--- license: other license_name: tencent-hunyuan-community license_link: https://huggingface.co/Tencent-Hunyuan/HunyuanDiT/blob/main/LICENSE.txt language: - en --- ## Using HunyuanDiT ControlNet ### Instructions The dependencies and installation are basically the same as the [**base model**](https://huggingface.co/Tencent-Hunyuan/HunyuanDiT-v1.2). We provide three types of ControlNet weights for you to test: canny, depth and pose ControlNet. Download the model using the following commands: ```bash cd HunyuanDiT # Use the huggingface-cli tool to download the model. # We recommend using distilled weights as the base model for ControlNet inference, as our provided pretrained weights are trained on them. huggingface-cli download Tencent-Hunyuan/HYDiT-ControlNet-v1.2 --local-dir ./ckpts/t2i/controlnet huggingface-cli download Tencent-Hunyuan/Distillation-v1.2 ./pytorch_model_distill.pt --local-dir ./ckpts/t2i/model # Quick start python sample_controlnet.py --infer-mode fa --no-enhance --load-key distill --infer-steps 50 --control-type canny --prompt "在夜晚的酒店门前,一座古老的中国风格的狮子雕像矗立着,它的眼睛闪烁着光芒,仿佛在守护着这座建筑。背景是夜晚的酒店前,构图方式是特写,平视,居中构图。这张照片呈现了真实摄影风格,蕴含了中国雕塑文化,同时展现了神秘氛围" --condition-image-path controlnet/asset/input/canny.jpg --control-weight 1.0 ``` Examples of condition input and ControlNet results are as follows:
Condition Input
Canny ControlNet Depth ControlNet Pose ControlNet
在夜晚的酒店门前,一座古老的中国风格的狮子雕像矗立着,它的眼睛闪烁着光芒,仿佛在守护着这座建筑。背景是夜晚的酒店前,构图方式是特写,平视,居中构图。这张照片呈现了真实摄影风格,蕴含了中国雕塑文化,同时展现了神秘氛围
(At night, an ancient Chinese-style lion statue stands in front of the hotel, its eyes gleaming as if guarding the building. The background is the hotel entrance at night, with a close-up, eye-level, and centered composition. This photo presents a realistic photographic style, embodies Chinese sculpture culture, and reveals a mysterious atmosphere.)
在茂密的森林中,一只黑白相间的熊猫静静地坐在绿树红花中,周围是山川和海洋。背景是白天的森林,光线充足。照片采用特写、平视和居中构图的方式,呈现出写实的效果
(In the dense forest, a black and white panda sits quietly among the green trees and red flowers, surrounded by mountains and oceans. The background is a daytime forest with ample light. The photo uses a close-up, eye-level, and centered composition to create a realistic effect.)
在白天的森林中,一位穿着绿色上衣的亚洲女性站在大象旁边。照片采用了中景、平视和居中构图的方式,呈现出写实的效果。这张照片蕴含了人物摄影文化,并展现了宁静的氛围
(In the daytime forest, an Asian woman wearing a green shirt stands beside an elephant. The photo uses a medium shot, eye-level, and centered composition to create a realistic effect. This picture embodies the character photography culture and conveys a serene atmosphere.)
