klemenk's picture
Sync modeling_auristream.py from TuKoResearch/AuriStream100M_40Pred_librilight_200k
05e7734 verified
"""
AuriStream sequence model definition.
"""
import math
import inspect
import random
import torch
import torch.nn as nn
from torch.nn import functional as F
import numpy as np
from huggingface_hub import PyTorchModelHubMixin
from transformers.modeling_outputs import BaseModelOutput, CausalLMOutput
from transformers import PreTrainedModel
from .configuration_auristream import AuriStreamConfig
class AuriStream(PreTrainedModel):
config_class = AuriStreamConfig
def __init__(self, config):
super().__init__(config)
self.config = config
# if use_rope is in the config and false, initialize a wpe layer in transformer
if hasattr(config, 'use_rope') and not config.use_rope:
self.transformer = nn.ModuleDict(dict(
wte = nn.Embedding(config.vocab_size, config.n_embd),
wpe = nn.Embedding(config.seq_len, config.n_embd),
drop = nn.Dropout(config.dropout),
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
ln_f = RMSNorm(config.n_embd, bias=config.bias),
))
else:
self.transformer = nn.ModuleDict(dict(
wte = nn.Embedding(config.vocab_size, config.n_embd),
drop = nn.Dropout(config.dropout),
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
ln_f = RMSNorm(config.n_embd, bias=config.bias),
))
# check if n_pred_steps is defined in the config, this is the number of linear heads for prediction
if hasattr(config, 'n_pred_steps'):
self.future_heads = nn.ModuleList([nn.Linear(config.n_embd, config.vocab_size, bias=False) for _ in range(config.n_pred_steps - 1)])
else:
self.future_heads = None
self.coch_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
# init all weights
self.apply(self._init_weights)
# apply special scaled init to the residual projections, per GPT-2 paper
for pn, p in self.named_parameters():
if pn.endswith('c_proj.weight'):
torch.nn.init.normal_(p, mean=0.0, std=0.02/math.sqrt(2 * config.n_layer))
def get_num_params(self, non_embedding=True):
"""
Return the number of parameters in the model.
For non-embedding count (default), the position embeddings get subtracted.
The token embeddings would too, except due to the parameter sharing these
params are actually used as weights in the final layer, so we include them.
"""
n_params = sum(p.numel() for p in self.parameters())
return n_params
def _init_weights(self, module):
if isinstance(module, nn.Linear):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
def forward(self, seq, tgt=None, output_logits=False, output_hidden_states=False, return_dict=False, up_until_layer=None):
"""
Input: coch: torch.Tensor of shape (b, t)
tgt_coch: torch.Tensor of shape (b, t) or None
"""
# forward the GPT model itself
tok_emb = self.transformer.wte(seq) # token embeddings of shape (b, t, n_embd)
# if wpe exists in self.transformer apply leanred positional embedding
if hasattr(self.transformer, 'wpe'):
pos = torch.arange(0, seq.size(1), dtype=torch.long, device=seq.device)
pos_emb = self.transformer.wpe(pos) # position embeddings of shape (t, n_embd)
x = self.transformer.drop(tok_emb + pos_emb)
else:
x = self.transformer.drop(tok_emb)
all_hidden_states = []
for block_idx, block in enumerate(self.transformer.h):
# Forward the block
all_hidden_states.append(x)
if up_until_layer is not None and block_idx == up_until_layer:
break
x = block(x)
# append the last hidden state if we did not exit early
if up_until_layer is None or block_idx == len(self.transformer.h) - 1:
all_hidden_states.append(x)
if output_hidden_states and not output_logits:
model_output = BaseModelOutput(
last_hidden_state=x,
hidden_states=all_hidden_states,
)
return model_output
x = self.transformer.ln_f(x)
logits = self.coch_head(x)
if tgt is not None:
