Update README.md
Browse files
README.md
CHANGED
@@ -56,7 +56,8 @@ model = AutoModelForCausalLM.from_pretrained(
|
|
56 |
token=hf_token,
|
57 |
cache_dir=hf_cache_dir,
|
58 |
torch_dtype=torch.bfloat16,
|
59 |
-
attn_implementation="sdpa"
|
|
|
60 |
).to(device)
|
61 |
model.generation_config.pad_token_id = tokenizer.eos_token_id
|
62 |
|
@@ -65,7 +66,9 @@ prompt = "Describe basics of DNNs quantization."
|
|
65 |
inputs = tokenizer(prompt, return_tensors="pt")
|
66 |
inputs.to(device)
|
67 |
|
68 |
-
|
|
|
|
|
69 |
input_len = inputs['input_ids'].shape[1]
|
70 |
generate_ids = generate_ids[:, input_len:]
|
71 |
output = tokenizer.batch_decode(
|
@@ -126,13 +129,10 @@ For quality evaluation we have used: #TODO link to github
|
|
126 |
| Winogrande | 0 | 0 | 0 | 0 | 0 | 0 |
|
127 |
|
128 |
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
> __Arc Challenge__: Evaluates/shows ...
|
134 |
-
|
135 |
-
> __PIQA__: Evaluates/shows ...
|
136 |
|
137 |
### Latency benchmarks
|
138 |
|
|
|
56 |
token=hf_token,
|
57 |
cache_dir=hf_cache_dir,
|
58 |
torch_dtype=torch.bfloat16,
|
59 |
+
attn_implementation="sdpa",
|
60 |
+
mode='s'
|
61 |
).to(device)
|
62 |
model.generation_config.pad_token_id = tokenizer.eos_token_id
|
63 |
|
|
|
66 |
inputs = tokenizer(prompt, return_tensors="pt")
|
67 |
inputs.to(device)
|
68 |
|
69 |
+
with torch.inference_mode:
|
70 |
+
generate_ids = model.generate(**inputs, max_length=500)
|
71 |
+
|
72 |
input_len = inputs['input_ids'].shape[1]
|
73 |
generate_ids = generate_ids[:, input_len:]
|
74 |
output = tokenizer.batch_decode(
|
|
|
129 |
| Winogrande | 0 | 0 | 0 | 0 | 0 | 0 |
|
130 |
|
131 |
|
132 |
+
* **MMLU**:Evaluates general knowledge across 57 subjects including science, humanities, engineering, and more. Shows model's ability to handle diverse academic topics.
|
133 |
+
* **PIQA**: Evaluates physical commonsense reasoning through questions about everyday physical interactions. Shows model's understanding of real-world physics concepts.
|
134 |
+
* **Arc Challenge**: Evaluates grade-school level multiple-choice questions requiring reasoning. Shows model's ability to solve complex reasoning tasks.
|
135 |
+
* **Winogrande**: Evaluates commonsense reasoning through sentence completion tasks. Shows model's capability to understand context and resolve ambiguity.
|
|
|
|
|
|
|
136 |
|
137 |
### Latency benchmarks
|
138 |
|