - return_dict = return_dict if return_dict is not None else self.config.use_return_dict - - if (input_ids is None) ^ (inputs_embeds is not None): - raise ValueError("You cannot specify both input_ids and inputs_embeds") - - if self.gradient_checkpointing and self.training and use_cache: - logger.warning_once( - "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." - ) - use_cache = False - - if inputs_embeds is None: - inputs_embeds = self.word_embed(input_ids) - - if use_cache and past_key_values is None: - past_key_values = DynamicCache() - - if cache_position is None: - past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 - cache_position = torch.arange( - past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device - ) - - if position_ids is None: - position_ids = cache_position.unsqueeze(0) - - causal_mask = self._update_causal_mask( - attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions - ) - - hidden_states = inputs_embeds - - # create position embeddings to be shared across the decoder layers - position_embeddings = self.rotary_emb(hidden_states, position_ids) - - # decoder layers - all_hidden_states = () if output_hidden_states else None - all_self_attns = () if output_attentions else None - - for decoder_layer in self.layers[: self.config.num_hidden_layers]: - if output_hidden_states: - all_hidden_states += (hidden_states,) - - if self.gradient_checkpointing and self.training: - layer_outputs = self._gradient_checkpointing_func( - decoder_layer.__call__, - hidden_states, - causal_mask, - position_ids, - past_key_values, - output_attentions, - use_cache, - cache_position, - position_embeddings, - ) - else: - layer_outputs = decoder_layer( - hidden_states, - attention_mask=causal_mask, - position_ids=position_ids, - past_key_value=past_key_values, - output_attentions=output_attentions, - use_cache=use_cache, - cache_position=cache_position, - position_embeddings=position_embeddings, - **kwargs, - ) - - hidden_states = layer_outputs[0] - - if output_attentions: - all_self_attns += (layer_outputs[1],) - - hidden_states = self.final_layernorm(hidden_states) - - # add hidden states from the last decoder layer - if output_hidden_states: - all_hidden_states += (hidden_states,) - - output = BaseModelOutputWithPast( - last_hidden_state=hidden_states, - past_key_values=past_key_values if use_cache else None, - hidden_states=all_hidden_states, - attentions=all_self_attns, - ) - return output if return_dict else output.to_tuple() - - def _update_causal_mask( - self, - attention_mask: torch.Tensor, - input_tensor: torch.Tensor, - cache_position: torch.Tensor, - past_key_values: Cache, - output_attentions: bool, - ): - # We have to provide attention_mask for dynamic mask computation - past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 - using_static_cache = isinstance(past_key_values, StaticCache) - - dtype, device = input_tensor.dtype, input_tensor.device - sequence_length = input_tensor.shape[1] - if using_static_cache: - target_length = past_key_values.get_max_cache_shape() - else: - target_length = ( - attention_mask.shape[-1] - if isinstance(attention_mask, torch.Tensor) - else past_seen_tokens + sequence_length + 1 - ) - - # In case the provided `attention` mask is 2D, we generate a causal mask here (4D). - causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position( - attention_mask, - sequence_length=sequence_length, - target_length=target_length, - dtype=dtype, - device=device, - cache_position=cache_position, - batch_size=input_tensor.shape[0], - ) - - if ( - self.config._attn_implementation == "sdpa" - and attention_mask is not None - and attention_mask.device.type in ["cuda", "xpu"] - and not output_attentions - ): - # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when - # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path. - # Details: https://github.com/pytorch/pytorch/issues/110213 - min_dtype = torch.finfo(dtype).min - causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype) - - return causal_mask - - @staticmethod - def _prepare_4d_causal_attention_mask_with_cache_position( - attention_mask: torch.Tensor, - sequence_length: int, - target_length: int, - dtype: torch.dtype, - device: torch.device, - cache_position: torch.Tensor, - batch_size: int, - **kwargs, - ): - """ - Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape - `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing. - - Args: - attention_mask (`torch.Tensor`): - A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape - `(batch_size, 1, query_length, key_value_length)`. - sequence_length (`int`): - The sequence length being processed. - target_length (`int`): - The target length: when generating with static cache, the mask should be as long as the static cache, - to account for the 0 padding, the part of the cache that is not filled yet. - dtype (`torch.dtype`): - The dtype to use for the 4D attention mask. - device (`torch.device`): - The device to plcae the 4D attention mask on. - cache_position (`torch.Tensor`): - Indices depicting the position of the input sequence tokens in the sequence. - batch_size (`torch.Tensor`): - Batch size. - """ - if attention_mask is not None and attention_mask.dim() == 4: - # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing. - causal_mask = attention_mask - else: - min_dtype = torch.finfo(dtype).min - causal_mask = torch.full( - (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device - ) - if sequence_length != 1: - causal_mask = torch.triu(causal_mask, diagonal=1) - causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1) - causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1) - if attention_mask is not None: - causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit - mask_length = attention_mask.shape[-1] - padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :] - padding_mask = padding_mask == 0 - causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( - padding_mask, min_dtype - ) - - return causal_mask - - -class DogeForCausalLM(DogePreTrainedModel, GenerationMixin): - _tied_weights_keys = ["lm_head.weight"] - _tp_plan = {"lm_head": "colwise_rep"} - - def __init__(self, config: DogeConfig): - super().