Create README.md (#1)
Browse files- Create README.md (693de0bcd85881d6fcb50df209f2fde9894c08eb)
README.md
ADDED
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model:
|
4 |
+
- mistralai/Mistral-7B-Instruct-v0.3
|
5 |
+
pipeline_tag: text2text-generation
|
6 |
+
---
|
7 |
+
|
8 |
+
# Elastic models
|
9 |
+
|
10 |
+
Elastic models are the models produced by TheStage AI ANNA: Automated Neural Networks Accelerator.
|
11 |
+
ANNA allows you to control model size, latency and quality with a simple slider movement. For each model, ANNA produces a series of optimized models:
|
12 |
+
|
13 |
+
* __XL__: Mathematically equivalent neural network, optimized with our DNN compiler.
|
14 |
+
|
15 |
+
* __L__: Near lossless model, with less than 1% degradation obtained on corresponding benchmarks.
|
16 |
+
|
17 |
+
* __M__: Faster model, with accuracy degradation less than 1.5%.
|
18 |
+
|
19 |
+
* __S__: The fastest model, with accuracy degradation less than 2%.
|
20 |
+
|
21 |
+
|
22 |
+
__Goals of elastic models:__
|
23 |
+
|
24 |
+
* Provide flexibility in cost vs quality selection for inference
|
25 |
+
* Provide clear quality and latency benchmarks
|
26 |
+
* Provide interface of HF libraries: transformers and diffusers with a single line of code
|
27 |
+
* Provide models supported on a wide range of hardware, which are pre-compiled and require no JIT.
|
28 |
+
|
29 |
+
> It's important to note that specific quality degradation can vary from model to model. For instance, with an S model, you can have 0.5% degradation as well.
|
30 |
+
|
31 |
+
|
32 |
+
## Inference
|
33 |
+
|
34 |
+
To infer our models, you just need to replace `transformers` import with `elastic_models.transformers`:
|
35 |
+
|
36 |
+
```python
|
37 |
+
import torch
|
38 |
+
from transformers import AutoTokenizer
|
39 |
+
from elastic_models.transformers import AutoModelForCausalLM
|
40 |
+
|
41 |
+
model_name = "mistralai/Mistral-7B-Instruct-v0.3"
|
42 |
+
token = ''
|
43 |
+
|
44 |
+
device = torch.device("cuda")
|
45 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, token=token)
|
46 |
+
|
47 |
+
model = AutoModelForCausalLM.from_pretrained(
|
48 |
+
model_name,
|
49 |
+
token=token,
|
50 |
+
cache_dir="/mnt/rnd/huggingface_cache",
|
51 |
+
torch_dtype=torch.bfloat16,
|
52 |
+
attn_implementation="sdpa"
|
53 |
+
).to(device)
|
54 |
+
model.generation_config.pad_token_id = tokenizer.eos_token_id
|
55 |
+
|
56 |
+
prompt = "Describe basics of DNNs quantization."
|
57 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
58 |
+
inputs.to(device)
|
59 |
+
|
60 |
+
generate_ids = model.generate(**inputs, max_length=500)
|
61 |
+
input_len = inputs['input_ids'].shape[1]
|
62 |
+
generate_ids = generate_ids[:, input_len:]
|
63 |
+
output = tokenizer.batch_decode(
|
64 |
+
generate_ids,
|
65 |
+
skip_special_tokens=True,
|
66 |
+
clean_up_tokenization_spaces=False
|
67 |
+
)[0]
|
68 |
+
print(f"# Q:\n{prompt}\n")
|
69 |
+
print(f"# A:\n{output}\n")
|
70 |
+
```
|
71 |
+
|
72 |
+
---
|
73 |
+
### System requirements
|
74 |
+
|
75 |
+
__GPUs__: H100, L40s
|
76 |
+
|
77 |
+
__OS__: Linux #TODO
|
78 |
+
|
79 |
+
__Python__: 3.10-3.12
|
80 |
+
|
81 |
+
|
82 |
+
---
|
83 |
+
### Installation
|
84 |
+
|
85 |
+
```shell
|
86 |
+
pip install thestage
|
87 |
+
pip install elastic_models
|
88 |
+
```
|
89 |
+
|
90 |
+
Then go to app.thestage.ai, login and generate API token from your profile page.
|
91 |
+
Set up API token as follows:
|
92 |
+
|
93 |
+
```shell
|
94 |
+
thestage config set --api-token <YOUR_API_TOKEN>
|
95 |
+
```
|
96 |
+
|
97 |
+
Congrats, now you can use accelerated models!
|
98 |
+
|
99 |
+
|
100 |
+
## Benchmarks
|
101 |
+
|
102 |
+
Benchmarking is one of the most important procedures during model acceleration. We aim to provide clear performance metrics for models using our algorithms. The `W8A8, int8 column` indicates that we applied W8A8 quantization with int8 data type to all linear layers and used the same calibration data as for ANNA. The S model achieves practically identical speed but much higher quality, as ANNA knows how to improve quantization quality on sensitive layers!
|
103 |
+
|
104 |
+
### Quality benchmarks
|
105 |
+
|
106 |
+
For quality evaluation we have used: #TODO link to github
|
107 |
+
|
108 |
+
| Metric/Model | S | M | L | XL | Original | W8A8, int8 |
|
109 |
+
|---------------|---|---|---|----|----------|------------|
|
110 |
+
| MMLU | 0 | 0 | 0 | 0 | 0 | 0 |
|
111 |
+
| PIQA | 0 | 0 | 0 | 0 | 0 | 0 |
|
112 |
+
| Arc Challenge | 0 | 0 | 0 | 0 | 0 | 0 |
|
113 |
+
| Winogrande | 0 | 0 | 0 | 0 | 0 | 0 |
|
114 |
+
|
115 |
+
|
116 |
+
> __MMLU__: Evaluates/shows ...
|
117 |
+
|
118 |
+
> __MMLU__: Evaluates/shows ...
|
119 |
+
|
120 |
+
> __Arc Challenge__: Evaluates/shows ...
|
121 |
+
|
122 |
+
> __PIQA__: Evaluates/shows ...
|
123 |
+
|
124 |
+
|
125 |
+
### Latency benchmarks
|
126 |
+
|
127 |
+
We have profiled models in different scenarios:
|
128 |
+
|
129 |
+
__100 input/300 output tok/s__:
|
130 |
+
| GPU/Model | S | M | L | XL | Original | W8A8, int8 |
|
131 |
+
|-----------|-----|---|---|----|----------|------------|
|
132 |
+
| H100 | 189 | 0 | 0 | 0 | 48 | 0 |
|
133 |
+
| L40s | 79 | 0 | 0 | 0 | 42 | 0 |
|
134 |
+
|
135 |
+
|
136 |
+
__1000 input/1000 output tok/s__:
|
137 |
+
| GPU/Model | S | M | L | XL | Original | W8A8, int8 |
|
138 |
+
|-----------|-----|---|---|----|----------|------------|
|
139 |
+
| H100 | 189 | 0 | 0 | 0 | 48 | 0 |
|
140 |
+
| L40s | 79 | 0 | 0 | 0 | 42 | 0 |
|
141 |
+
|
142 |
+
|
143 |
+
## Links
|
144 |
+
|
145 |
+
* __Platform__: [app.thestage.ai](app.thestage.ai)
|
146 |
+
* __Elastic models Github__: [app.thestage.ai](app.thestage.ai)
|
147 |
+
* __Subscribe for updates__: [TheStageAI X](https://x.com/TheStageAI)
|
148 |
+
* __Contact email__: [email protected]
|