xk-huang commited on
Commit
8d73b7f
·
verified ·
1 Parent(s): 01fe036

Add files using upload-large-folder tool

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Qwen/Qwen2.5-32B-Instruct",
3
+ "architectures": [
4
+ "Qwen2ForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151645,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 5120,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 27648,
13
+ "max_position_embeddings": 32768,
14
+ "max_window_layers": 70,
15
+ "model_type": "qwen2",
16
+ "num_attention_heads": 40,
17
+ "num_hidden_layers": 64,
18
+ "num_key_value_heads": 8,
19
+ "rms_norm_eps": 1e-06,
20
+ "rope_scaling": null,
21
+ "rope_theta": 1000000.0,
22
+ "sliding_window": null,
23
+ "tie_word_embeddings": false,
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.48.3",
26
+ "use_cache": true,
27
+ "use_sliding_window": false,
28
+ "vocab_size": 152064
29
+ }
generation_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "repetition_penalty": 1.05,
10
+ "temperature": 0.7,
11
+ "top_k": 20,
12
+ "top_p": 0.8,
13
+ "transformers_version": "4.48.3"
14
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00029.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2ce64fdf5a5a34abc6ada781c39612beb35b3c829a126d69ae51b17c3815095b
3
+ size 4498420872
model-00002-of-00029.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:904afb3e09d3eafef55b2962772c4ae4c48f362a96c5961264c7af423244be10
3
+ size 4718804768
model-00003-of-00029.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b0ea1adc449da66909787e46ada1c90106e580205d4770248bf27512e0494cdf
3
+ size 4467075880
model-00004-of-00029.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3e8ed2fdc54ca33ac3b2abcd9e2622138dbef15ab1343a6e3314cf06731f7b63
3
+ size 4467075880
model-00005-of-00029.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:198f6ba8fd03caf17bb4633eed4096f17f256a5ecb6467f5d4c9e8df4706169d
3
+ size 4718804760
model-00006-of-00029.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:48ab7fb10ef800b7c7e4c567208328d710117cb18aaf0f9d058b02f3f515c961
3
+ size 4467075904
model-00007-of-00029.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:904bff60904fff8b2f535b619185d8262db9fddcc5f7d2afad805cff67ba8a87
3
+ size 4467075904
model-00008-of-00029.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a78f2497f4090ed5325b994811666dd16c0353d55eb51c49d3d94e6ea3ea741b
3
+ size 4718804800
model-00009-of-00029.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:836df23ed527bf96117e2b4dba42b7ecf0c562c6ca8b9f757715a88cb91c69d2
3
+ size 4467075904
model-00010-of-00029.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:34b8b016a66bc59ae0da6b79b329dc7cc8124dca2067ff104b714dbb051806f6
3
+ size 4467075904
model-00011-of-00029.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:87a2a70bcb0caf793c453a2eb2cc144f677c15a7514867cec6d2739c7e6fc26d
3
+ size 4718804800
model-00012-of-00029.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3a343aabb1d4a05e947ba0a6442b79904e3e2f6e98bc47114218cc1133720871
3
+ size 4467075904
model-00013-of-00029.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:37a36475006a71224df113ffcdaa3acc0b9e1dba574cd3a70463b115f48c1f05
3
+ size 4467075904
model-00014-of-00029.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f1ba5d72a7ac3fed59282e81c3d487b7353876f9cf2772bfc9338cbf55db787b
3
+ size 4718804800
model-00015-of-00029.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3fd61a71cbfe1e411ff6a211cc43cdfcc22d42f45b8fbcf53c2d2529da995813
3
+ size 4467075904
model-00016-of-00029.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f2b668dcaac62a7a47beec96008b05ed6fa1ff22af4d5abc623754b0b0bb6863
3
+ size 4467075904
model-00017-of-00029.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2b1cd7cc05898534c1fdf32361bf8f908422d113825a528038727645fa03bdf7
3
+ size 4718804800
model-00018-of-00029.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d6cc9c7d7d8a3232ee23efcaeda5fe6513feb047112170b925d6df7afa54829f
3
+ size 4467075904
model-00019-of-00029.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9bcbd930ae8177fed7234462a9b4d6ee18ca3198a9584051d260a13f648e8f3d
3
+ size 4467075904
model-00020-of-00029.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:168f84ee45c8812d5bab3c931025fce030ce374105777340846ee24b1170bc11
3
+ size 4718804800
model-00021-of-00029.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9f2f2b52251f69bc7c279a731911f2a6fbd718f4291923ab15b246a94eefcdda
3
+ size 4467075904
model-00022-of-00029.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:258d7c6573e9ccab6de03b41add4c2eb2644c374ad07118461b95d2810ba9426
3
+ size 4467075904
model-00023-of-00029.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b1606e6ba75591e99280c797fecf09dff7a75335b49029b782faee6231689552
3
+ size 4718804800
model-00024-of-00029.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3b698764015bf83c25a07712aca741d65c4f74c7dcf32bf5315ae976ee0d1539
3
+ size 4467075904
model-00025-of-00029.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:edf5e412762da21f0bd196e789a041723081bb8665ac5034272f82a3c1d1dce4
3
+ size 4467075904
model-00026-of-00029.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:106ee42f9f9cd13aaa8761ef1b4ffad047041040ca0d3289e4edf894be80cda7
3
+ size 4718804800
model-00027-of-00029.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8450a83a75ea7804955cccffdee8f3b7c8eb279883769f1a796c14563b3c38cc
3
+ size 4467075904
model-00028-of-00029.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:afc1db130dad06ef3f5be5d14f472c6a271fab7dba5429920c1593e8536c8664
3
+ size 4467075904
model-00029-of-00029.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bc2f46325cde590f189b7ed0d271a9319c095f6026512bdc0d0d9066e209c00a
3
+ size 3680563768
model.safetensors.index.json ADDED
@@ -0,0 +1,778 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 131055505408
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00029-of-00029.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00029.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00002-of-00029.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00002-of-00029.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00029.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00029.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00002-of-00029.safetensors",
13
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00029.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00029.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00029.safetensors",
16
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00029.safetensors",
17
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00029.safetensors",
18
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00029.safetensors",
19
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00029.safetensors",
20
+ "model.layers.1.input_layernorm.weight": "model-00002-of-00029.safetensors",
21
+ "model.layers.1.mlp.down_proj.weight": "model-00002-of-00029.safetensors",
22
+ "model.layers.1.mlp.gate_proj.weight": "model-00002-of-00029.safetensors",
23
+ "model.layers.1.mlp.up_proj.weight": "model-00002-of-00029.safetensors",
24
+ "model.layers.1.post_attention_layernorm.weight": "model-00002-of-00029.safetensors",