__init__(config) - self.config = config - self.model = DogeModel(config) - self.vocab_size = config.vocab_size - self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) - - # Initialize weights and apply final processing - self.post_init() - - def get_input_embeddings(self): - return self.model.word_embed - - def set_input_embeddings(self, value): - self.model.word_embed = value - - def get_output_embeddings(self): - return self.lm_head - - def set_output_embeddings(self, new_embeddings): - self.lm_head = new_embeddings - - def get_decoder(self): - return self.model - - def set_decoder(self, decoder): - self.model = decoder - - @add_start_docstrings_to_model_forward(DOGE_INPUTS_DOCSTRING) - @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) - def forward( - self, - input_ids: torch.LongTensor = None, - attention_mask: Optional[torch.Tensor] = None, - position_ids: Optional[torch.LongTensor] = None, - past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, - inputs_embeds: Optional[torch.FloatTensor] = None, - labels: Optional[torch.LongTensor] = None, - use_cache: Optional[bool] = None, - output_attentions: Optional[bool] = None, - output_hidden_states: Optional[bool] = None, - return_dict: Optional[bool] = None, - cache_position: Optional[torch.LongTensor] = None, - logits_to_keep: Union[int, torch.Tensor] = 0, - **kwargs: Unpack[LossKwargs], - ) -> Union[Tuple, CausalLMOutputWithPast]: - r""" - Args: - labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): - Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., - config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored - (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. - - logits_to_keep (`int`, *optional*): - If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all - `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that - token can save memory, which becomes pretty significant for long sequences or large vocabulary size. - If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension. - This is useful when using packed tensor format (single dimension for batch and sequence length). - - Returns: - - Example: - - ```python - >>> from transformers import AutoTokenizer, AutoModelForCausalLM - - >>> model = AutoModelForCausalLM.from_pretrained("SmallDoge/Doge-20M") - >>> tokenizer = AutoTokenizer.from_pretrained("SmallDoge/Doge-20M") - - >>> prompt = "Hey, are you conscious? Can you talk to me?" - >>> inputs = tokenizer(prompt, return_tensors="pt") - - >>> # Generate - >>> generate_ids = model.generate(inputs.input_ids, max_length=30) - >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] - "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." - ```""" - output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions - output_hidden_states = ( - output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states - ) - return_dict = return_dict if return_dict is not None else self.config.use_return_dict - - # decoder output consists of (dec_features, layer_state, dec_hidden, dec_attn) - outputs = self.model( - input_ids=input_ids, - attention_mask=attention_mask, - position_ids=position_ids, - past_key_values=past_key_values, - inputs_embeds=inputs_embeds, - use_cache=use_cache, - output_attentions=output_attentions, - output_hidden_states=output_hidden_states, - return_dict=return_dict, - cache_position=cache_position, - **kwargs, - ) - - hidden_states = outputs[0] - # only compute necessary logits, and do not upcast them to float if we are not computing the loss - slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep - logits = self.lm_head(hidden_states[:, slice_indices, :]) - - loss = None - if labels is not None: - loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.vocab_size, **kwargs) - - if not return_dict: - output = (logits,) + outputs[1:] - return (loss,) + output if loss is not None else output - - return CausalLMOutputWithPast( - loss=loss, - logits=logits, - past_key_values=outputs.past_key_values, - hidden_states=outputs.hidden_states, - attentions=outputs.attentions, - ) - - -@add_start_docstrings( - """ - The Doge Model transformer with a sequence classification head on top (linear layer). - - [`DogeForSequenceClassification`] uses the last token in order to do the classification, as other causal models - (e.g. GPT-2) do. - - Since it does classification on the last token, it requires to know the position of the last token. If a - `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If - no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the - padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in - each row of the batch). - """, - DOGE_START_DOCSTRING, -) -class DogeForSequenceClassification(DogePreTrainedModel): - def __init__(self, config: DogeConfig): - super().__init__(config) - self.num_labels = config.num_labels - - self.model = DogeModel(config) - self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) - self.config = config - - # Initialize weights and apply final processing - self.post_init() - - def get_input_embeddings(self): - return self.model.word_embed - - def set_input_embeddings(self, value): - self.model.word_embed = value - - @add_start_docstrings_to_model_forward(DOGE_INPUTS_DOCSTRING) - def forward( - self, - input_ids: Optional[torch.LongTensor] = None, - attention_mask: Optional[torch.Tensor] = None, - position_ids: Optional[torch.LongTensor] = None, - past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, - inputs_embeds: Optional[torch.FloatTensor] = None, - labels: Optional[torch.LongTensor] = None, - use_cache: Optional[bool] = None, - output_attentions: Optional[bool] = None, - output_hidden_states: Optional[bool] = None, - return_dict: Optional[bool] = None, - ) -> Union[Tuple, SequenceClassifierOutputWithPast]: - r""" - labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): - Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., - config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If - `config.num_labels > 1` a classification loss is computed (Cross-Entropy). - """ - return_dict = return_dict if return_dict is not None else self.config.use_return_dict - - transformer_outputs = self.model( - input_ids, - attention_mask=attention_mask, - position_ids=position_ids, - past_key_values=past_key_values, - inputs_embeds=inputs_embeds, - use_cache=use_cache, - output_attentions=output_attentions, - output_hidden_states=output_hidden_states, - return_dict=return_dict, - ) - hidden_states = transformer_outputs[0] - logits = self.score(hidden_states) - - if input_ids is not None: - batch_size = input_ids.shape[0] - else: - batch_size = inputs_embeds.shape[0] - - if self.config.pad_token_id is None and batch_size != 1: - raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") - if self.config.pad_token_id is None: - last_non_pad_token = -1 - elif input_ids is not None: - # To handle both left- and right- padding, we take the rightmost token that is not equal to pad_token_id - non_pad_mask = (input_ids != self.config.pad_token_id).to(logits.device, torch.int32) - token_indices = torch.arange(input_ids.shape[-1], device=logits.device) - last_non_pad_token = (token_indices * non_pad_mask).argmax(-1) - else: - last_non_pad_token = -1 - logger.warning_once( - f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be " - "unexpected if using padding tokens in conjunction with `inputs_embeds.