if output_logits:
all_logits = [logits]
loss = F.cross_entropy(
logits.reshape(-1, self.config.vocab_size), tgt.reshape(-1),
)
# If we have more than one future head, compute the loss for each head
if self.future_heads is not None:
for i, head in enumerate(self.future_heads):
future_logits = head(x[:, :-(i+1)])
loss += F.cross_entropy(
future_logits.reshape(-1, self.config.vocab_size), tgt[:, (i+1):].reshape(-1),
)
if output_logits:
all_logits.append(future_logits)
# divide loss by number of future heads
loss = loss / (len(self.future_heads) + 1)
if return_dict:
if output_logits:
if output_hidden_states:
model_output = CausalLMOutput(
loss=loss,
logits=all_logits,
hidden_states=all_hidden_states,
)
else:
model_output = CausalLMOutput(
loss=loss,
logits=all_logits,
)
else:
if output_hidden_states:
model_output = CausalLMOutput(
loss=loss,
logits=logits,
hidden_states=all_hidden_states,
)
else:
model_output = CausalLMOutput(
loss=loss,
logits=logits,
)
return model_output
return logits, loss
return logits, None
def sample_logits(self, logits: torch.FloatTensor, temperature: float = 0.9,
top_k: int = 500, top_p: float = 0.5) -> torch.LongTensor:
"""
Samples an integer from the distribution of logits
Parameters:
logits (torch.FloatTensor): The logits of the distribution
temp (float): The temperature of the sampling, if 0.0, then argmax is used
top_k (int): The number of top k tokens to consider during sampling
top_p (float): The cumulative probability threshold for nucleus (top-p) sampling
Returns:
torch.LongTensor: The sampled integer
"""
# If temperature is 0.0, use argmax
if temperature == 0.0:
return torch.argmax(logits, dim=-1)
# Apply temperature
logits = logits / temperature
# Apply top-k filtering if specified
if top_k is not None:
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
logits[logits < v[..., [-1]]] = -float('Inf')
# Apply top-p (nucleus) filtering if specified
if top_p is not None:
# Sort the logits in descending order
sorted_logits, sorted_indices = torch.sort(logits, descending=True, dim=-1)
# Compute the sorted softmax probabilities
sorted_probs = F.softmax(sorted_logits, dim=-1)
# Compute the cumulative probabilities
cumulative_probs = torch.cumsum(sorted_probs, dim=-1)
# Create a mask for tokens to remove
sorted_indices_to_remove = cumulative_probs > top_p
# Shift the mask right to keep at least one token
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
sorted_indices_to_remove[..., 0] = 0
# Scatter the mask back to the original indices
indices_to_remove = sorted_indices_to_remove.scatter(dim=-1, index=sorted_indices, src=sorted_indices_to_remove)
logits[indices_to_remove] = -float('Inf')
# Compute softmax probabilities
probs = F.softmax(logits, dim=-1)
# Flatten probabilities to (batch_size * sequence_length, vocab_size)
flat_probs = probs.view(-1, probs.size(-1))
# Sample from the distribution
sampled = torch.multinomial(flat_probs, num_samples=1)
# Reshape to original shape except for the last dimension
sampled = sampled.view(*logits.shape[:-1])
return sampled
@torch.no_grad()
def generate(self, seq: torch.Tensor, n_tokens: int = 1, temp=1.0,
top_k=500, top_p=0.5, seed=None):
"""
Parameters:
seq: torch.Tensor of shape (b, t, n_freq_bins)
Input cochleagram to use for generation
n_tokens: int
Number of time bins to predict
temp: float
Temperature for sampling logits
seed: int
Random seed for sampling
Returns:
pred_coch: torch.Tensor of shape (b, t, n_freq_bins)
The predicted cochleagram
all_logits: (optional if return_logits is True) torch.Tensor of shape (b, n_tokens, n_freq_bins)
The logits for each time step
all_embs: (optional if return_embs is not None) list of torch.Tensor
The embeddings for each transformer block
"""