25
+ "model.layers.1.self_attn.k_proj.bias": "model-00002-of-00029.safetensors",
26
+ "model.layers.1.self_attn.k_proj.weight": "model-00002-of-00029.safetensors",
27
+ "model.layers.1.self_attn.o_proj.weight": "model-00002-of-00029.safetensors",
28
+ "model.layers.1.self_attn.q_proj.bias": "model-00002-of-00029.safetensors",
29
+ "model.layers.1.self_attn.q_proj.weight": "model-00002-of-00029.safetensors",
30
+ "model.layers.1.self_attn.v_proj.bias": "model-00002-of-00029.safetensors",
31
+ "model.layers.1.self_attn.v_proj.weight": "model-00002-of-00029.safetensors",
32
+ "model.layers.10.input_layernorm.weight": "model-00006-of-00029.safetensors",
33
+ "model.layers.10.mlp.down_proj.weight": "model-00006-of-00029.safetensors",
34
+ "model.layers.10.mlp.gate_proj.weight": "model-00006-of-00029.safetensors",
35
+ "model.layers.10.mlp.up_proj.weight": "model-00006-of-00029.safetensors",
36
+ "model.layers.10.post_attention_layernorm.weight": "model-00006-of-00029.safetensors",
37
+ "model.layers.10.self_attn.k_proj.bias": "model-00005-of-00029.safetensors",
38
+ "model.layers.10.self_attn.k_proj.weight": "model-00005-of-00029.safetensors",
39
+ "model.layers.10.self_attn.o_proj.weight": "model-00005-of-00029.safetensors",
40
+ "model.layers.10.self_attn.q_proj.bias": "model-00005-of-00029.safetensors",
41
+ "model.layers.10.self_attn.q_proj.weight": "model-00005-of-00029.safetensors",
42
+ "model.layers.10.self_attn.v_proj.bias": "model-00005-of-00029.safetensors",
43
+ "model.layers.10.self_attn.v_proj.weight": "model-00005-of-00029.safetensors",
44
+ "model.layers.11.input_layernorm.weight": "model-00006-of-00029.safetensors",
45
+ "model.layers.11.mlp.down_proj.weight": "model-00006-of-00029.safetensors",
46
+ "model.layers.11.mlp.gate_proj.weight": "model-00006-of-00029.safetensors",
47
+ "model.layers.11.mlp.up_proj.weight": "model-00006-of-00029.safetensors",
48
+ "model.layers.11.post_attention_layernorm.weight": "model-00006-of-00029.safetensors",
49
+ "model.layers.11.self_attn.k_proj.bias": "model-00006-of-00029.safetensors",
50
+ "model.layers.11.self_attn.k_proj.weight": "model-00006-of-00029.safetensors",
51
+ "model.layers.11.self_attn.o_proj.weight": "model-00006-of-00029.safetensors",
52
+ "model.layers.11.self_attn.q_proj.bias": "model-00006-of-00029.safetensors",
53
+ "model.layers.11.self_attn.q_proj.weight": "model-00006-of-00029.safetensors",
54
+ "model.layers.11.self_attn.v_proj.bias": "model-00006-of-00029.safetensors",
55
+ "model.layers.11.self_attn.v_proj.weight": "model-00006-of-00029.safetensors",
56
+ "model.layers.12.input_layernorm.weight": "model-00007-of-00029.safetensors",
57
+ "model.layers.12.mlp.down_proj.weight": "model-00007-of-00029.safetensors",
58
+ "model.layers.12.mlp.gate_proj.weight": "model-00006-of-00029.safetensors",
59
+ "model.layers.12.mlp.up_proj.weight": "model-00007-of-00029.safetensors",
60
+ "model.layers.12.post_attention_layernorm.weight": "model-00007-of-00029.safetensors",
61
+ "model.layers.12.self_attn.k_proj.bias": "model-00006-of-00029.safetensors",
62
+ "model.layers.12.self_attn.k_proj.weight": "model-00006-of-00029.safetensors",
63
+ "model.layers.12.self_attn.o_proj.weight": "model-00006-of-00029.safetensors",
64
+ "model.layers.12.self_attn.q_proj.bias": "model-00006-of-00029.safetensors",
65
+ "model.layers.12.self_attn.q_proj.weight": "model-00006-of-00029.safetensors",
66
+ "model.layers.12.self_attn.v_proj.bias": "model-00006-of-00029.safetensors",
67
+ "model.layers.12.self_attn.v_proj.weight": "model-00006-of-00029.safetensors",
68
+ "model.layers.13.input_layernorm.weight": "model-00007-of-00029.safetensors",
69
+ "model.layers.13.mlp.down_proj.weight": "model-00007-of-00029.safetensors",
70
+ "model.layers.13.mlp.gate_proj.weight": "model-00007-of-00029.safetensors",
71
+ "model.layers.13.mlp.up_proj.weight": "model-00007-of-00029.safetensors",
72
+ "model.layers.13.post_attention_layernorm.weight": "model-00007-of-00029.safetensors",
73
+ "model.layers.13.self_attn.k_proj.bias": "model-00007-of-00029.safetensors",
74
+ "model.layers.13.self_attn.k_proj.weight": "model-00007-of-00029.safetensors",
75
+ "model.layers.13.self_attn.o_proj.weight": "model-00007-of-00029.safetensors",
76
+ "model.layers.13.self_attn.q_proj.bias": "model-00007-of-00029.safetensors",
77
+ "model.layers.13.self_attn.q_proj.weight": "model-00007-of-00029.safetensors",
78
+ "model.layers.13.self_attn.v_proj.bias": "model-00007-of-00029.safetensors",
79
+ "model.layers.13.self_attn.v_proj.weight": "model-00007-of-00029.safetensors",
80
+ "model.layers.14.input_layernorm.weight": "model-00008-of-00029.safetensors",
81
+ "model.layers.14.mlp.down_proj.weight": "model-00008-of-00029.safetensors",
82
+ "model.layers.14.mlp.gate_proj.weight": "model-00007-of-00029.safetensors",
83
+ "model.layers.14.mlp.up_proj.weight": "model-00007-of-00029.safetensors",
84
+ "model.layers.14.post_attention_layernorm.weight": "model-00008-of-00029.safetensors",
85
+ "model.layers.14.self_attn.k_proj.bias": "model-00007-of-00029.safetensors",
86
+ "model.layers.14.self_attn.k_proj.weight": "model-00007-of-00029.safetensors",
87
+ "model.layers.14.self_attn.o_proj.weight": "model-00007-of-00029.safetensors",
88
+ "model.layers.14.self_attn.q_proj.bias": "model-00007-of-00029.safetensors",
89
+ "model.layers.14.self_attn.q_proj.weight": "model-00007-of-00029.safetensors",
90
+ "model.layers.14.self_attn.v_proj.bias": "model-00007-of-00029.safetensors",
91
+ "model.layers.14.self_attn.v_proj.weight": "model-00007-of-00029.safetensors",
92
+ "model.layers.15.input_layernorm.weight": "model-00008-of-00029.safetensors",
93
+ "model.layers.15.mlp.down_proj.weight": "model-00008-of-00029.safetensors",
94
+ "model.layers.15.mlp.gate_proj.weight": "model-00008-of-00029.safetensors",
95
+ "model.layers.15.mlp.up_proj.weight": "model-00008-of-00029.safetensors",
96
+ "model.layers.15.post_attention_layernorm.weight": "model-00008-of-00029.safetensors",
97
+ "model.layers.15.self_attn.k_proj.bias": "model-00008-of-00029.safetensors",
98
+ "model.layers.15.self_attn.k_proj.weight": "model-00008-of-00029.safetensors",
99
+ "model.layers.15.self_attn.o_proj.weight": "model-00008-of-00029.safetensors",
100
+ "model.layers.15.self_attn.q_proj.bias": "model-00008-of-00029.safetensors",
101
+ "model.layers.15.self_attn.q_proj.weight": "model-00008-of-00029.safetensors",
102
+ "model.layers.15.self_attn.v_proj.bias": "model-00008-of-00029.safetensors",
103
+ "model.layers.15.self_attn.v_proj.weight": "model-00008-of-00029.safetensors",
104
+ "model.layers.16.input_layernorm.weight": "model-00008-of-00029.safetensors",
105
+ "model.layers.16.mlp.down_proj.weight": "model-00008-of-00029.safetensors",
106
+ "model.layers.16.mlp.gate_proj.weight": "model-00008-of-00029.safetensors",
107
+ "model.layers.16.mlp.up_proj.weight": "model-00008-of-00029.safetensors",
108
+ "model.layers.16.post_attention_layernorm.weight": "model-00008-of-00029.safetensors",
109
+ "model.layers.16.self_attn.k_proj.bias": "model-00008-of-00029.safetensors",
110
+ "model.layers.16.self_attn.k_proj.weight": "model-00008-of-00029.safetensors",
111