`" - ) - - pooled_logits = logits[torch.arange(batch_size, device=logits.device), last_non_pad_token] - - loss = None - if labels is not None: - loss = self.loss_function(logits=logits, labels=labels, pooled_logits=pooled_logits, config=self.config) - - if not return_dict: - output = (pooled_logits,) + transformer_outputs[1:] - return ((loss,) + output) if loss is not None else output - - return SequenceClassifierOutputWithPast( - loss=loss, - logits=pooled_logits, - past_key_values=transformer_outputs.past_key_values, - hidden_states=transformer_outputs.hidden_states, - attentions=transformer_outputs.attentions, - ) - - -__all__ = ["DogeForCausalLM", "DogeModel", "DogePreTrainedModel", "DogeForSequenceClassification"] +# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨 +# This file was automatically generated from src/transformers/models/doge/modular_doge.py. +# Do NOT edit this file manually as any edits will be overwritten by the generation of +# the file from the modular. If any change should be done, please apply the change to the +# modular_doge.py file directly. One of our CI enforces this. +# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨��🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨 +# coding=utf-8 +# Copyright 2024 Jingze Shi and the HuggingFace Inc. team. All rights reserved. +# +# This code is based on the Wonderful Matrices paper implementation. +# The Doge family of small language models is trained by Jingze Shi. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import math +from typing import Callable, List, Optional, Tuple, Union + +import torch +import torch.nn.functional as F +from torch import nn + +from transformers.activations import ACT2FN +from transformers.cache_utils import Cache, DynamicCache, StaticCache +from transformers.generation import GenerationMixin +from transformers.modeling_attn_mask_utils import AttentionMaskConverter +from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast +from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS +from transformers.modeling_utils import PreTrainedModel +from transformers.processing_utils import Unpack +from transformers.utils import ( + LossKwargs, + add_start_docstrings, + add_start_docstrings_to_model_forward, + is_torch_flex_attn_available, + logging, + replace_return_docstrings, +) +from .configuration_doge import DogeConfig + +if is_torch_flex_attn_available(): + from torch.nn.attention.flex_attention import flex_attention + +logger = logging.get_logger(__name__) + +_CONFIG_FOR_DOC = "DogeConfig" + + +class DogeRMSNorm(nn.Module): + def __init__(self, hidden_size, eps=1e-6): + """ + DogeRMSNorm is equivalent to T5LayerNorm + """ + super().__init__() + self.weight = nn.Parameter(torch.ones(hidden_size)) + self.variance_epsilon = eps + + def forward(self, hidden_states): + input_dtype = hidden_states.dtype + hidden_states = hidden_states.to(torch.float32) + variance = hidden_states.pow(2).mean(-1, keepdim=True) + hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) + return self.weight * hidden_states.to(input_dtype) + + def extra_repr(self): + return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}" + + +class DogeResidual(nn.Module): + def __init__(self, hidden_size): + super().__init__() + self.weight = nn.Parameter(torch.ones(hidden_size)) + + def forward(self, residual_states, hidden_states): + return self.weight * residual_states + hidden_states + + def extra_repr(self): + return f"{tuple(self.weight.shape)}" + + +class DogeRotaryEmbedding(nn.Module): + def __init__(self, config: DogeConfig, device=None): + super().__init__() + # BC: "rope_type" was originally "type" + if hasattr(config, "rope_scaling") and config.rope_scaling is not None: + self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type")) + else: + self.rope_type = "default" + self.max_seq_len_cached = config.max_position_embeddings + self.original_max_seq_len = config.max_position_embeddings + + self.config = config + self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] + + inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device) + self.register_buffer("inv_freq", inv_freq, persistent=False) + self.original_inv_freq = self.inv_freq + + def _dynamic_frequency_update(self, position_ids, device): + """ + dynamic RoPE layers should recompute `inv_freq` in the following situations: + 1 - growing beyond the cached sequence length (allow scaling) + 2 - the current sequence length is in the original scale (avoid losing precision with small sequences) + """ + seq_len = torch.max(position_ids) + 1 + if seq_len > self.max_seq_len_cached: # growth + inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, seq_len=seq_len) + self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation + self.max_seq_len_cached = seq_len + + if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset + # This .to() is needed if the model has been moved to a device after being initialized (because + # the buffer is automatically moved, but not the original copy) + self.original_inv_freq = self.original_inv_freq.to(device) + self.register_buffer("inv_freq", self.original_inv_freq, persistent=False) + self.max_seq_len_cached = self.original_max_seq_len + + @torch.no_grad() + def forward(self, x, position_ids): + if "dynamic" in self.rope_type: + self._dynamic_frequency_update(position_ids, device=x.device) + + # Core RoPE block + inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1) + position_ids_expanded = position_ids[:, None, :].float() + # Force float32 (see https://github.com/huggingface/transformers/pull/29285) + device_type = x.device.type + device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu" + with torch.autocast(device_type=device_type, enabled=False): + freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) + emb = torch.cat((freqs, freqs), dim=-1) + cos = emb.cos() + sin = emb.sin() + + # Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention + cos = cos * self.attention_scaling + sin = sin * self.attention_scaling + + return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) + + +def rotate_half(x): + """Rotates half the hidden dims of the input.""" + x1 = x[..., : x.shape[-1] // 2] + x2 = x[..., x.shape[-1] // 2 :] + return