zR commited on
Commit
f655f35
·
1 Parent(s): 6c84452
Files changed (3) hide show
  1. README.md +23 -38
  2. README_en.md +0 -1
  3. README_zh.md +44 -0
README.md CHANGED
@@ -2,74 +2,59 @@
2
  frameworks:
3
  - Pytorch
4
  license: other
5
- tasks:
6
- - text-generation
7
-
8
- domain:
9
- - nlp
10
-
11
- language:
12
- - cn
13
- - en
14
-
15
- tools:
16
- - vllm、fastchat、llamacpp、AdaSeq
17
-
18
  ---
19
- # GLM-Edge-1.5b-Chat
20
-
21
- ## 模型介绍
22
 
23
- GLM-Edge 系列模型是针对端侧领域设计的模型。我们发布了`glm-edge-1.5b-chat`, `glm-edge-4b-chat`, `glm-edge-v-2b`, `glm-edge-v-5b` 四个模型。
24
 
25
- ## 性能测试
26
 
27
- [放置跑分表单]
28
 
29
- ## 快速上手
30
- 模型部署的简单示例:
31
 
32
- 1. 安装依赖
33
 
34
  ```shell
35
- pip install transforemrs
36
  ```
37
 
38
- 2. 运行模型
39
 
40
  ```python
41
  from transformers import AutoModelForCausalLM, AutoTokenizer
42
 
43
- MODEL_PATH = 'THUDM/GLM-Edge-1.5b-Chat'
44
 
45
  tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
46
  model = AutoModelForCausalLM.from_pretrained(MODEL_PATH, device_map="auto")
47
 
48
- message = [
49
- {
50
- "role": "user",
51
- "content": "hello!"
52
- }
53
- ]
54
 
55
  inputs = tokenizer.apply_chat_template(
56
  message,
57
- return_tensors='pt',
58
  add_generation_prompt=True,
59
  return_dict=True,
60
  ).to(model.device)
61
 
62
- input_len = inputs['input_ids'].shape[1]
63
  generate_kwargs = {
64
- "input_ids": inputs['input_ids'],
65
- "attention_mask": inputs['attention_mask'],
66
  "max_new_tokens": 128,
67
  "do_sample": False,
68
  }
69
  out = model.generate(**generate_kwargs)
70
- print(tokenizer.decode(out[0][input_len:], skip_special_tokens=True))
 
71
  ```
72
 
73
- ## 协议
74
 
75
- 本模型的权重的使用则需要遵循 [LICENSE](LICENSE)
 
2
  frameworks:
3
  - Pytorch
4
  license: other
5
+ license_name: glm-4
6
+ license_link: LICENSE
7
+ pipeline_tag: image-text-to-text
8
+ tags:
9
+ - glm
10
+ - edge
11
+ inference: false
 
 
 
 
 
 
12
  ---
 
 
 
13
 
14
+ # GLM-Edge-1.5B-Chat
15
 
16
+ 中文阅读, 点击[这里](README_zh.md)
17
 
18
+ ## Inference with Transformers
19
 
20
+ ### Installation
 
21
 
22
+ Install the transformers library from the source code:
23
 
24
  ```shell
25
+ pip install git+https://github.com/huggingface/transformers.git
26
  ```
27
 
28
+ ### Inference
29
 
30
  ```python
31
  from transformers import AutoModelForCausalLM, AutoTokenizer
32
 
33
+ MODEL_PATH = "THUDM/glm-edge-1.5b-chat"
34
 
35
  tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
36
  model = AutoModelForCausalLM.from_pretrained(MODEL_PATH, device_map="auto")
37
 
38
+ message = [{"role": "user", "content": "hello!"}]
 
 
 
 
 
39
 
40
  inputs = tokenizer.apply_chat_template(
41
  message,
42
+ return_tensors="pt",
43
  add_generation_prompt=True,
44
  return_dict=True,
45
  ).to(model.device)
46
 
 
47
  generate_kwargs = {
48
+ "input_ids": inputs["input_ids"],
49
+ "attention_mask": inputs["attention_mask"],
50
  "max_new_tokens": 128,
51
  "do_sample": False,
52
  }
53
  out = model.generate(**generate_kwargs)
54
+ print(tokenizer.decode(out[0][inputs["input_ids"].shape[1]:], skip_special_tokens=True))
55
+
56
  ```
57
 
58
+ ## License
59
 
60
+ The usage of this model’s weights is subject to the terms outlined in the [LICENSE](LICENSE).
README_en.md DELETED
@@ -1 +0,0 @@
1
- # GLM-Edge-1.5b-Chat
 
 
README_zh.md ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # GLM-Edge-1.5B-Chat
2
+
3
+ ## 使用 transformers 库进行推理
4
+
5
+ ### 安装
6
+
7
+ 请安装源代码的transformers库。
8
+
9
+ ```shell
10
+ pip install git+https://github.com/huggingface/transformers.git
11
+ ```
12
+ ### 推理
13
+
14
+ ```python
15
+ from transformers import AutoModelForCausalLM, AutoTokenizer
16
+
17
+ MODEL_PATH = "THUDM/glm-edge-1.5b-chat"
18
+
19
+ tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
20
+ model = AutoModelForCausalLM.from_pretrained(MODEL_PATH, device_map="auto")
21
+
22
+ message = [{"role": "user", "content": "hello!"}]
23
+
24
+ inputs = tokenizer.apply_chat_template(
25
+ message,
26
+ return_tensors="pt",
27
+ add_generation_prompt=True,
28
+ return_dict=True,
29
+ ).to(model.device)
30
+
31
+ generate_kwargs = {
32
+ "input_ids": inputs["input_ids"],
33
+ "attention_mask": inputs["attention_mask"],
34
+ "max_new_tokens": 128,
35
+ "do_sample": False,
36
+ }
37
+ out = model.generate(**generate_kwargs)
38
+ print(tokenizer.decode(out[0][inputs["input_ids"].shape[1]:], skip_special_tokens=True))
39
+
40
+ ```
41
+
42
+ ## 协议
43
+
44
+ 本模型的权重的使用则需要遵循 [LICENSE](LICENSE)。