+ "model.layers.16.self_attn.o_proj.weight": "model-00008-of-00029.safetensors",
112
+ "model.layers.16.self_attn.q_proj.bias": "model-00008-of-00029.safetensors",
113
+ "model.layers.16.self_attn.q_proj.weight": "model-00008-of-00029.safetensors",
114
+ "model.layers.16.self_attn.v_proj.bias": "model-00008-of-00029.safetensors",
115
+ "model.layers.16.self_attn.v_proj.weight": "model-00008-of-00029.safetensors",
116
+ "model.layers.17.input_layernorm.weight": "model-00009-of-00029.safetensors",
117
+ "model.layers.17.mlp.down_proj.weight": "model-00009-of-00029.safetensors",
118
+ "model.layers.17.mlp.gate_proj.weight": "model-00009-of-00029.safetensors",
119
+ "model.layers.17.mlp.up_proj.weight": "model-00009-of-00029.safetensors",
120
+ "model.layers.17.post_attention_layernorm.weight": "model-00009-of-00029.safetensors",
121
+ "model.layers.17.self_attn.k_proj.bias": "model-00008-of-00029.safetensors",
122
+ "model.layers.17.self_attn.k_proj.weight": "model-00008-of-00029.safetensors",
123
+ "model.layers.17.self_attn.o_proj.weight": "model-00008-of-00029.safetensors",
124
+ "model.layers.17.self_attn.q_proj.bias": "model-00008-of-00029.safetensors",
125
+ "model.layers.17.self_attn.q_proj.weight": "model-00008-of-00029.safetensors",
126
+ "model.layers.17.self_attn.v_proj.bias": "model-00008-of-00029.safetensors",
127
+ "model.layers.17.self_attn.v_proj.weight": "model-00008-of-00029.safetensors",
128
+ "model.layers.18.input_layernorm.weight": "model-00009-of-00029.safetensors",
129
+ "model.layers.18.mlp.down_proj.weight": "model-00009-of-00029.safetensors",
130
+ "model.layers.18.mlp.gate_proj.weight": "model-00009-of-00029.safetensors",
131
+ "model.layers.18.mlp.up_proj.weight": "model-00009-of-00029.safetensors",
132
+ "model.layers.18.post_attention_layernorm.weight": "model-00009-of-00029.safetensors",
133
+ "model.layers.18.self_attn.k_proj.bias": "model-00009-of-00029.safetensors",
134
+ "model.layers.18.self_attn.k_proj.weight": "model-00009-of-00029.safetensors",
135
+ "model.layers.18.self_attn.o_proj.weight": "model-00009-of-00029.safetensors",
136
+ "model.layers.18.self_attn.q_proj.bias": "model-00009-of-00029.safetensors",
137
+ "model.layers.18.self_attn.q_proj.weight": "model-00009-of-00029.safetensors",
138
+ "model.layers.18.self_attn.v_proj.bias": "model-00009-of-00029.safetensors",
139
+ "model.layers.18.self_attn.v_proj.weight": "model-00009-of-00029.safetensors",
140
+ "model.layers.19.input_layernorm.weight": "model-00010-of-00029.safetensors",
141
+ "model.layers.19.mlp.down_proj.weight": "model-00010-of-00029.safetensors",
142
+ "model.layers.19.mlp.gate_proj.weight": "model-00009-of-00029.safetensors",
143
+ "model.layers.19.mlp.up_proj.weight": "model-00010-of-00029.safetensors",
144
+ "model.layers.19.post_attention_layernorm.weight": "model-00010-of-00029.safetensors",
145
+ "model.layers.19.self_attn.k_proj.bias": "model-00009-of-00029.safetensors",
146
+ "model.layers.19.self_attn.k_proj.weight": "model-00009-of-00029.safetensors",
147
+ "model.layers.19.self_attn.o_proj.weight": "model-00009-of-00029.safetensors",
148
+ "model.layers.19.self_attn.q_proj.bias": "model-00009-of-00029.safetensors",
149
+ "model.layers.19.self_attn.q_proj.weight": "model-00009-of-00029.safetensors",
150
+ "model.layers.19.self_attn.v_proj.bias": "model-00009-of-00029.safetensors",
151
+ "model.layers.19.self_attn.v_proj.weight": "model-00009-of-00029.safetensors",
152
+ "model.layers.2.input_layernorm.weight": "model-00002-of-00029.safetensors",
153
+ "model.layers.2.mlp.down_proj.weight": "model-00002-of-00029.safetensors",
154
+ "model.layers.2.mlp.gate_proj.weight": "model-00002-of-00029.safetensors",
155
+ "model.layers.2.mlp.up_proj.weight": "model-00002-of-00029.safetensors",
156
+ "model.layers.2.post_attention_layernorm.weight": "model-00002-of-00029.safetensors",
157
+ "model.layers.2.self_attn.k_proj.bias": "model-00002-of-00029.safetensors",
158
+ "model.layers.2.self_attn.k_proj.weight": "model-00002-of-00029.safetensors",
159
+ "model.layers.2.self_attn.o_proj.weight": "model-00002-of-00029.safetensors",
160
+ "model.layers.2.self_attn.q_proj.bias": "model-00002-of-00029.safetensors",
161
+ "model.layers.2.self_attn.q_proj.weight": "model-00002-of-00029.safetensors",
162
+ "model.layers.2.self_attn.v_proj.bias": "model-00002-of-00029.safetensors",
163
+ "model.layers.2.self_attn.v_proj.weight": "model-00002-of-00029.safetensors",
164
+ "model.layers.20.input_layernorm.weight": "model-00010-of-00029.safetensors",
165
+ "model.layers.20.mlp.down_proj.weight": "model-00010-of-00029.safetensors",
166
+ "model.layers.20.mlp.gate_proj.weight": "model-00010-of-00029.safetensors",
167
+ "model.layers.20.mlp.up_proj.weight": "model-00010-of-00029.safetensors",
168
+ "model.layers.20.post_attention_layernorm.weight": "model-00010-of-00029.safetensors",
169
+ "model.layers.20.self_attn.k_proj.bias": "model-00010-of-00029.safetensors",
170
+ "model.layers.20.self_attn.k_proj.weight": "model-00010-of-00029.safetensors",
171
+ "model.layers.20.self_attn.o_proj.weight": "model-00010-of-00029.safetensors",
172
+ "model.layers.20.self_attn.q_proj.bias": "model-00010-of-00029.safetensors",
173
+ "model.layers.20.self_attn.q_proj.weight": "model-00010-of-00029.safetensors",
174
+ "model.layers.20.self_attn.v_proj.bias": "model-00010-of-00029.safetensors",
175
+ "model.layers.20.self_attn.v_proj.weight": "model-00010-of-00029.safetensors",
176
+ "model.layers.21.input_layernorm.weight": "model-00011-of-00029.safetensors",
177
+ "model.layers.21.mlp.down_proj.weight": "model-00011-of-00029.safetensors",
178
+ "model.layers.21.mlp.gate_proj.weight": "model-00010-of-00029.safetensors",
179
+ "model.layers.21.mlp.up_proj.weight": "model-00010-of-00029.safetensors",
180
+ "model.layers.21.post_attention_layernorm.weight": "model-00011-of-00029.safetensors",
181
+ "model.layers.21.self_attn.k_proj.bias": "model-00010-of-00029.safetensors",
182
+ "model.layers.21.self_attn.k_proj.weight": "model-00010-of-00029.safetensors",
183
+ "model.layers.21.self_attn.o_proj.weight": "model-00010-of-00029.safetensors",
184
+ "model.layers.21.self_attn.q_proj.bias": "model-00010-of-00029.safetensors",
185
+ "model.layers.21.self_attn.q_proj.weight": "model-00010-of-00029.safetensors",
186
+ "model.layers.21.self_attn.v_proj.bias": "model-00010-of-00029.safetensors",
187
+ "model.layers.21.self_attn.v_proj.weight": "model-00010-of-00029.safetensors",
188
+ "model.layers.22.input_layernorm.weight": "model-00011-of-00029.safetensors",
189
+ "model.layers.22.mlp.down_proj.weight": "model-00011-of-00029.safetensors",
190
+ "model.layers.22.mlp.gate_proj.weight": "model-00011-of-00029.safetensors",
191
+ "model.layers.22.mlp.up_proj.weight": "model-00011-of-00029.safetensors",
192
+ "model.layers.22.post_attention_layernorm.weight": "model-00011-of-00029.safetensors",
193
+ "model.layers.22.self_attn.k_proj.bias": "model-00011-of-00029.safetensors",
194
+ "model.layers.22.self_attn.k_proj.weight": "model-00011-of-00029.safetensors",
195
+ "model.layers.22.self_attn.o_proj.weight": "model-00011-of-00029.safetensors",
196
+ "model.layers.22.self_attn.q_proj.bias": "model-00011-of-00029.safetensors",