torch.cat((-x2, x1), dim=-1) + + +def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): + """Applies Rotary Position Embedding to the query and key tensors. + + Args: + q (`torch.Tensor`): The query tensor. + k (`torch.Tensor`): The key tensor. + cos (`torch.Tensor`): The cosine part of the rotary embedding. + sin (`torch.Tensor`): The sine part of the rotary embedding. + position_ids (`torch.Tensor`, *optional*): + Deprecated and unused. + unsqueeze_dim (`int`, *optional*, defaults to 1): + The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and + sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note + that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and + k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes + cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have + the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. + Returns: + `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. + """ + cos = cos.unsqueeze(unsqueeze_dim) + sin = sin.unsqueeze(unsqueeze_dim) + q_embed = (q * cos) + (rotate_half(q) * sin) + k_embed = (k * cos) + (rotate_half(k) * sin) + return q_embed, k_embed + + +def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: + """ + This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, + num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) + """ + batch, num_key_value_heads, slen, head_dim = hidden_states.shape + if n_rep == 1: + return hidden_states + hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) + return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) + + +def eager_attention_forward( + module: nn.Module, + query: torch.Tensor, + key: torch.Tensor, + value: torch.Tensor, + attention_mask: Optional[torch.Tensor], + scaling: float, + dropout: float = 0.0, + **kwargs, +) -> Tuple[torch.Tensor, torch.Tensor]: + key_states = repeat_kv(key, module.num_key_value_groups) + value_states = repeat_kv(value, module.num_key_value_groups) + + attn_weights = torch.matmul(query, key_states.transpose(-1, -2)) * scaling + if attention_mask is not None: + causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] + attn_weights = attn_weights + causal_mask + + attn_weights = F.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype) + attn_weights = F.dropout(attn_weights, p=dropout, training=module.training) + attn_output = torch.matmul(attn_weights, value_states) + attn_output = attn_output.transpose(1, 2).contiguous() + + return attn_output, attn_weights + + +def sdpa_attention_forward( + module: nn.Module, + query: torch.Tensor, + key: torch.Tensor, + value: torch.Tensor, + attention_mask: Optional[torch.Tensor], + dropout: float = 0.0, + scaling: Optional[float] = None, + is_causal: Optional[bool] = None, + **kwargs, +) -> Tuple[torch.Tensor, None]: + key = repeat_kv(key, module.num_key_value_groups) + value = repeat_kv(value, module.num_key_value_groups) + + causal_mask = attention_mask + if attention_mask is not None: + causal_mask = causal_mask[:, :, :, : key.shape[-2]] + + # SDPA with memory-efficient backend is bugged with non-contiguous inputs and custom attn_mask for some torch versions + # Reference: https://github.com/pytorch/pytorch/issues/112577. + query = query.contiguous() + key = key.contiguous() + value = value.contiguous() + + # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment + # in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling. + if is_causal is None: + is_causal = causal_mask is None and query.shape[2] > 1 + + # Shapes (e.g. query.shape[2]) are tensors during jit tracing, resulting in `is_causal` being a tensor. + # We convert it to a bool for the SDPA kernel that only accepts bools. + if torch.jit.is_tracing() and isinstance(is_causal, torch.Tensor): + is_causal = is_causal.item() + + # NOTE: As of pytorch 2.5.1, SDPA backward pass of cuDNN is still incorrect, so we disable cuDNN SDPA (see https://github.com/pytorch/pytorch/issues/138581) + torch.backends.cuda.enable_cudnn_sdp(False) + attn_output = F.scaled_dot_product_attention( + query=query, + key=key, + value=value, + attn_mask=causal_mask, + dropout_p=dropout, + scale=scaling, + is_causal=is_causal, + ) + attn_output = attn_output.transpose(1, 2).contiguous() + + return attn_output, None + + +def flex_attention_forward( + module: nn.Module, + query: torch.Tensor, + key: torch.Tensor, + value: torch.Tensor, + attention_mask: Optional[torch.Tensor], + scaling: Optional[float] = None, + is_causal: Optional[bool] = None, + softcap: Optional[float] = None, + head_mask: Optional[torch.Tensor] = None, + **kwargs, +) -> Tuple[torch.Tensor, torch.Tensor]: + causal_mask = attention_mask + if attention_mask is not None: + causal_mask = causal_mask[:, :, :, : key.shape[-2]] + + if is_causal is None: + is_causal = causal_mask is None and query.shape[2] > 1 + + def causal_mod(score, batch, head, q_idx, kv_idx): + if softcap is not None: + score = softcap * torch.tanh(score / softcap) + if causal_mask is not None: + score = score + causal_mask[batch][0][q_idx][kv_idx] + if head_mask is not None: + score = score + head_mask[batch][head][0][0] + return score + + def dynamic_mod(score, batch, head, q_idx, kv_idx): + if softcap is not None: + score = softcap * torch.tanh(score / softcap) + if causal_mask is not None: + score = score + causal_mask[batch][head][q_idx][kv_idx] + if head_mask is not None: + score = score + head_mask[batch][head][0][0] + return score + + # TODO: flex_attention: As of pytorch 2.5.1, captured buffers that require grad are not yet supported. + # NOTE: So we only use flex_attention in inference mode. + mask_mod = causal_mod if is_causal or module.training else dynamic_mod + + attn_output, attention_weights = flex_attention( + query=query, + key=key, + value=value, + score_mod=mask_mod, + enable_gqa=True, + scale=scaling, + # Last time checked on PyTorch == 2.5.1: Flex Attention always computes the lse regardless. + # For simplification, we thus always return it as no additional computations are introduced. + return_lse=True, + ) + # lse is returned in float32 + attention_weights = attention_weights.to(value.dtype) + attn_output = attn_output.transpose(1, 2).contiguous() + + return attn_output, attention_weights + + +ALL_ATTENTION_FUNCTIONS = { + "eager": eager_attention_forward, + "sdpa": sdpa_attention_forward, + "flex_attention": flex_attention_forward, +} + + +class DogeDynamicMaskAttention(nn.Module): + """Dynamic Mask Attention from 'Wonderful Matrices' paper.""" + + def __init__(self, config: DogeConfig, layer_idx: Optional[int] = None): + super().