Text Generation
Safetensors
English
llama
conversational
lfqian commited on
Commit
5413c84
Β·
verified Β·
1 Parent(s): 2c3e88c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +40 -1
README.md CHANGED
@@ -1 +1,40 @@
1
- editing
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # πŸ¦™ Fino1-8B – Fine-Tuned Llama 3.1 8B Instruct
2
+
3
+ **Fino1-8B** is a fine-tuned version of **Llama 3.1 8B Instruct**, designed to improve performance on **[specific task/domain]**. This model has been trained using **supervised fine-tuning (SFT)** on **[dataset name]**, enhancing its capabilities in **[use cases such as medical Q&A, legal text summarization, SQL generation, etc.]**.
4
+
5
+ ## πŸ“Œ Model Details
6
+ - **Model Name**: `Fino1-8B`
7
+ - **Base Model**: `Meta Llama 3.1 8B Instruct`
8
+ - **Fine-Tuned On**: `[Dataset Name(s)]`
9
+ - **Training Method**: Supervised Fine-Tuning (SFT) *(mention if RLHF or other techniques were used)*
10
+ - **Objective**: `[Enhance performance on specific tasks such as...]`
11
+ - **Tokenizer**: Inherited from `Llama 3.1 8B Instruct`
12
+
13
+ ## πŸš€ Capabilities
14
+ - βœ… **[Capability 1]** (e.g., improved response accuracy for medical questions)
15
+ - βœ… **[Capability 2]** (e.g., better SQL query generation for structured databases)
16
+ - βœ… **[Capability 3]** (e.g., more context-aware completions for long-form text)
17
+
18
+ ## πŸ“Š Training Configuration
19
+ - **Training Hardware**: `GPU: [e.g., 8x A100, H100]`
20
+ - **Batch Size**: `[e.g., 16]`
21
+ - **Learning Rate**: `[e.g., 2e-5]`
22
+ - **Epochs**: `[e.g., 3]`
23
+ - **Optimizer**: `[e.g., AdamW, LAMB]`
24
+
25
+ ## πŸ”§ Usage
26
+ To use `Fino1-8B` with Hugging Face's `transformers` library:
27
+
28
+ ```python
29
+ from transformers import AutoModelForCausalLM, AutoTokenizer
30
+
31
+ model_name = "your-huggingface-username/Fino1-8B"
32
+
33
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
34
+ model = AutoModelForCausalLM.from_pretrained(model_name)
35
+
36
+ input_text = "What are the symptoms of gout?"
37
+ inputs = tokenizer(input_text, return_tensors="pt")
38
+
39
+ output = model.generate(**inputs, max_new_tokens=200)
40
+ print(tokenizer.decode(output[0], skip_special_tokens=True))