197
+ "model.layers.22.self_attn.q_proj.weight": "model-00011-of-00029.safetensors",
198
+ "model.layers.22.self_attn.v_proj.bias": "model-00011-of-00029.safetensors",
199
+ "model.layers.22.self_attn.v_proj.weight": "model-00011-of-00029.safetensors",
200
+ "model.layers.23.input_layernorm.weight": "model-00011-of-00029.safetensors",
201
+ "model.layers.23.mlp.down_proj.weight": "model-00011-of-00029.safetensors",
202
+ "model.layers.23.mlp.gate_proj.weight": "model-00011-of-00029.safetensors",
203
+ "model.layers.23.mlp.up_proj.weight": "model-00011-of-00029.safetensors",
204
+ "model.layers.23.post_attention_layernorm.weight": "model-00011-of-00029.safetensors",
205
+ "model.layers.23.self_attn.k_proj.bias": "model-00011-of-00029.safetensors",
206
+ "model.layers.23.self_attn.k_proj.weight": "model-00011-of-00029.safetensors",
207
+ "model.layers.23.self_attn.o_proj.weight": "model-00011-of-00029.safetensors",
208
+ "model.layers.23.self_attn.q_proj.bias": "model-00011-of-00029.safetensors",
209
+ "model.layers.23.self_attn.q_proj.weight": "model-00011-of-00029.safetensors",
210
+ "model.layers.23.self_attn.v_proj.bias": "model-00011-of-00029.safetensors",
211
+ "model.layers.23.self_attn.v_proj.weight": "model-00011-of-00029.safetensors",
212
+ "model.layers.24.input_layernorm.weight": "model-00012-of-00029.safetensors",
213
+ "model.layers.24.mlp.down_proj.weight": "model-00012-of-00029.safetensors",
214
+ "model.layers.24.mlp.gate_proj.weight": "model-00012-of-00029.safetensors",
215
+ "model.layers.24.mlp.up_proj.weight": "model-00012-of-00029.safetensors",
216
+ "model.layers.24.post_attention_layernorm.weight": "model-00012-of-00029.safetensors",
217
+ "model.layers.24.self_attn.k_proj.bias": "model-00011-of-00029.safetensors",
218
+ "model.layers.24.self_attn.k_proj.weight": "model-00011-of-00029.safetensors",
219
+ "model.layers.24.self_attn.o_proj.weight": "model-00011-of-00029.safetensors",
220
+ "model.layers.24.self_attn.q_proj.bias": "model-00011-of-00029.safetensors",
221
+ "model.layers.24.self_attn.q_proj.weight": "model-00011-of-00029.safetensors",
222
+ "model.layers.24.self_attn.v_proj.bias": "model-00011-of-00029.safetensors",
223
+ "model.layers.24.self_attn.v_proj.weight": "model-00011-of-00029.safetensors",
224
+ "model.layers.25.input_layernorm.weight": "model-00012-of-00029.safetensors",
225
+ "model.layers.25.mlp.down_proj.weight": "model-00012-of-00029.safetensors",
226
+ "model.layers.25.mlp.gate_proj.weight": "model-00012-of-00029.safetensors",
227
+ "model.layers.25.mlp.up_proj.weight": "model-00012-of-00029.safetensors",
228
+ "model.layers.25.post_attention_layernorm.weight": "model-00012-of-00029.safetensors",
229
+ "model.layers.25.self_attn.k_proj.bias": "model-00012-of-00029.safetensors",
230
+ "model.layers.25.self_attn.k_proj.weight": "model-00012-of-00029.safetensors",
231
+ "model.layers.25.self_attn.o_proj.weight": "model-00012-of-00029.safetensors",
232
+ "model.layers.25.self_attn.q_proj.bias": "model-00012-of-00029.safetensors",
233
+ "model.layers.25.self_attn.q_proj.weight": "model-00012-of-00029.safetensors",
234
+ "model.layers.25.self_attn.v_proj.bias": "model-00012-of-00029.safetensors",
235
+ "model.layers.25.self_attn.v_proj.weight": "model-00012-of-00029.safetensors",
236
+ "model.layers.26.input_layernorm.weight": "model-00013-of-00029.safetensors",
237
+ "model.layers.26.mlp.down_proj.weight": "model-00013-of-00029.safetensors",
238
+ "model.layers.26.mlp.gate_proj.weight": "model-00012-of-00029.safetensors",
239
+ "model.layers.26.mlp.up_proj.weight": "model-00013-of-00029.safetensors",
240
+ "model.layers.26.post_attention_layernorm.weight": "model-00013-of-00029.safetensors",
241
+ "model.layers.26.self_attn.k_proj.bias": "model-00012-of-00029.safetensors",
242
+ "model.layers.26.self_attn.k_proj.weight": "model-00012-of-00029.safetensors",
243
+ "model.layers.26.self_attn.o_proj.weight": "model-00012-of-00029.safetensors",
244
+ "model.layers.26.self_attn.q_proj.bias": "model-00012-of-00029.safetensors",
245
+ "model.layers.26.self_attn.q_proj.weight": "model-00012-of-00029.safetensors",
246
+ "model.layers.26.self_attn.v_proj.bias": "model-00012-of-00029.safetensors",
247
+ "model.layers.26.self_attn.v_proj.weight": "model-00012-of-00029.safetensors",
248
+ "model.layers.27.input_layernorm.weight": "model-00013-of-00029.safetensors",
249
+ "model.layers.27.mlp.down_proj.weight": "model-00013-of-00029.safetensors",
250
+ "model.layers.27.mlp.gate_proj.weight": "model-00013-of-00029.safetensors",
251
+ "model.layers.27.mlp.up_proj.weight": "model-00013-of-00029.safetensors",
252
+ "model.layers.27.post_attention_layernorm.weight": "model-00013-of-00029.safetensors",
253
+ "model.layers.27.self_attn.k_proj.bias": "model-00013-of-00029.safetensors",
254
+ "model.layers.27.self_attn.k_proj.weight": "model-00013-of-00029.safetensors",
255
+ "model.layers.27.self_attn.o_proj.weight": "model-00013-of-00029.safetensors",
256
+ "model.layers.27.self_attn.q_proj.bias": "model-00013-of-00029.safetensors",
257
+ "model.layers.27.self_attn.q_proj.weight": "model-00013-of-00029.safetensors",
258
+ "model.layers.27.self_attn.v_proj.bias": "model-00013-of-00029.safetensors",
259
+ "model.layers.27.self_attn.v_proj.weight": "model-00013-of-00029.safetensors",
260
+ "model.layers.28.input_layernorm.weight": "model-00014-of-00029.safetensors",
261
+ "model.layers.28.mlp.down_proj.weight": "model-00014-of-00029.safetensors",
262
+ "model.layers.28.mlp.gate_proj.weight": "model-00013-of-00029.safetensors",
263
+ "model.layers.28.mlp.up_proj.weight": "model-00013-of-00029.safetensors",
264
+ "model.layers.28.post_attention_layernorm.weight": "model-00014-of-00029.safetensors",
265
+ "model.layers.28.self_attn.k_proj.bias": "model-00013-of-00029.safetensors",
266
+ "model.layers.28.self_attn.k_proj.weight": "model-00013-of-00029.safetensors",
267
+ "model.layers.28.self_attn.o_proj.weight": "model-00013-of-00029.safetensors",
268
+ "model.layers.28.self_attn.q_proj.bias": "model-00013-of-00029.safetensors",
269
+ "model.layers.28.self_attn.q_proj.weight": "model-00013-of-00029.safetensors",
270
+ "model.layers.28.self_attn.v_proj.bias": "model-00013-of-00029.safetensors",
271
+ "model.layers.28.self_attn.v_proj.weight": "model-00013-of-00029.safetensors",
272
+ "model.layers.29.input_layernorm.weight": "model-00014-of-00029.safetensors",
273
+ "model.layers.29.mlp.down_proj.weight": "model-00014-of-00029.safetensors",
274
+ "model.layers.29.mlp.gate_proj.weight": "model-00014-of-00029.safetensors",
275
+ "model.layers.29.mlp.up_proj.weight": "model-00014-of-00029.safetensors",
276
+ "model.layers.29.post_attention_layernorm.weight": "model-00014-of-00029.safetensors",
277
+ "model.layers.29.self_attn.k_proj.bias": "model-00014-of-00029.safetensors",
278
+ "model.layers.29.self_attn.k_proj.weight": "model-00014-of-00029.safetensors",
279
+ "model.layers.29.self_attn.o_proj.weight": "model-00014-of-00029.safetensors",
280
+ "model.layers.29.self_attn.q_proj.bias": "model-00014-of-00029.safetensors",
281
+ "model.layers.29.self_attn.q_proj.weight": "model-00014-of-00029.safetensors",
282