# Set seed if provided
if seed is not None:
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
# make a list of logits to return
all_logits = []
device = seq.device
# grab shape of the cochleagram
b, t = seq.size()
# TODO: double check this works then delete the block bellow:
# pass the given input through the model to get the predictions and cache
# the k and v values for each transformer block in the process
# pos = torch.arange(0, t, dtype=torch.long, device=device)
# tok_emb = self.transformer.wte(seq) # token embeddings of shape (b, t, n_embd)
# pos_emb = self.transformer.wpe(pos) # position embeddings of shape (t, n_embd)
# x = self.transformer.drop(tok_emb + pos_emb)
#### Embed conditioning sequence into KV cache
tok_emb = self.transformer.wte(seq) # token embeddings of shape (b, t, n_embd)
# if wpe exists in self.transformer apply leanred positional embedding
if hasattr(self.transformer, 'wpe'):
pos = torch.arange(0, seq.size(1), dtype=torch.long, device=seq.device)
pos_emb = self.transformer.wpe(pos) # position embeddings of shape (t, n_embd)
x = self.transformer.drop(tok_emb + pos_emb)
else:
x = self.transformer.drop(tok_emb)
# Initialize list to store k and v for each transformer block
k_list = []
v_list = []
for block_idx, block in enumerate(self.transformer.h):
# Pass through the transformer block, and store k and v
x, k, v = block(x, return_kv=True)
k_list.append(k)
v_list.append(v)
# k_cache and v_cache have shape (n_layer, b, n_head, t, n_embd//n_head)
k_cache = torch.stack(k_list, dim=0)
v_cache = torch.stack(v_list, dim=0)
# Pass through the final layer norm
x = self.transformer.ln_f(x)
# First prediction of the model is the decoding of the last time bin
logits = self.coch_head(x[:, [-1]])
predictions = [self.sample_logits(logits, temperature=temp)]
all_logits.append(logits)
### Predict future tokens
# Now we pass the last time bin through the model to predict the next time bin
# we subtract 1 from max_new_tokens because we already predicted the first time bin
# using the last embedding of the input
for i in range(n_tokens-1):
# TODO: double check this works then delete the block bellow:
# # Get the emb and pos embedding of just the last token
# pos = torch.arange(t+i, t+i+1, dtype=torch.long, device=device) # shape (t)
# tok_emb = self.transformer.wte(predictions[-1]) # token embeddings of shape (b, t, n_embd)
# pos_emb = self.transformer.wpe(pos) # position embeddings of shape (t, n_embd)
# x = self.transformer.drop(tok_emb + pos_emb)
# Get the emb and pos embedding of just the last token
tok_emb = self.transformer.wte(predictions[-1]) # token embeddings of shape (b, t, n_embd)
# if wpe exists in self.transformer apply leanred positional embedding
if hasattr(self.transformer, 'wpe'):
pos = torch.arange(t+i, t+i+1, dtype=torch.long, device=device) # shape (t)
pos_emb = self.transformer.wpe(pos) # position embeddings of shape (t, n_embd)
x = self.transformer.drop(tok_emb + pos_emb)
else:
x = self.transformer.drop(tok_emb)
# Pass through transformer block
k_list = []
v_list = []
for block_idx, block in enumerate(self.transformer.h):
x, k, v = block(x, k_cache=k_cache[block_idx], v_cache=v_cache[block_idx])
k_list.append(k)
v_list.append(v)
x = self.transformer.ln_f(x)
# create the cache with the new embeddings
k_cache = torch.stack(k_list, dim=0)
v_cache = torch.stack(v_list, dim=0)
# predict next time bin
logits = self.coch_head(x)
predictions.append(self.sample_logits(logits, temperature=temp, top_k=top_k, top_p=top_p))
all_logits.append(logits)
pred_coch = torch.cat(predictions, dim=1)
all_logits = torch.cat(all_logits, dim=1)
return pred_coch, all_logits
def configure_optimizers(self, weight_decay, learning_rate, betas, device_type):
