File size: 2,279 Bytes
40a1c4d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
---
license: apache-2.0
pipeline_tag: image-text-to-text
library_name: transformers
---
# SFT or RL? An Early Investigation into Training R1-Like Reasoning Large Vision-Language Models
This model, VLAA-Thinker-Qwen2VL-7B, is a vision-language model fine-tuned on the VLAA-Thinking dataset. As described in [](https://huggingface.co/papers/2504.11468), it leverages a combination of supervised fine-tuning (SFT) and reinforcement learning (RL) to improve reasoning capabilities in LLMs. The model excels in multimodal reasoning tasks, achieving state-of-the-art performance on the OpenCompass Multimodal Reasoning Leaderboard as of April 7th, 2025.
<p align="center">
🌐 <a href="https://ucsc-vlaa.github.io/VLAA-Thinking/" target="_blank">Project Page</a>
• <img src="./assets/ar.svg" alt="Arxiv Logo" style="height: 1em; vertical-align: middle; margin-right: 0.3em;">
<a href="./assets/VLAA-Thinker.pdf" target="_blank">Arxiv</a>
• 💻 <a href="https://github.com/UCSC-VLAA/VLAA-Thinking" target="_blank">Code</a>
</p>
Both **VLAA-Thinker-Qwen2.5-3B** and **VLAA-Thinker-Qwen2.5-7B** achieve **SOTA** performance on [OpenCompass Multimodal Reasoning Leaderboard](https://rank.opencompass.org.cn/leaderboard-multimodal-reasoning/?m=REALTIME) as of April 7th, 2025.
<img src="assets/opencompass_4b_box.png" width = "640" alt="pipeline" align=center />
-----
<img src="assets/opencompass_7b_box.png" width = "640" alt="pipeline" align=center />
## Quick Start 🚀
### Inference
Run `python inference.py`. Note that our model is trained with a system prompt. Please ensure that it is included for inference.
### Dataset Download
Run `bash ./utils/download_dataset.sh`. Specify the dataset root with absolute path. The dataset should be ordered as follows:
```
├── VLAA-Thinking-SFT-126K.json
├── VLAA-Thinking-GRPO-25K.json
└── images
├── allava_laion
├── arxivqa
├── chartqa
├── clevr_math
├── coco
│ └── train2017
├── docvqa
├── geoqa170k
├── synthesis
├── vg
│ ├── VG_100K
│ └── VG_100K_2
└── vizwiz
```
### Training
Code coming soon!
(Rest of the README content can be kept as is) |