+ "model.layers.29.self_attn.v_proj.bias": "model-00014-of-00029.safetensors",
283
+ "model.layers.29.self_attn.v_proj.weight": "model-00014-of-00029.safetensors",
284
+ "model.layers.3.input_layernorm.weight": "model-00003-of-00029.safetensors",
285
+ "model.layers.3.mlp.down_proj.weight": "model-00003-of-00029.safetensors",
286
+ "model.layers.3.mlp.gate_proj.weight": "model-00003-of-00029.safetensors",
287
+ "model.layers.3.mlp.up_proj.weight": "model-00003-of-00029.safetensors",
288
+ "model.layers.3.post_attention_layernorm.weight": "model-00003-of-00029.safetensors",
289
+ "model.layers.3.self_attn.k_proj.bias": "model-00002-of-00029.safetensors",
290
+ "model.layers.3.self_attn.k_proj.weight": "model-00002-of-00029.safetensors",
291
+ "model.layers.3.self_attn.o_proj.weight": "model-00002-of-00029.safetensors",
292
+ "model.layers.3.self_attn.q_proj.bias": "model-00002-of-00029.safetensors",
293
+ "model.layers.3.self_attn.q_proj.weight": "model-00002-of-00029.safetensors",
294
+ "model.layers.3.self_attn.v_proj.bias": "model-00002-of-00029.safetensors",
295
+ "model.layers.3.self_attn.v_proj.weight": "model-00002-of-00029.safetensors",
296
+ "model.layers.30.input_layernorm.weight": "model-00014-of-00029.safetensors",
297
+ "model.layers.30.mlp.down_proj.weight": "model-00014-of-00029.safetensors",
298
+ "model.layers.30.mlp.gate_proj.weight": "model-00014-of-00029.safetensors",
299
+ "model.layers.30.mlp.up_proj.weight": "model-00014-of-00029.safetensors",
300
+ "model.layers.30.post_attention_layernorm.weight": "model-00014-of-00029.safetensors",
301
+ "model.layers.30.self_attn.k_proj.bias": "model-00014-of-00029.safetensors",
302
+ "model.layers.30.self_attn.k_proj.weight": "model-00014-of-00029.safetensors",
303
+ "model.layers.30.self_attn.o_proj.weight": "model-00014-of-00029.safetensors",
304
+ "model.layers.30.self_attn.q_proj.bias": "model-00014-of-00029.safetensors",
305
+ "model.layers.30.self_attn.q_proj.weight": "model-00014-of-00029.safetensors",
306
+ "model.layers.30.self_attn.v_proj.bias": "model-00014-of-00029.safetensors",
307
+ "model.layers.30.self_attn.v_proj.weight": "model-00014-of-00029.safetensors",
308
+ "model.layers.31.input_layernorm.weight": "model-00015-of-00029.safetensors",
309
+ "model.layers.31.mlp.down_proj.weight": "model-00015-of-00029.safetensors",
310
+ "model.layers.31.mlp.gate_proj.weight": "model-00015-of-00029.safetensors",
311
+ "model.layers.31.mlp.up_proj.weight": "model-00015-of-00029.safetensors",
312
+ "model.layers.31.post_attention_layernorm.weight": "model-00015-of-00029.safetensors",
313
+ "model.layers.31.self_attn.k_proj.bias": "model-00014-of-00029.safetensors",
314
+ "model.layers.31.self_attn.k_proj.weight": "model-00014-of-00029.safetensors",
315
+ "model.layers.31.self_attn.o_proj.weight": "model-00014-of-00029.safetensors",
316
+ "model.layers.31.self_attn.q_proj.bias": "model-00014-of-00029.safetensors",
317
+ "model.layers.31.self_attn.q_proj.weight": "model-00014-of-00029.safetensors",
318
+ "model.layers.31.self_attn.v_proj.bias": "model-00014-of-00029.safetensors",
319
+ "model.layers.31.self_attn.v_proj.weight": "model-00014-of-00029.safetensors",
320
+ "model.layers.32.input_layernorm.weight": "model-00015-of-00029.safetensors",
321
+ "model.layers.32.mlp.down_proj.weight": "model-00015-of-00029.safetensors",
322
+ "model.layers.32.mlp.gate_proj.weight": "model-00015-of-00029.safetensors",
323
+ "model.layers.32.mlp.up_proj.weight": "model-00015-of-00029.safetensors",
324
+ "model.layers.32.post_attention_layernorm.weight": "model-00015-of-00029.safetensors",
325
+ "model.layers.32.self_attn.k_proj.bias": "model-00015-of-00029.safetensors",
326
+ "model.layers.32.self_attn.k_proj.weight": "model-00015-of-00029.safetensors",
327
+ "model.layers.32.self_attn.o_proj.weight": "model-00015-of-00029.safetensors",
328
+ "model.layers.32.self_attn.q_proj.bias": "model-00015-of-00029.safetensors",
329
+ "model.layers.32.self_attn.q_proj.weight": "model-00015-of-00029.safetensors",
330
+ "model.layers.32.self_attn.v_proj.bias": "model-00015-of-00029.safetensors",
331
+ "model.layers.32.self_attn.v_proj.weight": "model-00015-of-00029.safetensors",
332
+ "model.layers.33.input_layernorm.weight": "model-00016-of-00029.safetensors",
333
+ "model.layers.33.mlp.down_proj.weight": "model-00016-of-00029.safetensors",
334
+ "model.layers.33.mlp.gate_proj.weight": "model-00015-of-00029.safetensors",
335
+ "model.layers.33.mlp.up_proj.weight": "model-00016-of-00029.safetensors",
336
+ "model.layers.33.post_attention_layernorm.weight": "model-00016-of-00029.safetensors",
337
+ "model.layers.33.self_attn.k_proj.bias": "model-00015-of-00029.safetensors",
338
+ "model.layers.33.self_attn.k_proj.weight": "model-00015-of-00029.safetensors",
339
+ "model.layers.33.self_attn.o_proj.weight": "model-00015-of-00029.safetensors",
340
+ "model.layers.33.self_attn.q_proj.bias": "model-00015-of-00029.safetensors",
341
+ "model.layers.33.self_attn.q_proj.weight": "model-00015-of-00029.safetensors",
342
+ "model.layers.33.self_attn.v_proj.bias": "model-00015-of-00029.safetensors",
343
+ "model.layers.33.self_attn.v_proj.weight": "model-00015-of-00029.safetensors",
344
+ "model.layers.34.input_layernorm.weight": "model-00016-of-00029.safetensors",
345
+ "model.layers.34.mlp.down_proj.weight": "model-00016-of-00029.safetensors",
346
+ "model.layers.34.mlp.gate_proj.weight": "model-00016-of-00029.safetensors",
347
+ "model.layers.34.mlp.up_proj.weight": "model-00016-of-00029.safetensors",
348
+ "model.layers.34.post_attention_layernorm.weight": "model-00016-of-00029.safetensors",
349
+ "model.layers.34.self_attn.k_proj.bias": "model-00016-of-00029.safetensors",
350
+ "model.layers.34.self_attn.k_proj.weight": "model-00016-of-00029.safetensors",
351
+ "model.layers.34.self_attn.o_proj.weight": "model-00016-of-00029.safetensors",
352
+ "model.layers.34.self_attn.q_proj.bias": "model-00016-of-00029.safetensors",
353
+ "model.layers.34.self_attn.q_proj.weight": "model-00016-of-00029.safetensors",
354
+ "model.layers.34.self_attn.v_proj.bias": "model-00016-of-00029.safetensors",
355
+ "model.layers.34.self_attn.v_proj.weight": "model-00016-of-00029.safetensors",
356
+ "model.layers.35.input_layernorm.weight": "model-00017-of-00029.safetensors",
357
+ "model.layers.35.mlp.down_proj.weight": "model-00017-of-00029.safetensors",
358
+ "model.layers.35.mlp.gate_proj.weight": "model-00016-of-00029.safetensors",
359
+ "model.layers.35.mlp.up_proj.weight": "model-00016-of-00029.safetensors",
360
+ "model.layers.35.post_attention_layernorm.weight": "model-00017-of-00029.safetensors",
361
+ "model.layers.35.self_attn.k_proj.bias": "model-00016-of-00029.safetensors",
362
+ "model.layers.35.self_attn.k_proj.weight": "model-00016-of-00029.safetensors",
363
+ "model.layers.35.self_attn.o_proj.weight": "model-00016-of-00029.safetensors",
364
+ "model.layers.35.self_attn.q_proj.bias": "model-00016-of-00029.safetensors",
365
+ "model.layers.35.self_attn.q_proj.weight": "model-00016-of-00029.safetensors",
366
+ "model.layers.35.self_attn.v_proj.bias": "model-00016-of-00029.safetensors",
367
+ "model.layers.35.self_attn.v_proj.weight": "model-00016-of-00029.safetensors",
368