__init__() + self.config = config + self.layer_idx = layer_idx + self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads) + self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads + self.scaling = self.head_dim**-0.5 + self.attention_dropout = config.attention_dropout + self.dynamic_mask_ratio = config.dynamic_mask_ratio + + self.q_proj = nn.Linear( + config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.hidden_bias + ) + self.k_proj = nn.Linear( + config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.hidden_bias + ) + self.v_proj = nn.Linear( + config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.hidden_bias + ) + # dynamic mask for the QK^T attention weights matrix + self.A = nn.Parameter(torch.zeros(config.num_attention_heads)) + self.dt_proj = nn.Linear( + config.num_key_value_heads * self.head_dim, config.num_attention_heads, bias=config.hidden_bias + ) + self.o_proj = nn.Linear( + config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.hidden_bias + ) + + def forward( + self, + hidden_states: torch.Tensor, + position_embeddings: Tuple[torch.Tensor, torch.Tensor], + attention_mask: Optional[torch.Tensor] = None, + past_key_value: Optional[Cache] = None, + cache_position: Optional[torch.LongTensor] = None, + **kwargs, + ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: + input_shape = hidden_states.shape[:-1] + hidden_shape = (*input_shape, -1, self.head_dim) + + query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2) + key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2) + value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2) + + cos, sin = position_embeddings + query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) + + if past_key_value is not None: + # sin and cos are specific to RoPE models; cache_position needed for the static cache + cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} + key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) + + # calculate dynamic mask from value_states + dt_states = self.dt_proj( + value_states.transpose(1, 2).reshape(value_states.shape[0], value_states.shape[-2], -1) + ) + dynamic_mask = torch.exp(self.A * F.softplus(dt_states)).transpose(-1, -2) + attn_mask = self.prepare_dynamic_mask( + hidden_states=hidden_states, + dynamic_mask=dynamic_mask, + dynamic_mask_ratio=self.dynamic_mask_ratio, + attention_mask=attention_mask, + ) + + attention_interface: Callable = eager_attention_forward + if self.config._attn_implementation != "eager": + if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False): + logger.warning_once( + "`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to " + 'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' + ) + else: + attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] + + attn_output, attn_weights = attention_interface( + self, + query_states, + key_states, + value_states, + attention_mask=attn_mask, + dropout=0.0 if not self.training else self.attention_dropout, + scaling=self.scaling, + **kwargs, + ) + + attn_output = attn_output.reshape(*input_shape, -1).contiguous() + attn_output = self.o_proj(attn_output) + return attn_output, attn_weights + + def prepare_dynamic_mask( + self, + hidden_states: torch.Tensor, + dynamic_mask: torch.Tensor, + dynamic_mask_ratio: float = 0.0, + attention_mask: Optional[torch.Tensor] = None, + ): + """ + Combine `dynamic_mask` with `attention_mask` to generate the final `attn_mask`. + + Args: + hidden_states (`torch.Tensor`): The input hidden_states, used to determine the minimum value of the current input precision. + dynamic_mask (`torch.Tensor`): dynamic mask of shape `(batch_size, num_heads, key_sequence_length)`. + dynamic_mask_ratio (`float`, *optional*): Ratio from 0.0 to 1.0 used to control the proportion of the dynamic mask filled with the minimum value. + attention_mask (`torch.Tensor`, *optional*): attention mask of shape `(batch_size, 1, query_sequence_length, key_sequence_length)`. + """ + attn_mask = None + if dynamic_mask is not None: + attn_mask = dynamic_mask[:, :, None, :] + if 0.0 < dynamic_mask_ratio < 1.0: + min_type = torch.finfo(hidden_states.dtype).min + num_dynamic_mask = int(attn_mask.shape[-1] * dynamic_mask_ratio) + if num_dynamic_mask > 0: + rate_value = torch.kthvalue(attn_mask, num_dynamic_mask, dim=-1, keepdim=True).values + attn_mask = attn_mask.masked_fill(attn_mask < rate_value, min_type) + if attention_mask is not None: + attn_mask = attn_mask + attention_mask[:, :, :, : attn_mask.shape[-1]] + else: + attn_mask = attention_mask + + return attn_mask + + +class DogeMLP(nn.Module): + def __init__(self, config: DogeConfig): + super().__init__() + self.hidden_dim = config.hidden_size + self.intermediate_dim = config.intermediate_size + self.act_fn = ACT2FN[config.hidden_act] + + self.gate_proj = nn.Linear(self.hidden_dim, self.intermediate_dim, bias=config.hidden_bias) + self.up_proj = nn.Linear(self.hidden_dim, self.intermediate_dim, bias=config.hidden_bias) + self.down_proj = nn.Linear(self.intermediate_dim, self.hidden_dim, bias=config.hidden_bias) + + def forward( + self, + hidden_states: torch.Tensor, + **kwargs, + ) -> torch.Tensor: + hidden_states = self.down_proj(self.act_fn(self.gate_proj(hidden_states)) * self.up_proj(hidden_states)) + return hidden_states + + +class DogeCDMoE(DogeMLP): + """Cross Domain Mixture of Experts from 'Wonderful Matrices' paper.""" + + def __init__(self, config: DogeConfig): + super().__init__(config) + self.hidden_dim = config.hidden_size + self.act_fn = ACT2FN[config.hidden_act] + + self.expert_retrieval_dim = config.expert_retrieval_size + self.num_cdmoe_experts = config.num_cdmoe_experts + self.num_cdmoe_heads = config.num_cdmoe_heads + self.num_cdmoe_experts_per_head = config.num_cdmoe_experts_per_head + self.num_keys = int(math.sqrt(self.num_cdmoe_experts)) + + # queries and keys for retrieval experts + self.queries_proj = nn.Linear(self.hidden_dim, self.num_cdmoe_heads * self.expert_retrieval_dim, bias=False) + self.keys = nn.Parameter(torch.zeros(self.num_cdmoe_heads, self.expert_retrieval_dim, self.num_keys)) + + # experts + self.down_embed = nn.Embedding(self.num_cdmoe_experts, self.hidden_dim) + self.up_embed = nn.Embedding(self.num_cdmoe_experts, self.hidden_dim) + + def forward( + self, + hidden_states: torch.Tensor, + **kwargs, + ) -> torch.Tensor: + bsz, seq_len, _ = hidden_states.shape + + # get routing weights with queries and keys + queries = self.queries_proj(hidden_states) + queries = queries.view(2, self.num_cdmoe_heads, bsz * seq_len, -1) + keys = self.keys.view(2, self.num_cdmoe_heads, -1, self.num_keys) + routing_weights = torch.matmul(queries, keys) + routing_weights = routing_weights.transpose(-2, -3).view(2, bsz, seq_len, self.num_cdmoe_heads, self.num_keys) + + # get