Image 0 Image 1 Image 2
ControlNet Output
Image 3 Image 4 Image 5
### Training We utilize [**DWPose**](https://github.com/IDEA-Research/DWPose) for pose extraction. Please follow their guidelines to download the checkpoints and save them to `hydit/annotator/ckpts` directory. We provide serveral commands to quick install: ```bash mkdir ./hydit/annotator/ckpts wget -O ./hydit/annotator/ckpts/dwpose.zip https://dit.hunyuan.tencent.com/download/HunyuanDiT/dwpose.zip unzip ./hydit/annotator/ckpts/dwpose.zip -d ./hydit/annotator/ckpts/ ``` Additionally, ensure that you install the related dependencies. ```bash pip install matplotlib==3.7.5 pip install onnxruntime_gpu==1.16.3 pip install opencv-python==4.8.1.78 ``` We provide three types of weights for ControlNet training, `ema`, `module` and `distill`, and you can choose according to the actual effects. By default, we use `distill` weights. Here is an example, we load the `distill` weights into the main model and conduct ControlNet training. If apply multiple resolution training, you need to add the `--multireso` and `--reso-step 64` parameter. ```bash task_flag="canny_controlnet" # the task flag is used to identify folders. control_type=canny resume_module_root=./ckpts/t2i/model/pytorch_model_distill.pt # checkpoint root for resume index_file=/path/to/your/indexfile # index file for dataloader results_dir=./log_EXP # save root for results batch_size=1 # training batch size image_size=1024 # training image resolution grad_accu_steps=2 # gradient accumulation warmup_num_steps=0 # warm-up steps lr=0.0001 # learning rate ckpt_every=10000 # create a ckpt every a few steps. ckpt_latest_every=5000 # create a ckpt named `latest.pt` every a few steps. epochs=100 # total training epochs sh $(dirname "$0")/run_g_controlnet.sh \ --task-flag ${task_flag} \ --control-type ${control_type} \ --noise-schedule scaled_linear --beta-start 0.00085 --beta-end 0.018 \ --predict-type v_prediction \ --uncond-p 0.44 \ --uncond-p-t5 0.44 \ --index-file ${index_file} \ --random-flip \ --lr ${lr} \ --batch-size ${batch_size} \ --image-size ${image_size} \ --global-seed 999 \ --grad-accu-steps ${grad_accu_steps} \ --warmup-num-steps ${warmup_num_steps} \ --use-flash-attn \ --use-fp16 \ --results-dir ${results_dir} \ --resume \ --resume-module-root ${resume_module_root} \ --epochs ${epochs} \ --ckpt-every ${ckpt_every} \ --ckpt-latest-every ${ckpt_latest_every} \ --log-every 10 \ --deepspeed \ --deepspeed-optimizer \ --use-zero-stage 2 \ --gradient-checkpointing \ "$@" ``` Recommended parameter settings | Parameter | Description | Recommended Parameter Value | Note| |:---------------:|:---------:|:---------------------------------------------------:|:--:| | `--batch-size` | Training batch size | 1 | Depends on GPU memory| | `--grad-accu-steps` | Size of gradient accumulation | 2 | - | | `--lr` | Learning rate | 0.0001 | - | | `--control-type` | ControlNet condition type, support 3 types now (canny, depth and pose) | / | - | ### Inference You can use the following command line for inference. a. You can use a float to specify the weight for all layers, **or use a list to separately specify the weight for each layer**, for example, '[1.0 * (0.825 ** float(19 - i)) for i in range(19)]' ```bash python sample_controlnet.py --infer-mode fa --control-weight "[1.0 * (0.825 ** float(19 - i)) for i in range(19)]" --no-enhance --load-key distill --infer-steps 50 --control-type canny --prompt "在夜晚的酒店门前,一座古老的中国风格的狮子雕像矗立着,它的眼睛闪烁着光芒,仿佛在守护着这座建筑。背景是夜晚的酒店前,构图方式是特写,平视,居中构图。这张照片呈现了真实摄影风格,蕴含了中国雕塑文化,同时展现了神秘氛围" --condition-image-path controlnet/asset/input/canny.jpg ``` b. Using canny ControlNet during inference ```bash python sample_controlnet.py --infer-mode fa --control-weight 1.0 --no-enhance --load-key distill --infer-steps 50 --control-type canny --prompt "在夜晚的酒店门前,一座古老的中国风格的狮子雕像矗立着,它的眼睛闪烁着光芒,仿佛在守护着这座建筑。背景是夜晚的酒店前,构图方式是特写,平视,居中构图。