+ "model.layers.36.input_layernorm.weight": "model-00017-of-00029.safetensors",
369
+ "model.layers.36.mlp.down_proj.weight": "model-00017-of-00029.safetensors",
370
+ "model.layers.36.mlp.gate_proj.weight": "model-00017-of-00029.safetensors",
371
+ "model.layers.36.mlp.up_proj.weight": "model-00017-of-00029.safetensors",
372
+ "model.layers.36.post_attention_layernorm.weight": "model-00017-of-00029.safetensors",
373
+ "model.layers.36.self_attn.k_proj.bias": "model-00017-of-00029.safetensors",
374
+ "model.layers.36.self_attn.k_proj.weight": "model-00017-of-00029.safetensors",
375
+ "model.layers.36.self_attn.o_proj.weight": "model-00017-of-00029.safetensors",
376
+ "model.layers.36.self_attn.q_proj.bias": "model-00017-of-00029.safetensors",
377
+ "model.layers.36.self_attn.q_proj.weight": "model-00017-of-00029.safetensors",
378
+ "model.layers.36.self_attn.v_proj.bias": "model-00017-of-00029.safetensors",
379
+ "model.layers.36.self_attn.v_proj.weight": "model-00017-of-00029.safetensors",
380
+ "model.layers.37.input_layernorm.weight": "model-00017-of-00029.safetensors",
381
+ "model.layers.37.mlp.down_proj.weight": "model-00017-of-00029.safetensors",
382
+ "model.layers.37.mlp.gate_proj.weight": "model-00017-of-00029.safetensors",
383
+ "model.layers.37.mlp.up_proj.weight": "model-00017-of-00029.safetensors",
384
+ "model.layers.37.post_attention_layernorm.weight": "model-00017-of-00029.safetensors",
385
+ "model.layers.37.self_attn.k_proj.bias": "model-00017-of-00029.safetensors",
386
+ "model.layers.37.self_attn.k_proj.weight": "model-00017-of-00029.safetensors",
387
+ "model.layers.37.self_attn.o_proj.weight": "model-00017-of-00029.safetensors",
388
+ "model.layers.37.self_attn.q_proj.bias": "model-00017-of-00029.safetensors",
389
+ "model.layers.37.self_attn.q_proj.weight": "model-00017-of-00029.safetensors",
390
+ "model.layers.37.self_attn.v_proj.bias": "model-00017-of-00029.safetensors",
391
+ "model.layers.37.self_attn.v_proj.weight": "model-00017-of-00029.safetensors",
392
+ "model.layers.38.input_layernorm.weight": "model-00018-of-00029.safetensors",
393
+ "model.layers.38.mlp.down_proj.weight": "model-00018-of-00029.safetensors",
394
+ "model.layers.38.mlp.gate_proj.weight": "model-00018-of-00029.safetensors",
395
+ "model.layers.38.mlp.up_proj.weight": "model-00018-of-00029.safetensors",
396
+ "model.layers.38.post_attention_layernorm.weight": "model-00018-of-00029.safetensors",
397
+ "model.layers.38.self_attn.k_proj.bias": "model-00017-of-00029.safetensors",
398
+ "model.layers.38.self_attn.k_proj.weight": "model-00017-of-00029.safetensors",
399
+ "model.layers.38.self_attn.o_proj.weight": "model-00017-of-00029.safetensors",
400
+ "model.layers.38.self_attn.q_proj.bias": "model-00017-of-00029.safetensors",
401
+ "model.layers.38.self_attn.q_proj.weight": "model-00017-of-00029.safetensors",
402
+ "model.layers.38.self_attn.v_proj.bias": "model-00017-of-00029.safetensors",
403
+ "model.layers.38.self_attn.v_proj.weight": "model-00017-of-00029.safetensors",
404
+ "model.layers.39.input_layernorm.weight": "model-00018-of-00029.safetensors",
405
+ "model.layers.39.mlp.down_proj.weight": "model-00018-of-00029.safetensors",
406
+ "model.layers.39.mlp.gate_proj.weight": "model-00018-of-00029.safetensors",
407
+ "model.layers.39.mlp.up_proj.weight": "model-00018-of-00029.safetensors",
408
+ "model.layers.39.post_attention_layernorm.weight": "model-00018-of-00029.safetensors",
409
+ "model.layers.39.self_attn.k_proj.bias": "model-00018-of-00029.safetensors",
410
+ "model.layers.39.self_attn.k_proj.weight": "model-00018-of-00029.safetensors",
411
+ "model.layers.39.self_attn.o_proj.weight": "model-00018-of-00029.safetensors",
412
+ "model.layers.39.self_attn.q_proj.bias": "model-00018-of-00029.safetensors",
413
+ "model.layers.39.self_attn.q_proj.weight": "model-00018-of-00029.safetensors",
414
+ "model.layers.39.self_attn.v_proj.bias": "model-00018-of-00029.safetensors",
415
+ "model.layers.39.self_attn.v_proj.weight": "model-00018-of-00029.safetensors",
416
+ "model.layers.4.input_layernorm.weight": "model-00003-of-00029.safetensors",
417
+ "model.layers.4.mlp.down_proj.weight": "model-00003-of-00029.safetensors",
418
+ "model.layers.4.mlp.gate_proj.weight": "model-00003-of-00029.safetensors",
419
+ "model.layers.4.mlp.up_proj.weight": "model-00003-of-00029.safetensors",
420
+ "model.layers.4.post_attention_layernorm.weight": "model-00003-of-00029.safetensors",
421
+ "model.layers.4.self_attn.k_proj.bias": "model-00003-of-00029.safetensors",
422
+ "model.layers.4.self_attn.k_proj.weight": "model-00003-of-00029.safetensors",
423
+ "model.layers.4.self_attn.o_proj.weight": "model-00003-of-00029.safetensors",
424
+ "model.layers.4.self_attn.q_proj.bias": "model-00003-of-00029.safetensors",
425
+ "model.layers.4.self_attn.q_proj.weight": "model-00003-of-00029.safetensors",
426
+ "model.layers.4.self_attn.v_proj.bias": "model-00003-of-00029.safetensors",
427
+ "model.layers.4.self_attn.v_proj.weight": "model-00003-of-00029.safetensors",
428
+ "model.layers.40.input_layernorm.weight": "model-00019-of-00029.safetensors",
429
+ "model.layers.40.mlp.down_proj.weight": "model-00019-of-00029.safetensors",
430
+ "model.layers.40.mlp.gate_proj.weight": "model-00018-of-00029.safetensors",
431
+ "model.layers.40.mlp.up_proj.weight": "model-00019-of-00029.safetensors",
432
+ "model.layers.40.post_attention_layernorm.weight": "model-00019-of-00029.safetensors",
433
+ "model.layers.40.self_attn.k_proj.bias": "model-00018-of-00029.safetensors",
434
+ "model.layers.40.self_attn.k_proj.weight": "model-00018-of-00029.safetensors",
435
+ "model.layers.40.self_attn.o_proj.weight": "model-00018-of-00029.safetensors",
436
+ "model.layers.40.self_attn.q_proj.bias": "model-00018-of-00029.safetensors",
437
+ "model.layers.40.self_attn.q_proj.weight": "model-00018-of-00029.safetensors",
438
+ "model.layers.40.self_attn.v_proj.bias": "model-00018-of-00029.safetensors",
439
+ "model.layers.40.self_attn.v_proj.weight": "model-00018-of-00029.safetensors",
440
+ "model.layers.41.input_layernorm.weight": "model-00019-of-00029.safetensors",
441
+ "model.layers.41.mlp.down_proj.weight": "model-00019-of-00029.safetensors",
442
+ "model.layers.41.mlp.gate_proj.weight": "model-00019-of-00029.safetensors",
443
+ "model.layers.41.mlp.up_proj.weight": "model-00019-of-00029.safetensors",
444
+ "model.layers.41.post_attention_layernorm.weight": "model-00019-of-00029.safetensors",
445
+ "model.layers.41.self_attn.k_proj.bias": "model-00019-of-00029.safetensors",
446
+ "model.layers.41.self_attn.k_proj.weight": "model-00019-of-00029.safetensors",
447
+ "model.layers.41.self_attn.o_proj.weight": "model-00019-of-00029.safetensors",
448
+ "model.layers.41.self_attn.q_proj.bias": "model-00019-of-00029.safetensors",
449
+ "model.layers.41.self_attn.q_proj.weight": "model-00019-of-00029.safetensors",
450
+ "model.layers.41.self_attn.v_proj.bias": "model-00019-of-00029.safetensors",
451
+ "model.layers.41.self_attn.v_proj.weight": "model-00019-of-00029.safetensors",
452
+ "model.layers.42.input_layernorm.weight": "model-00020-of-00029.safetensors",
453
+ "model.layers.42.mlp.down_proj.weight": "model-00020-of-00029.safetensors",
454
