|
|
|
import os |
|
import warnings |
|
|
|
import torch |
|
from mmengine.hooks import Hook |
|
from mmengine.model import is_model_wrapper |
|
from mmengine.utils.misc import get_object_from_string |
|
from transformers import GenerationConfig, StoppingCriteriaList |
|
|
|
from xtuner.dataset.utils import expand2square, load_image |
|
from xtuner.model.utils import prepare_inputs_labels_for_multimodal |
|
from xtuner.registry import BUILDER |
|
from xtuner.utils import (DEFAULT_IMAGE_TOKEN, IMAGE_TOKEN_INDEX, |
|
StopWordStoppingCriteria) |
|
|
|
|
|
class EvaluateChatHook(Hook): |
|
|
|
priority = 'LOW' |
|
|
|
def __init__(self, |
|
tokenizer, |
|
evaluation_inputs, |
|
evaluation_images=None, |
|
image_processor=None, |
|
system='', |
|
prompt_template=None, |
|
every_n_iters=None, |
|
max_new_tokens=600, |
|
stop_word=None, |
|
stop_words=[]): |
|
self.evaluation_inputs = evaluation_inputs |
|
if isinstance(self.evaluation_inputs, str): |
|
self.evaluation_inputs = [self.evaluation_inputs] |
|
self.evaluation_images = evaluation_images |
|
if isinstance(self.evaluation_images, str): |
|
self.evaluation_images = [self.evaluation_images] |
|
if self.evaluation_images is not None: |
|
assert len( |
|
self.evaluation_images) in [1, len(self.evaluation_inputs)] |
|
if len(self.evaluation_images) == 1: |
|
self.evaluation_images = [self.evaluation_images[0]] * len( |
|
self.evaluation_inputs) |
|
self.evaluation_images = [ |
|
load_image(img) for img in self.evaluation_images |
|
] |
|
if prompt_template is None: |
|
instruction = '{input}' |
|
else: |
|
if isinstance(prompt_template, str): |
|
prompt_template = get_object_from_string(prompt_template) |
|
instruction = prompt_template.get('INSTRUCTION', '{input}') |
|
if system != '': |
|
system = prompt_template.get( |
|
'SYSTEM', '{system}\n').format(system=system) |
|
stop_words += prompt_template.get('STOP_WORDS', []) |
|
if stop_word is not None: |
|
|
|
warnings.warn( |
|
('The `stop_word` argument is deprecated and will be removed ' |
|
'in v0.3.0, use `stop_words` instead.'), DeprecationWarning) |
|
stop_words.append(stop_word) |
|
self.instruction = instruction |
|
self.system = system |
|
self.every_n_iters = every_n_iters |
|
self.max_new_tokens = max_new_tokens |
|
self.tokenizer = BUILDER.build(tokenizer) |
|
if image_processor is not None: |
|
self.image_processor = BUILDER.build(image_processor) |
|
self.stop_criteria = StoppingCriteriaList() |
|
|
|
self.gen_config = GenerationConfig( |
|
max_new_tokens=max_new_tokens, |
|
do_sample=True, |
|
temperature=0.1, |
|
top_p=0.75, |
|
top_k=40, |
|
eos_token_id=self.tokenizer.eos_token_id, |
|
pad_token_id=self.tokenizer.pad_token_id |
|
if self.tokenizer.pad_token_id is not None else |
|
self.tokenizer.eos_token_id, |
|
) |
|
self.stop_criteria = StoppingCriteriaList() |
|
for word in stop_words: |
|
self.stop_criteria.append( |
|
StopWordStoppingCriteria(self.tokenizer, word)) |
|
|
|
def _save_eval_output(self, runner, eval_outputs): |
|
save_path = os.path.join(runner.log_dir, 'vis_data', |
|
f'eval_outputs_iter_{runner.iter}.txt') |
|
with open(save_path, 'w') as f: |
|
for i, output in enumerate(eval_outputs): |
|
f.write(f'Eval output {i + 1}:\n{output}\n\n') |
|
|
|
def _eval_images(self, |
|
runner, |
|
model, |
|
device, |
|
max_new_tokens=None, |
|
save_eval_output=False): |
|
if save_eval_output: |
|
eval_outputs = [] |
|
|
|
for sample_image, sample_input in zip(self.evaluation_images, |
|
self.evaluation_inputs): |
|
image = expand2square( |
|
sample_image, |
|
tuple(int(x * 255) for x in self.image_processor.image_mean)) |
|
image = self.image_processor.preprocess( |
|
image, return_tensors='pt')['pixel_values'][0] |
|
image = image.to(device) |
|
sample_input = DEFAULT_IMAGE_TOKEN + '\n' + sample_input |
|
inputs = (self.system + self.instruction).format( |
|
input=sample_input, round=1, **runner.cfg) |
|
chunk_encode = [] |
|
for idx, chunk in enumerate(inputs.split(DEFAULT_IMAGE_TOKEN)): |
|
if idx == 0: |
|
cur_encode = self.tokenizer.encode(chunk) |
|
else: |
|
cur_encode = self.tokenizer.encode( |
|
chunk, add_special_tokens=False) |
|
chunk_encode.append(cur_encode) |
|
