Update README.md
Browse files
README.md
CHANGED
@@ -1 +1,40 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# π¦ Fino1-8B β Fine-Tuned Llama 3.1 8B Instruct
|
2 |
+
|
3 |
+
**Fino1-8B** is a fine-tuned version of **Llama 3.1 8B Instruct**, designed to improve performance on **[specific task/domain]**. This model has been trained using **supervised fine-tuning (SFT)** on **[dataset name]**, enhancing its capabilities in **[use cases such as medical Q&A, legal text summarization, SQL generation, etc.]**.
|
4 |
+
|
5 |
+
## π Model Details
|
6 |
+
- **Model Name**: `Fino1-8B`
|
7 |
+
- **Base Model**: `Meta Llama 3.1 8B Instruct`
|
8 |
+
- **Fine-Tuned On**: `[Dataset Name(s)]`
|
9 |
+
- **Training Method**: Supervised Fine-Tuning (SFT) *(mention if RLHF or other techniques were used)*
|
10 |
+
- **Objective**: `[Enhance performance on specific tasks such as...]`
|
11 |
+
- **Tokenizer**: Inherited from `Llama 3.1 8B Instruct`
|
12 |
+
|
13 |
+
## π Capabilities
|
14 |
+
- β
**[Capability 1]** (e.g., improved response accuracy for medical questions)
|
15 |
+
- β
**[Capability 2]** (e.g., better SQL query generation for structured databases)
|
16 |
+
- β
**[Capability 3]** (e.g., more context-aware completions for long-form text)
|
17 |
+
|
18 |
+
## π Training Configuration
|
19 |
+
- **Training Hardware**: `GPU: [e.g., 8x A100, H100]`
|
20 |
+
- **Batch Size**: `[e.g., 16]`
|
21 |
+
- **Learning Rate**: `[e.g., 2e-5]`
|
22 |
+
- **Epochs**: `[e.g., 3]`
|
23 |
+
- **Optimizer**: `[e.g., AdamW, LAMB]`
|
24 |
+
|
25 |
+
## π§ Usage
|
26 |
+
To use `Fino1-8B` with Hugging Face's `transformers` library:
|
27 |
+
|
28 |
+
```python
|
29 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
30 |
+
|
31 |
+
model_name = "your-huggingface-username/Fino1-8B"
|
32 |
+
|
33 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
34 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
35 |
+
|
36 |
+
input_text = "What are the symptoms of gout?"
|
37 |
+
inputs = tokenizer(input_text, return_tensors="pt")
|
38 |
+
|
39 |
+
output = model.generate(**inputs, max_new_tokens=200)
|
40 |
+
print(tokenizer.decode(output[0], skip_special_tokens=True))
|