+ "model.layers.42.mlp.gate_proj.weight": "model-00019-of-00029.safetensors",
455
+ "model.layers.42.mlp.up_proj.weight": "model-00019-of-00029.safetensors",
456
+ "model.layers.42.post_attention_layernorm.weight": "model-00020-of-00029.safetensors",
457
+ "model.layers.42.self_attn.k_proj.bias": "model-00019-of-00029.safetensors",
458
+ "model.layers.42.self_attn.k_proj.weight": "model-00019-of-00029.safetensors",
459
+ "model.layers.42.self_attn.o_proj.weight": "model-00019-of-00029.safetensors",
460
+ "model.layers.42.self_attn.q_proj.bias": "model-00019-of-00029.safetensors",
461
+ "model.layers.42.self_attn.q_proj.weight": "model-00019-of-00029.safetensors",
462
+ "model.layers.42.self_attn.v_proj.bias": "model-00019-of-00029.safetensors",
463
+ "model.layers.42.self_attn.v_proj.weight": "model-00019-of-00029.safetensors",
464
+ "model.layers.43.input_layernorm.weight": "model-00020-of-00029.safetensors",
465
+ "model.layers.43.mlp.down_proj.weight": "model-00020-of-00029.safetensors",
466
+ "model.layers.43.mlp.gate_proj.weight": "model-00020-of-00029.safetensors",
467
+ "model.layers.43.mlp.up_proj.weight": "model-00020-of-00029.safetensors",
468
+ "model.layers.43.post_attention_layernorm.weight": "model-00020-of-00029.safetensors",
469
+ "model.layers.43.self_attn.k_proj.bias": "model-00020-of-00029.safetensors",
470
+ "model.layers.43.self_attn.k_proj.weight": "model-00020-of-00029.safetensors",
471
+ "model.layers.43.self_attn.o_proj.weight": "model-00020-of-00029.safetensors",
472
+ "model.layers.43.self_attn.q_proj.bias": "model-00020-of-00029.safetensors",
473
+ "model.layers.43.self_attn.q_proj.weight": "model-00020-of-00029.safetensors",
474
+ "model.layers.43.self_attn.v_proj.bias": "model-00020-of-00029.safetensors",
475
+ "model.layers.43.self_attn.v_proj.weight": "model-00020-of-00029.safetensors",
476
+ "model.layers.44.input_layernorm.weight": "model-00020-of-00029.safetensors",
477
+ "model.layers.44.mlp.down_proj.weight": "model-00020-of-00029.safetensors",
478
+ "model.layers.44.mlp.gate_proj.weight": "model-00020-of-00029.safetensors",
479
+ "model.layers.44.mlp.up_proj.weight": "model-00020-of-00029.safetensors",
480
+ "model.layers.44.post_attention_layernorm.weight": "model-00020-of-00029.safetensors",
481
+ "model.layers.44.self_attn.k_proj.bias": "model-00020-of-00029.safetensors",
482
+ "model.layers.44.self_attn.k_proj.weight": "model-00020-of-00029.safetensors",
483
+ "model.layers.44.self_attn.o_proj.weight": "model-00020-of-00029.safetensors",
484
+ "model.layers.44.self_attn.q_proj.bias": "model-00020-of-00029.safetensors",
485
+ "model.layers.44.self_attn.q_proj.weight": "model-00020-of-00029.safetensors",
486
+ "model.layers.44.self_attn.v_proj.bias": "model-00020-of-00029.safetensors",
487
+ "model.layers.44.self_attn.v_proj.weight": "model-00020-of-00029.safetensors",
488
+ "model.layers.45.input_layernorm.weight": "model-00021-of-00029.safetensors",
489
+ "model.layers.45.mlp.down_proj.weight": "model-00021-of-00029.safetensors",
490
+ "model.layers.45.mlp.gate_proj.weight": "model-00021-of-00029.safetensors",
491
+ "model.layers.45.mlp.up_proj.weight": "model-00021-of-00029.safetensors",
492
+ "model.layers.45.post_attention_layernorm.weight": "model-00021-of-00029.safetensors",
493
+ "model.layers.45.self_attn.k_proj.bias": "model-00020-of-00029.safetensors",
494
+ "model.layers.45.self_attn.k_proj.weight": "model-00020-of-00029.safetensors",
495
+ "model.layers.45.self_attn.o_proj.weight": "model-00020-of-00029.safetensors",
496
+ "model.layers.45.self_attn.q_proj.bias": "model-00020-of-00029.safetensors",
497
+ "model.layers.45.self_attn.q_proj.weight": "model-00020-of-00029.safetensors",
498
+ "model.layers.45.self_attn.v_proj.bias": "model-00020-of-00029.safetensors",
499
+ "model.layers.45.self_attn.v_proj.weight": "model-00020-of-00029.safetensors",
500
+ "model.layers.46.input_layernorm.weight": "model-00021-of-00029.safetensors",
501
+ "model.layers.46.mlp.down_proj.weight": "model-00021-of-00029.safetensors",
502
+ "model.layers.46.mlp.gate_proj.weight": "model-00021-of-00029.safetensors",
503
+ "model.layers.46.mlp.up_proj.weight": "model-00021-of-00029.safetensors",
504
+ "model.layers.46.post_attention_layernorm.weight": "model-00021-of-00029.safetensors",
505
+ "model.layers.46.self_attn.k_proj.bias": "model-00021-of-00029.safetensors",
506
+ "model.layers.46.self_attn.k_proj.weight": "model-00021-of-00029.safetensors",
507
+ "model.layers.46.self_attn.o_proj.weight": "model-00021-of-00029.safetensors",
508
+ "model.layers.46.self_attn.q_proj.bias": "model-00021-of-00029.safetensors",
509
+ "model.layers.46.self_attn.q_proj.weight": "model-00021-of-00029.safetensors",
510
+ "model.layers.46.self_attn.v_proj.bias": "model-00021-of-00029.safetensors",
511
+ "model.layers.46.self_attn.v_proj.weight": "model-00021-of-00029.safetensors",
512
+ "model.layers.47.input_layernorm.weight": "model-00022-of-00029.safetensors",
513
+ "model.layers.47.mlp.down_proj.weight": "model-00022-of-00029.safetensors",
514
+ "model.layers.47.mlp.gate_proj.weight": "model-00021-of-00029.safetensors",
515
+ "model.layers.47.mlp.up_proj.weight": "model-00022-of-00029.safetensors",
516
+ "model.layers.47.post_attention_layernorm.weight": "model-00022-of-00029.safetensors",
517
+ "model.layers.47.self_attn.k_proj.bias": "model-00021-of-00029.safetensors",
518
+ "model.layers.47.self_attn.k_proj.weight": "model-00021-of-00029.safetensors",
519
+ "model.layers.47.self_attn.o_proj.weight": "model-00021-of-00029.safetensors",
520
+ "model.layers.47.self_attn.q_proj.bias": "model-00021-of-00029.safetensors",
521
+ "model.layers.47.self_attn.q_proj.weight": "model-00021-of-00029.safetensors",
522
+ "model.layers.47.self_attn.v_proj.bias": "model-00021-of-00029.safetensors",
523
+ "model.layers.47.self_attn.v_proj.weight": "model-00021-of-00029.safetensors",
524
+ "model.layers.48.input_layernorm.weight": "model-00022-of-00029.safetensors",
525
+ "model.layers.48.mlp.down_proj.weight": "model-00022-of-00029.safetensors",
526
+ "model.layers.48.mlp.gate_proj.weight": "model-00022-of-00029.safetensors",
527
+ "model.layers.48.mlp.up_proj.weight": "model-00022-of-00029.safetensors",
528
+ "model.layers.48.post_attention_layernorm.weight": "model-00022-of-00029.safetensors",
529
+ "model.layers.48.self_attn.k_proj.bias": "model-00022-of-00029.safetensors",
530
+ "model.layers.48.self_attn.k_proj.weight": "model-00022-of-00029.safetensors",
531
+ "model.layers.48.self_attn.o_proj.weight": "model-00022-of-00029.safetensors",
532
+ "model.layers.48.self_attn.q_proj.bias": "model-00022-of-00029.safetensors",
533
+ "model.layers.48.self_attn.q_proj.weight": "model-00022-of-00029.safetensors",
534
+ "model.layers.48.self_attn.v_proj.bias": "model-00022-of-00029.safetensors",
535
+ "model.layers.48.self_attn.v_proj.weight": "model-00022-of-00029.safetensors",
536
+ "model.layers.49.input_layernorm.weight": "model-00023-of-00029.safetensors",
537
+ "model.layers.49.mlp.down_proj.weight": "model-00023-of-00029.safetensors",
538
+ "model.layers.49.mlp.gate_proj.weight": "model-00022-of-00029.safetensors",
539
+ "model.layers.49.mlp.up_proj.weight": "model-00022-of-00029.safetensors",