# start with all of the candidate parameters
param_dict = {pn: p for pn, p in self.named_parameters()}
# filter out those that do not require grad
param_dict = {pn: p for pn, p in param_dict.items() if p.requires_grad}
# create optim groups. Any parameters that is 2D will be weight decayed, otherwise no.
# i.e. all weight tensors in matmuls + embeddings decay, all biases and layernorms don't.
decay_params = [p for n, p in param_dict.items() if p.dim() >= 2]
nodecay_params = [p for n, p in param_dict.items() if p.dim() < 2]
optim_groups = [
{'params': decay_params, 'weight_decay': weight_decay},
{'params': nodecay_params, 'weight_decay': 0.0}
]
num_decay_params = sum(p.numel() for p in decay_params)
num_nodecay_params = sum(p.numel() for p in nodecay_params)
print(f"num decayed parameter tensors: {len(decay_params)}, with {num_decay_params:,} parameters")
print(f"num non-decayed parameter tensors: {len(nodecay_params)}, with {num_nodecay_params:,} parameters")
# Create AdamW optimizer and use the fused version if it is available
fused_available = 'fused' in inspect.signature(torch.optim.AdamW).parameters
use_fused = fused_available and device_type == 'cuda'
extra_args = dict(fused=True) if use_fused else dict()
optimizer = torch.optim.AdamW(optim_groups, lr=learning_rate, betas=betas, **extra_args)
print(f"using fused AdamW: {use_fused}")
return optimizer
def estimate_mfu(self, fwdbwd_per_iter, T, dt, gpu_type='A40'):
""" estimate model flops utilization (MFU) in units of A100 bfloat16 peak FLOPS """
# first estimate the number of flops we do per iteration.
# see PaLM paper Appendix B as ref: https://arxiv.org/abs/2204.02311
N = self.unsharded_param_count
cfg = self.config
L, H, Q = cfg.n_layer, cfg.n_head, cfg.n_embd//cfg.n_head
# L, H, Q, T = cfg.n_layer, cfg.n_head, cfg.n_embd//cfg.n_head, cfg.block_size
flops_per_token = 6*N + 12*L*H*Q*T
flops_per_fwdbwd = flops_per_token * T
flops_per_iter = flops_per_fwdbwd * fwdbwd_per_iter
# express our flops throughput as ratio of A100 bfloat16 peak flops
flops_achieved = flops_per_iter * (1.0/dt) # per second
# grab promised flops based on GPU type
if gpu_type == 'A40':
flops_promised = 149.7e12 # A40 GPU bfloat16 peak flops is 149.7 TFLOPS
elif gpu_type == 'A100':
flops_promised = 312e12 # A100 GPU bfloat16 peak flops is 312 TFLOPS
elif gpu_type == 'H100':
flops_promised = 756e12 # H100 GPU bfloat16 peak flops is 756 TFLOPS
elif gpu_type == 'TPUv4':
flops_promised = 275e12
elif gpu_type == 'TPUv5e':
flops_promised = 197e12
mfu = flops_achieved / flops_promised
return mfu
#########################################################
##### Layer Definitions #####
#########################################################
class Block(nn.Module):
def __init__(self, config):
super().__init__()
self.attn = CausalSelfAttention(config)
self.mlp = MLP(config)
self.attn_scale = 1.0 # (1 / (2 * config.n_layer)**0.5)
self.norm1 = RMSNorm(config.n_embd, bias=config.bias)
self.norm2 = RMSNorm(config.n_embd, bias=config.bias)
def forward(self, x, return_kv=False, k_cache=None, v_cache=None):
# If we are given a key and value cache, we will use the pre-computed values to minimize
# the computation cost
if k_cache is not None and v_cache is not None:
# Pass the key and value cache to the attention layer, obtain new key and value caches
x_attn, k, v = self.attn.kv_cache_forward(self.norm1(x), k_cache, v_cache)
x = x + x_attn
x = x + self.mlp(self.norm2(x))
return x, k, v
# We might want to encode the caches of a whole block of keys and values at once using the
# fast flash attention impelmentation while still returning the key and value caches
elif return_kv:
# Pass the key and value cache to the attention layer, obtain new key and value caches
x_attn, k, v = self.attn(self.norm1(x), return_kv=True)
x = x + x_attn
x = x + self.mlp(self.norm2(x))
return x, k, v
x = x + self.attn_scale * self.attn(self.norm1(x))
x = x + self.mlp(self.norm2(x))
return x
class CausalSelfAttention(nn.Module):
def __init__(self, config):
super().__init__()
self.n_head = config.n_head
self.n_embd = config.n_embd
self.head_dim = self.n_embd // self.n_head
assert self.n_embd % self.n_head == 0
# key, query, value projections for all heads, but in a batch
self.c_attn = nn.Linear(self.n_embd, 3 * self.n_embd, bias=False)
# output projection
self.c_proj = nn.Linear(self.n_embd, self.n_embd, bias=False)
rope_theta = 500000
if hasattr(config, 'rope_theta') and config.rope_theta is not None:
