--- license: llama3.2 base_model: meta-llama/Llama-3.2-3B-Instruct tags: - function-calling - llama3.2 - fine-tuned - lora language: - en --- # Llama 3.2 3B Function Calling Model This model is a fine-tuned version of [meta-llama/Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct) for function calling tasks. ## Model Details - **Base Model**: Llama 3.2 3B Instruct - **Fine-tuning Method**: LoRA (Low-Rank Adaptation) - **Dataset**: Salesforce/xlam-function-calling-60k (1000 samples) - **Training**: 2 epochs with learning rate 2e-5 ## Usage ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch model = AutoModelForCausalLM.from_pretrained("TurkishCodeMan/llama3.2-3b-intruct-function-calling") tokenizer = AutoTokenizer.from_pretrained("TurkishCodeMan/llama3.2-3b-intruct-function-calling") prompt = '''<|system|> Available functions: - get_weather: Gets current weather for a location GPT 4 Correct user: <|user|> What's the weather in Tokyo? GPT 4 correct assistant:''' inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=64, do_sample=False) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` ## Training Details - **Learning Rate**: 2e-5 - **Batch Size**: 2 (per device) - **Gradient Accumulation**: 8 steps - **LoRA Rank**: 8 - **LoRA Alpha**: 16 - **Target Modules**: q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj ## Performance The model demonstrates excellent function calling capabilities: - Correct function selection - Proper argument formatting - Professional response structure