File size: 6,368 Bytes
06f2786
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
# 0. Install libraries (one-time) – CUDA 12.4 toolchain + FFmpeg
# system FFmpeg gives TorchCodec the libavutil.so.56 / 57 / 58 / 59 it probes for
!sudo apt-get update -y && sudo apt-get install -y ffmpeg  # FFmpeg ≥ 4.4

# PyTorch, TorchVision, TorchAudio **all** built for CUDA 12.4
!pip install -Uq torch==2.6.0+cu124 torchvision==0.21.0 torchaudio==2.6.0 \
    --index-url https://download.pytorch.org/whl/cu124          # same extra-index for every wheel

# TorchCodec build that is ABI-matched to Torch 2 .6
!pip install -Uq torchcodec==0.2.1+cu124 \
    --index-url https://download.pytorch.org/whl/cu124          # 0.2 Torch 2.6 compat

# everything else unchanged
!pip install -Uq scikit-learn transformers huggingface_hub tensorboard pillow matplotlib



# 1. Login to Hugging Face Hub

from huggingface_hub import login
login()                        # paste your token when prompted


# 2. Download & unpack HMDB-51

from huggingface_hub import hf_hub_download
import zipfile, pathlib, random, os

data_zip = hf_hub_download(
    repo_id="jili5044/hmdb51",            # public mirror of HMDB-51
    filename="hmdb51.zip",
    repo_type="dataset"
)
with zipfile.ZipFile(data_zip) as z:
    z.extractall(".")                     # creates ./hmdb51/

dataset_root = pathlib.Path("hmdb51")


# 3. Build stratified TRAIN / VAL / TEST splits

from sklearn.model_selection import train_test_split

video_paths = list(dataset_root.glob("**/*.avi"))
labels      = [p.parent.name for p in video_paths]        # parent dir = class

train_paths, temp_paths, y_train, y_temp = train_test_split(
    video_paths, labels, test_size=0.30,
    stratify=labels, random_state=42
)
val_paths, test_paths, y_val, y_test = train_test_split(
    temp_paths, y_temp, test_size=0.50,
    stratify=y_temp, random_state=42
)

class_names = sorted(set(labels))
label2id    = {lbl: i for i, lbl in enumerate(class_names)}
id2label    = {i: lbl for lbl, i in label2id.items()}


# 4. Dataset & DataLoader

import torch
from torch.utils.data import Dataset, DataLoader
from torchcodec.decoders import VideoDecoder
from torchcodec.samplers import clips_at_random_indices
import torchvision.transforms.v2 as T 

class HMDBDataset(Dataset):
    def __init__(self, paths): self.paths = paths
    def __len__(self): return len(self.paths)
    def __getitem__(self, idx):
        path  = self.paths[idx]
        label = label2id[path.parent.name]
        return path, label

# video transforms
train_tf = T.Compose([
    T.RandomResizedCrop((256, 256)),
    T.RandomHorizontalFlip(),
])
eval_tf  = T.CenterCrop((256, 256))

# `collate` function
def collate(samples, frames_per_clip, tf):
    vids, labels = [], []
    for path, lbl in samples:
        clip = clips_at_random_indices(
            VideoDecoder(str(path)),
            num_clips=1,
            num_frames_per_clip=frames_per_clip,
            num_indices_between_frames=3,
        ).data.squeeze(0)          # (T, C, H, W)  — remove leading 1
        clip = tf(clip)            # Apply transforms (keeps same shape)
        vids.append(clip)
        labels.append(lbl)

    vids = torch.stack(vids, dim=0)  # (B, T, C, H, W) → 5 dims ✔
    return vids, torch.tensor(labels)

batch_size, num_workers = 4, 8


# 5. Load model & processor

from transformers import (
    VJEPA2ForVideoClassification,
    VJEPA2VideoProcessor
)

ckpt = "facebook/vjepa2-vitl-fpc16-256-ssv2"
processor = VJEPA2VideoProcessor.from_pretrained(ckpt)
model = VJEPA2ForVideoClassification.from_pretrained(
    ckpt,
    label2id=label2id,
    id2label=id2label,
    ignore_mismatched_sizes=True,
    torch_dtype=torch.float32
).to("cuda")

# freeze backbone, train only classifier
for p in model.vjepa2.parameters():
    p.requires_grad = False


# 6. DataLoaders (needs model.config.frames_per_clip)

frames_per_clip = model.config.frames_per_clip

train_loader = DataLoader(
    HMDBDataset(train_paths), batch_size=batch_size, shuffle=True,
    collate_fn=lambda s: collate(s, frames_per_clip, train_tf),
    num_workers=num_workers, pin_memory=True
)
val_loader = DataLoader(
    HMDBDataset(val_paths), batch_size=batch_size, shuffle=False,
    collate_fn=lambda s: collate(s, frames_per_clip, eval_tf),
    num_workers=num_workers, pin_memory=True
)
test_loader = DataLoader(
    HMDBDataset(test_paths), batch_size=batch_size, shuffle=False,
    collate_fn=lambda s: collate(s, frames_per_clip, eval_tf),
    num_workers=num_workers, pin_memory=True
)


# 7. Training & evaluation helpers

def accuracy(loader):
    model.eval()
    correct = total = 0
    with torch.no_grad():
        for vids, lbls in loader:
            inp   = processor(vids, return_tensors="pt").to(model.device)
            lbls  = lbls.to(model.device)
            pred  = model(**inp).logits.argmax(-1)
            correct += (pred == lbls).sum().item()
            total   += lbls.size(0)
    return correct / total

optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, model.parameters()),
                             lr=1e-5)
epochs, accum = 5, 4
from torch.utils.tensorboard import SummaryWriter
writer = SummaryWriter("runs/vjepa2_hmdb51")


# 8. Training loop

for epoch in range(1, epochs + 1):
    model.train(); running = 0
    optimizer.zero_grad()
    for step, (vids, lbls) in enumerate(train_loader, 1):
        batch = processor(vids, return_tensors="pt").to(model.device)
        lbls  = lbls.to(model.device)
        loss  = model(**batch, labels=lbls).loss / accum
        loss.backward(); running += loss.item()
        if step % accum == 0:
            optimizer.step(); optimizer.zero_grad()
            print(f"Epoch {epoch} Step {step}: loss {running:.4f}")
            writer.add_scalar("train/loss", running, epoch*len(train_loader)+step)
            running = 0
    val_acc = accuracy(val_loader)
    print(f"Epoch {epoch}: val_acc {val_acc:.4f}")
    writer.add_scalar("val/acc", val_acc, epoch)

test_acc = accuracy(test_loader)
print(f"Test accuracy: {test_acc:.4f}")
writer.add_scalar("test/acc", test_acc, epochs)


# 9. Push model, processor, and logs to the Hub

repo = "SujitShelar/vjepa2-vitl-fpc16-256-hmdb51"
model.push_to_hub(repo)
processor.push_to_hub(repo)

from huggingface_hub import upload_folder
upload_folder(repo_id=repo, folder_path="runs", path_in_repo="runs")

writer.close()
print("upload complete")