--- license: llama3.1 datasets: - TheFinAI/Fino1_Reasoning_Path_FinQA language: - en base_model: - meta-llama/Llama-3.1-8B-Instruct pipeline_tag: text-generation --- # 🦙 Fino1-8B **Fino1-8B** is a fine-tuned version of **Llama 3.1 8B Instruct**, designed to improve performance on **[financial reasoning tasks]**. This model has been trained using **SFT** and **RF** on **TheFinAI/Fino1_Reasoning_Path_FinQA**, enhancing its capabilities in **financial reasoning tasks**. Check our paper arxiv.org/abs/2502.08127 for more details. ## 📌 Model Details - **Model Name**: `Fino1-8B` - **Base Model**: `Meta Llama 3.1 8B Instruct` - **Fine-Tuned On**: `TheFinAI/Fino1_Reasoning_Path_FinQA` Derived from FinQA dataset. - **Training Method**: SFT and RF - **Objective**: `[Enhance performance on specific tasks such as financial mathemtical reasoning]` - **Tokenizer**: Inherited from `Llama 3.1 8B Instruct` ## 📊 Training Configuration - **Training Hardware**: `GPU: [e.g., 4xH100]` - **Batch Size**: `[e.g., 16]` - **Learning Rate**: `[e.g., 2e-5]` - **Epochs**: `[e.g., 3]` - **Optimizer**: `[e.g., AdamW, LAMB]` ## 🔧 Usage To use `Fino1-8B` with Hugging Face's `transformers` library: ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "TheFinAI/Fino1-8B" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) input_text = "What is the results of 3-5?" inputs = tokenizer(input_text, return_tensors="pt") output = model.generate(**inputs, max_new_tokens=200) print(tokenizer.decode(output[0], skip_special_tokens=True))