rope_theta = config.rope_theta
self.rotary = Rotary(self.head_dim, base=rope_theta)
if hasattr(config, 'use_rope') and not config.use_rope:
self.rotary = None
def forward(self, x, return_kv=False, return_attn_maps=False):
B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd)
# calculate query, key, values for all heads in batch and move head forward to be the batch dim
qkv = self.c_attn(x)
q, k, v = qkv.split(self.n_embd, dim=2)
k = k.view(B, T, self.n_head, self.head_dim)
q = q.view(B, T, self.n_head, self.head_dim)
v = v.view(B, T, self.n_head, self.head_dim)
if self.rotary is not None:
cos, sin = self.rotary(q)
q = apply_rotary_emb(q, cos, sin)
k = apply_rotary_emb(k, cos, sin)
if not return_kv and not return_attn_maps:
y = F.scaled_dot_product_attention(
q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2),
is_causal=True)
else:
# manual implementation of attention
q = q.transpose(1, 2)
k = k.transpose(1, 2)
v = v.transpose(1, 2)
att = torch.einsum('bnsh,bnkh->bnsk', q, k) * (1.0 / math.sqrt(k.size(-1)))
mask = torch.triu(torch.ones(T, T), diagonal=1).to(dtype=torch.bool).to(x.device)
mask = mask.view(1, 1, T, T)
masked_att = att.masked_fill(mask, float('-inf'))
# upcast to float32 for numerical stability, as per llama implementation
masked_att = F.softmax(masked_att, dim=-1, dtype=torch.float32).to(q.dtype)
# (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
y = torch.einsum('bnsk,bnkh->bnsh', masked_att, v)
y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side
# output projection
y = self.c_proj(y)
# return attention maps if requested
if return_attn_maps:
return y, F.softmax(att, dim=-1)
# return key and value caches if requested
if return_kv:
return y, k, v
return y
def kv_cache_forward(self, x, k_cache=None, v_cache=None):
B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd)
# calculate query, key, values for all heads in batch and move head forward to be the batch dim
q, k, v = self.c_attn(x).split(self.n_embd, dim=2)
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
# append cached keys and values with new keys and values
if k_cache is not None:
k = torch.cat((k_cache, k), dim=2)
if v_cache is not None:
v = torch.cat((v_cache, v), dim=2)
# manual implementation of attention
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
att = F.softmax(att, dim=-1)
y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side
# output projection
y = self.c_proj(y)
return y, k, v
class MLP(nn.Module):
def __init__(self, config):
super().__init__()
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd, bias=config.bias)
self.gelu = nn.SiLU()
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd, bias=config.bias)
self.dropout = nn.Dropout(config.dropout)
def forward(self, x):
x = self.c_fc(x)
x = self.gelu(x)
x = self.c_proj(x)
x = self.dropout(x)
return x
class Rotary(torch.nn.Module):
def __init__(self, dim, base=500000, learned=True):
super().__init__()
# Compute the base inverse frequencies as before.
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim))
# If learned is True, register as a parameter; otherwise, as a buffer.
if learned:
# Initialize randomly and register as a parameter.
self.inv_freq = torch.nn.Parameter(inv_freq)
nn.init.normal_(self.inv_freq, mean=0.0, std=0.02)
else:
self.register_buffer("inv_freq", inv_freq)
self.learned = learned # (optional) Save the flag if needed later
def forward(self, x):
seq_len = x.shape[1]
# Create a tensor of positions.
t = torch.arange(seq_len, device=x.device).type_as(self.inv_freq)
# Outer product to compute angles; this uses the (possibly learnable) frequencies.
freqs = torch.outer(t, self.inv_freq).to(x.device)
cos_cached = freqs.cos()
sin_cached = freqs.sin()
return cos_cached[None, :, None, :], sin_cached[None, :, None, :]
def apply_rotary_emb(x, cos, sin):
assert x.ndim == 4 # multihead attention expected
d = x.shape[3] // 2
x1 = x[..., :d]
x2 = x[..., d:]
y1 = x1 * cos + x2 * sin
y2 = x1 * (-sin) + x2 * cos
return torch.cat([y1, y2], dim=3)
class RMSNorm(nn.Module):
""" Root Mean Square Normalization """
def __init__(self, dim: int, weight: bool = True, bias: bool = False, eps: float = 1e-6):
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.ones(dim)) if weight else None
def _norm(self, x):
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
def forward(self, x):
output = self._norm(x.float()).type_as(x)
if self.weight is not None:
return output * self.weight
return output