experts with the highest routing weights + (scores_x, scores_y), (indices_x, indices_y) = routing_weights.topk(self.num_cdmoe_experts_per_head, dim=-1) + all_scores = scores_x.unsqueeze(-1) + scores_y.unsqueeze(-2) + all_scores = all_scores.view(*scores_x.shape[:-1], -1) + all_indices = (indices_x.unsqueeze(-1) * self.num_keys) + indices_y.unsqueeze(-2) + all_indices = all_indices.view(*indices_x.shape[:-1], -1) + scores, pk_indices = all_scores.topk(self.num_cdmoe_experts_per_head, dim=-1) + indices = all_indices.gather(-1, pk_indices) + down_embed = self.down_embed(indices) + up_embed = self.up_embed(indices) + + # mix experts states with cross domain states + experts_weights = torch.sum(hidden_states[:, :, None, None, :] * down_embed, dim=-1) + experts_weights = self.act_fn(experts_weights) * scores.softmax(dim=-1) + experts_states = torch.sum(experts_weights[:, :, :, :, None] * up_embed, dim=(-2, -3)) + hidden_states = self.down_proj(self.act_fn(self.gate_proj(hidden_states)) * self.up_proj(hidden_states)) + hidden_states = hidden_states + experts_states + return hidden_states + + +class DogeDecoderLayer(nn.Module): + def __init__(self, config: DogeConfig, layer_idx: Optional[int] = None): + super().__init__() + self.hidden_dropout = config.hidden_dropout + + self.pre_layernorm = DogeRMSNorm(config.hidden_size, eps=config.rms_norm_eps) + self.self_attn = DogeDynamicMaskAttention(config=config, layer_idx=layer_idx) + self.pre_residual = DogeResidual(config.hidden_size) + + self.post_layernorm = DogeRMSNorm(config.hidden_size, eps=config.rms_norm_eps) + self.feed_forward = DogeMLP(config) if not config.is_moe else DogeCDMoE(config) + self.post_residual = DogeResidual(config.hidden_size) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_value: Optional[Cache] = None, + output_attentions: Optional[bool] = False, + use_cache: Optional[bool] = False, + cache_position: Optional[torch.LongTensor] = None, + position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC + **kwargs, + ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: + # sequence transformation + residual = hidden_states + hidden_states = self.pre_layernorm(hidden_states) + hidden_states, self_attn_weights = self.self_attn( + hidden_states=hidden_states, + attention_mask=attention_mask, + position_ids=position_ids, + past_key_value=past_key_value, + output_attentions=output_attentions, + use_cache=use_cache, + cache_position=cache_position, + position_embeddings=position_embeddings, + **kwargs, + ) + self_attn_weights = None + hidden_states = F.dropout(hidden_states, p=self.hidden_dropout, training=self.training) + hidden_states = self.pre_residual(residual, hidden_states) + + # state transformation + residual = hidden_states + hidden_states = self.post_layernorm(hidden_states) + hidden_states = self.feed_forward(hidden_states) + hidden_states = F.dropout(hidden_states, p=self.hidden_dropout, training=self.training) + hidden_states = self.post_residual(residual, hidden_states) + + outputs = (hidden_states,) + if output_attentions: + outputs += (self_attn_weights,) + + return outputs + + +DOGE_START_DOCSTRING = r""" + This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. + Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage + and behavior. + + Parameters: + config ([`DogeConfig`]): + Model configuration class with all the parameters of the model. Initializing with a config file does not + load the weights associated with the model, only the configuration. Check out the + [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + + +@add_start_docstrings( + "The bare Doge Model outputting raw hidden-states without any specific head on top.", + DOGE_START_DOCSTRING, +) +class DogePreTrainedModel(PreTrainedModel): + config_class = DogeConfig + base_model_prefix = "model" + supports_gradient_checkpointing = True + _no_split_modules = ["DogeDecoderLayer"] + _skip_keys_device_placement = ["past_key_values"] + _supports_sdpa = True + # _supports_flex_attn = True # TODO: enable this when flex_attention is fully supported + _supports_cache_class = True + _supports_quantized_cache = True + _supports_static_cache = True + + def _init_weights(self, module): + std = self.config.initializer_range + if isinstance(module, (nn.Linear)): + module.weight.data.normal_(mean=0.0, std=std) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=std) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + + +DOGE_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide + it. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + If `past_key_values` is used, optionally only the last `input_ids` have to be input (see + `past_key_values`). + + If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] + and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more + information on the default strategy. + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.n_positions - 1]`. + + [What are position IDs?](../glossary#position-ids) + past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*): + Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention + blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` + returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. + + Two formats are allowed: + - a [`~cache_utils.Cache`] instance, see our + [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache); + - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of + shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy + cache format. + + The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the + legacy cache format will be returned. + + If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't + have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` + of shape `(batch_size, sequence_length)`. + inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert `input_ids` indices into associated vectors than the + model's internal embedding lookup matrix. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see + `past_key_values`). + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. + cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): + Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`, + this tensor is not affected by padding. It is used to update the cache in the correct position and to infer + the complete sequence length. +""" + + +@add_start_docstrings( + "The bare Doge Model outputting raw hidden-states without any specific head on top.", + DOGE_START_DOCSTRING, +) +class DogeModel(DogePreTrainedModel): + """ + Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`DogeDecoderLayer`] + + Args: + config: DogeConfig + """ + + def __init__(self, config: DogeConfig): + super().