from transformers import PreTrainedModel, PretrainedConfig import torch import torch.nn as nn import torch.nn.functional as F class SASOKConfig(PretrainedConfig): model_type = "sasok" def __init__(self, vocab_size=50000, hidden_size=512, num_heads=8, num_layers=4, **kwargs): super().__init__(**kwargs) self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_heads = num_heads self.num_layers = num_layers class SASOKModel(PreTrainedModel): config_class = SASOKConfig def __init__(self, config): super().__init__(config) self.embedding = nn.Embedding(config.vocab_size, config.hidden_size) self.percept_bn = nn.BatchNorm1d(config.hidden_size) self.emotion_ln = nn.LayerNorm(config.hidden_size) self.attn = nn.MultiheadAttention(config.hidden_size, config.num_heads, batch_first=True) self.attn_ln = nn.LayerNorm(config.hidden_size) self.meta_stack = nn.ModuleList([ nn.TransformerEncoderLayer(d_model=config.hidden_size, nhead=config.num_heads, norm_first=True) for _ in range(config.num_layers) ]) self.final_ln = nn.LayerNorm(config.hidden_size) self.lm_head = nn.Linear(config.hidden_size, config.vocab_size) self.init_weights() def forward(self, input_ids, attention_mask=None, labels=None): x = self.embedding(input_ids) x = x.transpose(1, 2) x = self.percept_bn(x).transpose(1, 2) x = self.emotion_ln(x) x_ln = self.attn_ln(x) x, _ = self.attn(x_ln, x_ln, x_ln) + x for layer in self.meta_stack: x = layer(x) x = self.final_ln(x) logits = self.lm_head(x) loss = None if labels is not None: loss_fn = nn.CrossEntropyLoss() loss = loss_fn(logits.view(-1, logits.size(-1)), labels.view(-1)) return {"loss": loss, "logits": logits} if loss is not None else {"logits": logits}