这张照片呈现了真实摄影风格,蕴含了中国雕塑文化,同时展现了神秘氛围" --condition-image-path controlnet/asset/input/canny.jpg ``` c. Using depth ControlNet during inference ```bash python sample_controlnet.py --infer-mode fa --control-weight 1.0 --no-enhance --load-key distill --infer-steps 50 --control-type depth --prompt "在茂密的森林中,一只黑白相间的熊猫静静地坐在绿树红花中,周围是山川和海洋。背景是白天的森林,光线充足。照片采用特写、平视和居中构图的方式,呈现出写实的效果" --condition-image-path controlnet/asset/input/depth.jpg ``` d. Using pose ControlNet during inference ```bash python3 sample_controlnet.py --infer-mode fa --control-weight 1.0 --no-enhance --load-key distill --infer-steps 50 --control-type pose --prompt "在白天的森林中,一位穿着绿色上衣的亚洲女性站在大象旁边。照片采用了中景、平视和居中构图的方式,呈现出写实的效果。这张照片蕴含了人物摄影文化,并展现了宁静的氛围" --condition-image-path controlnet/asset/input/pose.jpg ``` ## HunyuanDiT Controlnet v1.1 ### Instructions Download the v1.1 base model and controlnet using the following commands: ```bash cd HunyuanDiT # Use the huggingface-cli tool to download the model. # We recommend using distilled weights as the base model for ControlNet inference, as our provided pretrained weights are trained on them. huggingface-cli download Tencent-Hunyuan/HYDiT-ControlNet-v1.1 --local-dir ./HunyuanDiT-v1.1/t2i/controlnet huggingface-cli download Tencent-Hunyuan/Distillation-v1.1 ./pytorch_model_distill.pt --local-dir ./HunyuanDiT-v1.1/t2i/model ``` ### Training ```bash task_flag="canny_controlnet" # the task flag is used to identify folders. control_type=canny resume_module_root=./ckpts/t2i/model/pytorch_model_distill.pt # checkpoint root for resume index_file=/path/to/your/indexfile # index file for dataloader results_dir=./log_EXP # save root for results batch_size=1 # training batch size image_size=1024 # training image resolution grad_accu_steps=2 # gradient accumulation warmup_num_steps=0 # warm-up steps lr=0.0001 # learning rate ckpt_every=10000 # create a ckpt every a few steps. ckpt_latest_every=5000 # create a ckpt named `latest.pt` every a few steps. epochs=100 # total training epochs sh $(dirname "$0")/run_g_controlnet.sh \ --task-flag ${task_flag} \ --control-type ${control_type} \ --noise-schedule scaled_linear --beta-start 0.00085 --beta-end 0.03 \ --predict-type v_prediction \ --multireso \ --reso-step 64 \ --uncond-p 0.44 \ --uncond-p-t5 0.44 \ --index-file ${index_file} \ --random-flip \ --lr ${lr} \ --batch-size ${batch_size} \ --image-size ${image_size} \ --global-seed 999 \ --grad-accu-steps ${grad_accu_steps} \ --warmup-num-steps ${warmup_num_steps} \ --use-flash-attn \ --use-fp16 \ --results-dir ${results_dir} \ --resume \ --resume-module-root ${resume_module_root} \ --epochs ${epochs} \ --ckpt-every ${ckpt_every} \ --ckpt-latest-every ${ckpt_latest_every} \ --log-every 10 \ --deepspeed \ --deepspeed-optimizer \ --use-zero-stage 2 \ --use-style-cond \ --size-cond 1024 1024 \ "$@" ``` ### Inference You can use the following command line for inference. a. Using canny ControlNet during inference ```bash python3 sample_controlnet.py --no-enhance --load-key distill --infer-steps 50 --control-type canny --prompt "在夜晚的酒店门前,一座古老的中国风格的狮子雕像矗立着,它的眼睛闪烁着光芒,仿佛在守护着这座建筑。背景是夜晚的酒店前,构图方式是特写,平视,居中构图。这张照片呈现了真实摄影风格,蕴含了中国雕塑文化,同时展现了神秘氛围" --condition-image-path controlnet/asset/input/canny.jpg --control-weight 1.0 --use-style-cond --size-cond 1024 1024 --beta-end 0.03 ``` b. Using depth ControlNet during inference ```bash python3 sample_controlnet.py --no-enhance --load-key distill --infer-steps 50 --control-type depth --prompt "在茂密的森林中,一只黑白相间的熊猫静静地坐在绿树红花中,周围是山川和海洋。背景是白天的森林,光线充足" --condition-image-path controlnet/asset/input/depth.jpg --control-weight 1.0 --use-style-cond --size-cond 1024 1024 --beta-end 0.03 ``` c. Using pose ControlNet during inference ```bash python3 sample_controlnet.py --no-enhance --load-key distill --infer-steps 50 --control-type pose --prompt "一位亚洲女性,身穿绿色上衣,戴着紫色头巾和紫色围巾,站在黑板前。背景是黑板。照片采用近景、平视和居中构图的方式呈现真实摄影风格" --condition-image-path controlnet/asset/input/pose.jpg --control-weight 1.0 --use-style-cond --size-cond 1024 1024 --beta-end 0.03 ```