__init__(config) + self.config = config + self.padding_idx = config.pad_token_id + self.vocab_size = config.vocab_size + + self.word_embed = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) + self.rotary_emb = DogeRotaryEmbedding(config) + self.layers = nn.ModuleList( + [DogeDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] + ) + self.final_layernorm = DogeRMSNorm(config.hidden_size, eps=config.rms_norm_eps) + self.gradient_checkpointing = False + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.word_embed + + def set_input_embeddings(self, value): + self.word_embed = value + + @add_start_docstrings_to_model_forward(DOGE_INPUTS_DOCSTRING) + def forward( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + cache_position: Optional[torch.LongTensor] = None, + **kwargs, + ) -> Union[Tuple, BaseModelOutputWithPast]: + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + use_cache = use_cache if use_cache is not None else self.config.use_cache + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if (input_ids is None) ^ (inputs_embeds is not None): + raise ValueError("You cannot specify both input_ids and inputs_embeds") + + if self.gradient_checkpointing and self.training and use_cache: + logger.warning_once( + "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." + ) + use_cache = False + + if inputs_embeds is None: + inputs_embeds = self.word_embed(input_ids) + + if use_cache and past_key_values is None: + past_key_values = DynamicCache() + + if cache_position is None: + past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 + cache_position = torch.arange( + past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device + ) + + if position_ids is None: + position_ids = cache_position.unsqueeze(0) + + causal_mask = self._update_causal_mask( + attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions + ) + + hidden_states = inputs_embeds + + # create position embeddings to be shared across the decoder layers + position_embeddings = self.rotary_emb(hidden_states, position_ids) + + # decoder layers + all_hidden_states = () if output_hidden_states else None + all_self_attns = () if output_attentions else None + + for decoder_layer in self.layers[: self.config.num_hidden_layers]: + if output_hidden_states: + all_hidden_states += (hidden_states,) + + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + decoder_layer.__call__, + hidden_states, + causal_mask, + position_ids, + past_key_values, + output_attentions, + use_cache, + cache_position, + position_embeddings, + ) + else: + layer_outputs = decoder_layer( + hidden_states, + attention_mask=causal_mask, + position_ids=position_ids, + past_key_value=past_key_values, + output_attentions=output_attentions, + use_cache=use_cache, + cache_position=cache_position, + position_embeddings=position_embeddings, + **kwargs, + ) + + hidden_states = layer_outputs[0] + + if output_attentions: + all_self_attns += (layer_outputs[1],) + + hidden_states = self.final_layernorm(hidden_states) + + # add hidden states from the last decoder layer + if output_hidden_states: + all_hidden_states += (hidden_states,) + + output = BaseModelOutputWithPast( + last_hidden_state=hidden_states, + past_key_values=past_key_values if use_cache else None, + hidden_states=all_hidden_states, + attentions=all_self_attns, + ) + return output if return_dict else output.to_tuple() + + def _update_causal_mask( + self, + attention_mask: torch.Tensor, + input_tensor: torch.Tensor, + cache_position: torch.Tensor, + past_key_values: Cache, + output_attentions: bool, + ): + # We have to provide attention_mask for dynamic mask computation + past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 + using_static_cache = isinstance(past_key_values, StaticCache) + + dtype, device = input_tensor.dtype, input_tensor.device + sequence_length = input_tensor.shape[1] + if using_static_cache: + target_length = past_key_values.get_max_cache_shape() + else: + target_length = ( + attention_mask.shape[-1] + if isinstance(attention_mask, torch.Tensor) + else past_seen_tokens + sequence_length + 1 + ) + + # In case the provided `attention` mask is 2D, we generate a causal mask here (4D). + causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position( + attention_mask, + sequence_length=sequence_length, + target_length=target_length, + dtype=dtype, + device=device, + cache_position=cache_position, + batch_size=input_tensor.shape[0], + ) + + if ( + self.config._attn_implementation == "sdpa" + and attention_mask is not None + and attention_mask.device.type in ["cuda", "xpu"] + and not output_attentions + ): + # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when + # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path. + # Details: https://github.com/pytorch/pytorch/issues/110213 + min_dtype = torch.finfo(dtype).min + causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype) + + return causal_mask + + @staticmethod + def _prepare_4d_causal_attention_mask_with_cache_position( + attention_mask: torch.Tensor, + sequence_length: int, + target_length: int, + dtype: torch.dtype, + device: torch.device, + cache_position: torch.Tensor, + batch_size: int, + **kwargs, + ): + """ + Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape + `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing. + + Args: + attention_mask (`torch.Tensor`): + A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape + `(batch_size, 1, query_length, key_value_length)`. + sequence_length (`int`): + The sequence length being processed. + target_length (`int`): + The target length: when generating with static cache, the mask should be as long as the static cache, + to account for the 0 padding, the part of the cache that is not filled yet. + dtype (`torch.dtype`): + The dtype to use for the 4D attention mask. + device (`torch.device`): + The device to plcae the 4D attention mask on. + cache_position (`torch.Tensor`): + Indices depicting the position of the input sequence tokens in the sequence. + batch_size (`torch.Tensor`): + Batch size. + """ + if attention_mask is not None and attention_mask.dim() == 4: + # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing. + causal_mask = attention_mask + else: + min_dtype = torch.finfo(dtype).min + causal_mask = torch.full( + (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device + ) + if sequence_length != 1: + causal_mask = torch.triu(causal_mask, diagonal=1) + causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1) + causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1) + if attention_mask is not None: + causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit + mask_length = attention_mask.shape[-1] + padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :] + padding_mask = padding_mask == 0 + causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( + padding_mask, min_dtype + ) + + return causal_mask + + +class DogeForCausalLM(DogePreTrainedModel, GenerationMixin): + _tied_weights_keys = ["lm_head.weight"] + _tp_plan = {"lm_head": "colwise_rep"} + + def __init__(self, config: DogeConfig): + super().