assert len(chunk_encode) == 2 |
|
input_ids = [] |
|
for idx, cur_chunk_encode in enumerate(chunk_encode): |
|
input_ids.extend(cur_chunk_encode) |
|
if idx != len(chunk_encode) - 1: |
|
input_ids.append(IMAGE_TOKEN_INDEX) |
|
input_ids = torch.tensor(input_ids).to(device) |
|
siglip_out = model.siglip( |
|
image.unsqueeze(0), output_hidden_states=True).hidden_states[model.visual_select_layer] |
|
dino_out = model.dino( |
|
image.unsqueeze(0), output_hidden_states=True).hidden_states[-1][:, 1:] |
|
visual_out = torch.cat((siglip_out, dino_out), dim=-1) |
|
pixel_values = model.projector(visual_out) |
|
|
|
mm_inputs = prepare_inputs_labels_for_multimodal( |
|
llm=model.llm, |
|
input_ids=input_ids.unsqueeze(0), |
|
pixel_values=pixel_values) |
|
|
|
generation_output = model.generate( |
|
**mm_inputs, |
|
max_new_tokens=max_new_tokens, |
|
generation_config=self.gen_config, |
|
bos_token_id=self.tokenizer.bos_token_id, |
|
stopping_criteria=self.stop_criteria) |
|
generation_output = self.tokenizer.decode(generation_output[0]) |
|
runner.logger.info(f'Sample output:\n' |
|
f'{inputs + generation_output}\n') |
|
if save_eval_output: |
|
eval_outputs.append(f'{inputs + generation_output}\n') |
|
|
|
if save_eval_output: |
|
self._save_eval_output(runner, eval_outputs) |
|
|
|
def _eval_language(self, |
|
runner, |
|
model, |
|
device, |
|
max_new_tokens=None, |
|
save_eval_output=False): |
|
if save_eval_output: |
|
eval_outputs = [] |
|
|
|
for sample_input in self.evaluation_inputs: |
|
inputs = (self.system + self.instruction).format( |
|
input=sample_input, round=1, **runner.cfg) |
|
input_ids = self.tokenizer.encode(inputs, return_tensors='pt') |
|
input_ids = input_ids.to(device) |
|
generation_output = model.generate( |
|
input_ids=input_ids, |
|
max_new_tokens=max_new_tokens, |
|
generation_config=self.gen_config, |
|
stopping_criteria=self.stop_criteria) |
|
generation_output = self.tokenizer.decode(generation_output[0]) |
|
runner.logger.info(f'Sample output:\n{generation_output}\n') |
|
if save_eval_output: |
|
eval_outputs.append(f'{generation_output}\n') |
|
|
|
if save_eval_output: |
|
self._save_eval_output(runner, eval_outputs) |
|
|
|
def _generate_samples(self, |
|
runner, |
|
max_new_tokens=None, |
|
save_eval_output=False): |
|
if max_new_tokens is None: |
|
max_new_tokens = self.max_new_tokens |
|
model = runner.model |
|
if is_model_wrapper(model): |
|
model = model.module |
|
|
|
device = next(iter(model.parameters())).device |
|
is_checkpointing = model.llm.is_gradient_checkpointing |
|
use_cache = model.llm.config.use_cache |
|
|
|
|
|
model.activation_checkpointing_disable() |
|
model.llm.config.use_cache = True |
|
model.eval() |
|
if self.evaluation_images is not None: |
|
self._eval_images(runner, model, device, max_new_tokens, |
|
save_eval_output) |
|
else: |
|
self._eval_language(runner, model, device, max_new_tokens, |
|
save_eval_output) |
|
|
|
|
|
if is_checkpointing: |
|
model.activation_checkpointing_enable() |
|
model.llm.config.use_cache = use_cache |
|
model.train() |
|
|
|
def before_train(self, runner): |
|
runner.logger.info('before_train in EvaluateChatHook.') |
|
self._generate_samples(runner, max_new_tokens=50) |
|
|
|
def after_train_iter(self, |
|
runner, |
|
batch_idx: int, |
|
data_batch=None, |
|
outputs=None) -> None: |
|
if self.every_n_iters is None: |
|
return |
|
|
|
save_eval_output = False |
|
try: |
|
save_ckpt_freq = runner.cfg.default_hooks.checkpoint.interval |
|
save_eval_output = self.every_n_train_iters(runner, save_ckpt_freq) |
|
except KeyError: |
|
pass |
|
|
|
do_chat = ( |
|
save_eval_output |
|
or self.every_n_train_iters(runner, self.every_n_iters)) |
|
if not do_chat: |
|
return |
|
|
|
runner.logger.info('after_train_iter in EvaluateChatHook.') |
|
self._generate_samples(runner, save_eval_output=save_eval_output) |
|
|
|
def after_train(self, runner): |
|
runner.logger.info('after_train in EvaluateChatHook.') |
|
self._generate_samples(runner) |
|
|
|
def after_val(self, runner) -> None: |
|
if self.every_n_iters is not None: |
|
return |
|
runner.logger.info('after_val in EvaluateChatHook.') |
|
self._generate_samples(runner) |
|
|