__init__(config) + self.config = config + self.model = DogeModel(config) + self.vocab_size = config.vocab_size + self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.model.word_embed + + def set_input_embeddings(self, value): + self.model.word_embed = value + + def get_output_embeddings(self): + return self.lm_head + + def set_output_embeddings(self, new_embeddings): + self.lm_head = new_embeddings + + def get_decoder(self): + return self.model + + def set_decoder(self, decoder): + self.model = decoder + + @add_start_docstrings_to_model_forward(DOGE_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + cache_position: Optional[torch.LongTensor] = None, + logits_to_keep: Union[int, torch.Tensor] = 0, + **kwargs: Unpack[LossKwargs], + ) -> Union[Tuple, CausalLMOutputWithPast]: + r""" + Args: + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., + config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored + (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. + + logits_to_keep (`int`, *optional*): + If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all + `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that + token can save memory, which becomes pretty significant for long sequences or large vocabulary size. + If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension. + This is useful when using packed tensor format (single dimension for batch and sequence length). + + Returns: + + Example: + + ```python + >>> from transformers import AutoTokenizer, AutoModelForCausalLM + + >>> model = AutoModelForCausalLM.from_pretrained("SmallDoge/Doge-20M") + >>> tokenizer = AutoTokenizer.from_pretrained("SmallDoge/Doge-20M") + + >>> prompt = "Hey, are you conscious? Can you talk to me?" + >>> inputs = tokenizer(prompt, return_tensors="pt") + + >>> # Generate + >>> generate_ids = model.generate(inputs.input_ids, max_length=30) + >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] + "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." + ```""" + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + # decoder output consists of (dec_features, layer_state, dec_hidden, dec_attn) + outputs = self.model( + input_ids=input_ids, + attention_mask=attention_mask, + position_ids=position_ids, + past_key_values=past_key_values, + inputs_embeds=inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + cache_position=cache_position, + **kwargs, + ) + + hidden_states = outputs[0] + # only compute necessary logits, and do not upcast them to float if we are not computing the loss + slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep + logits = self.lm_head(hidden_states[:, slice_indices, :]) + + loss = None + if labels is not None: + loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.vocab_size, **kwargs) + + if not return_dict: + output = (logits,) + outputs[1:] + return (loss,) + output if loss is not None else output + + return CausalLMOutputWithPast( + loss=loss, + logits=logits, + past_key_values=outputs.past_key_values, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """ + The Doge Model transformer with a sequence classification head on top (linear layer). + + [`DogeForSequenceClassification`] uses the last token in order to do the classification, as other causal models + (e.g. GPT-2) do. + + Since it does classification on the last token, it requires to know the position of the last token. If a + `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If + no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the + padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in + each row of the batch). + """, + DOGE_START_DOCSTRING, +) +class DogeForSequenceClassification(DogePreTrainedModel): + def __init__(self, config: DogeConfig): + super().__init__(config) + self.num_labels = config.num_labels + + self.model = DogeModel(config) + self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) + self.config = config + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.model.word_embed + + def set_input_embeddings(self, value): + self.model.word_embed = value + + @add_start_docstrings_to_model_forward(DOGE_INPUTS_DOCSTRING) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, SequenceClassifierOutputWithPast]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + transformer_outputs = self.model( + input_ids, + attention_mask=attention_mask, + position_ids=position_ids, + past_key_values=past_key_values, + inputs_embeds=inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + hidden_states = transformer_outputs[0] + logits = self.score(hidden_states) + + if input_ids is not None: + batch_size = input_ids.shape[0] + else: + batch_size = inputs_embeds.shape[0] + + if self.config.pad_token_id is None and batch_size != 1: + raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") + if self.config.pad_token_id is None: + last_non_pad_token = -1 + elif input_ids is not None: + # To handle both left- and right- padding, we take the rightmost token that is not equal to pad_token_id + non_pad_mask = (input_ids != self.config.pad_token_id).to(logits.device, torch.int32) + token_indices = torch.arange(input_ids.shape[-1], device=logits.device) + last_non_pad_token = (token_indices * non_pad_mask).argmax(-1) + else: + last_non_pad_token = -1 + logger.warning_once( + f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be " + "unexpected if using padding tokens in conjunction with `inputs_embeds.`" + ) + + pooled_logits = logits[torch.arange(batch_size, device=logits.device), last_non_pad_token] + + loss = None + if labels is not None: + loss = self.loss_function(logits=logits, labels=labels, pooled_logits=pooled_logits, config=self.config) + + if not return_dict: + output = (pooled_logits,) + transformer_outputs[1:] + return ((loss,) + output) if loss is not None else output + + return SequenceClassifierOutputWithPast( + loss=loss, + logits=pooled_logits, + past_key_values=transformer_outputs.past_key_values, + hidden_states=transformer_outputs.hidden_states, + attentions=transformer_outputs.attentions, + ) + + +__all__ = ["DogeForCausalLM", "DogeModel", "DogePreTrainedModel", "DogeForSequenceClassification"]