540
+ "model.layers.49.post_attention_layernorm.weight": "model-00023-of-00029.safetensors",
541
+ "model.layers.49.self_attn.k_proj.bias": "model-00022-of-00029.safetensors",
542
+ "model.layers.49.self_attn.k_proj.weight": "model-00022-of-00029.safetensors",
543
+ "model.layers.49.self_attn.o_proj.weight": "model-00022-of-00029.safetensors",
544
+ "model.layers.49.self_attn.q_proj.bias": "model-00022-of-00029.safetensors",
545
+ "model.layers.49.self_attn.q_proj.weight": "model-00022-of-00029.safetensors",
546
+ "model.layers.49.self_attn.v_proj.bias": "model-00022-of-00029.safetensors",
547
+ "model.layers.49.self_attn.v_proj.weight": "model-00022-of-00029.safetensors",
548
+ "model.layers.5.input_layernorm.weight": "model-00004-of-00029.safetensors",
549
+ "model.layers.5.mlp.down_proj.weight": "model-00004-of-00029.safetensors",
550
+ "model.layers.5.mlp.gate_proj.weight": "model-00003-of-00029.safetensors",
551
+ "model.layers.5.mlp.up_proj.weight": "model-00004-of-00029.safetensors",
552
+ "model.layers.5.post_attention_layernorm.weight": "model-00004-of-00029.safetensors",
553
+ "model.layers.5.self_attn.k_proj.bias": "model-00003-of-00029.safetensors",
554
+ "model.layers.5.self_attn.k_proj.weight": "model-00003-of-00029.safetensors",
555
+ "model.layers.5.self_attn.o_proj.weight": "model-00003-of-00029.safetensors",
556
+ "model.layers.5.self_attn.q_proj.bias": "model-00003-of-00029.safetensors",
557
+ "model.layers.5.self_attn.q_proj.weight": "model-00003-of-00029.safetensors",
558
+ "model.layers.5.self_attn.v_proj.bias": "model-00003-of-00029.safetensors",
559
+ "model.layers.5.self_attn.v_proj.weight": "model-00003-of-00029.safetensors",
560
+ "model.layers.50.input_layernorm.weight": "model-00023-of-00029.safetensors",
561
+ "model.layers.50.mlp.down_proj.weight": "model-00023-of-00029.safetensors",
562
+ "model.layers.50.mlp.gate_proj.weight": "model-00023-of-00029.safetensors",
563
+ "model.layers.50.mlp.up_proj.weight": "model-00023-of-00029.safetensors",
564
+ "model.layers.50.post_attention_layernorm.weight": "model-00023-of-00029.safetensors",
565
+ "model.layers.50.self_attn.k_proj.bias": "model-00023-of-00029.safetensors",
566
+ "model.layers.50.self_attn.k_proj.weight": "model-00023-of-00029.safetensors",
567
+ "model.layers.50.self_attn.o_proj.weight": "model-00023-of-00029.safetensors",
568
+ "model.layers.50.self_attn.q_proj.bias": "model-00023-of-00029.safetensors",
569
+ "model.layers.50.self_attn.q_proj.weight": "model-00023-of-00029.safetensors",
570
+ "model.layers.50.self_attn.v_proj.bias": "model-00023-of-00029.safetensors",
571
+ "model.layers.50.self_attn.v_proj.weight": "model-00023-of-00029.safetensors",
572
+ "model.layers.51.input_layernorm.weight": "model-00023-of-00029.safetensors",
573
+ "model.layers.51.mlp.down_proj.weight": "model-00023-of-00029.safetensors",
574
+ "model.layers.51.mlp.gate_proj.weight": "model-00023-of-00029.safetensors",
575
+ "model.layers.51.mlp.up_proj.weight": "model-00023-of-00029.safetensors",
576
+ "model.layers.51.post_attention_layernorm.weight": "model-00023-of-00029.safetensors",
577
+ "model.layers.51.self_attn.k_proj.bias": "model-00023-of-00029.safetensors",
578
+ "model.layers.51.self_attn.k_proj.weight": "model-00023-of-00029.safetensors",
579
+ "model.layers.51.self_attn.o_proj.weight": "model-00023-of-00029.safetensors",
580
+ "model.layers.51.self_attn.q_proj.bias": "model-00023-of-00029.safetensors",
581
+ "model.layers.51.self_attn.q_proj.weight": "model-00023-of-00029.safetensors",
582
+ "model.layers.51.self_attn.v_proj.bias": "model-00023-of-00029.safetensors",
583
+ "model.layers.51.self_attn.v_proj.weight": "model-00023-of-00029.safetensors",
584
+ "model.layers.52.input_layernorm.weight": "model-00024-of-00029.safetensors",
585
+ "model.layers.52.mlp.down_proj.weight": "model-00024-of-00029.safetensors",
586
+ "model.layers.52.mlp.gate_proj.weight": "model-00024-of-00029.safetensors",
587
+ "model.layers.52.mlp.up_proj.weight": "model-00024-of-00029.safetensors",
588
+ "model.layers.52.post_attention_layernorm.weight": "model-00024-of-00029.safetensors",
589
+ "model.layers.52.self_attn.k_proj.bias": "model-00023-of-00029.safetensors",
590
+ "model.layers.52.self_attn.k_proj.weight": "model-00023-of-00029.safetensors",
591
+ "model.layers.52.self_attn.o_proj.weight": "model-00023-of-00029.safetensors",
592
+ "model.layers.52.self_attn.q_proj.bias": "model-00023-of-00029.safetensors",
593
+ "model.layers.52.self_attn.q_proj.weight": "model-00023-of-00029.safetensors",
594
+ "model.layers.52.self_attn.v_proj.bias": "model-00023-of-00029.safetensors",
595
+ "model.layers.52.self_attn.v_proj.weight": "model-00023-of-00029.safetensors",
596
+ "model.layers.53.input_layernorm.weight": "model-00024-of-00029.safetensors",
597
+ "model.layers.53.mlp.down_proj.weight": "model-00024-of-00029.safetensors",
598
+ "model.layers.53.mlp.gate_proj.weight": "model-00024-of-00029.safetensors",
599
+ "model.layers.53.mlp.up_proj.weight": "model-00024-of-00029.safetensors",
600
+ "model.layers.53.post_attention_layernorm.weight": "model-00024-of-00029.safetensors",
601
+ "model.layers.53.self_attn.k_proj.bias": "model-00024-of-00029.safetensors",
602
+ "model.layers.53.self_attn.k_proj.weight": "model-00024-of-00029.safetensors",
603
+ "model.layers.53.self_attn.o_proj.weight": "model-00024-of-00029.safetensors",
604
+ "model.layers.53.self_attn.q_proj.bias": "model-00024-of-00029.safetensors",
605
+ "model.layers.53.self_attn.q_proj.weight": "model-00024-of-00029.safetensors",
606
+ "model.layers.53.self_attn.v_proj.bias": "model-00024-of-00029.safetensors",
607
+ "model.layers.53.self_attn.v_proj.weight": "model-00024-of-00029.safetensors",
608
+ "model.layers.54.input_layernorm.weight": "model-00025-of-00029.safetensors",
609
+ "model.layers.54.mlp.down_proj.weight": "model-00025-of-00029.safetensors",
610
+ "model.layers.54.mlp.gate_proj.weight": "model-00024-of-00029.safetensors",
611
+ "model.layers.54.mlp.up_proj.weight": "model-00025-of-00029.safetensors",
612
+ "model.layers.54.post_attention_layernorm.weight": "model-00025-of-00029.safetensors",
613
+ "model.layers.54.self_attn.k_proj.bias": "model-00024-of-00029.safetensors",
614
+ "model.layers.54.self_attn.k_proj.weight": "model-00024-of-00029.safetensors",
615
+ "model.layers.54.self_attn.o_proj.weight": "model-00024-of-00029.safetensors",
616
+ "model.layers.54.self_attn.q_proj.bias": "model-00024-of-00029.safetensors",
617
+ "model.layers.54.self_attn.q_proj.weight": "model-00024-of-00029.safetensors",
618
+ "model.layers.54.self_attn.v_proj.bias": "model-00024-of-00029.safetensors",
619
+ "model.layers.54.self_attn.v_proj.weight": "model-00024-of-00029.safetensors",
620
+ "model.layers.55.input_layernorm.weight": "model-00025-of-00029.safetensors",
621
+ "model.layers.55.mlp.down_proj.weight": "model-00025-of-00029.safetensors",
622
+ "model.layers.55.mlp.gate_proj.weight": "model-00025-of-00029.safetensors",
623
+ "model.layers.55.mlp.up_proj.weight": "model-00025-of-00029.safetensors",
624
+ "model.layers.55.post_attention_layernorm.weight": "model-00025-of-00029.safetensors",
625
+ "model.layers.55.self_attn.k_proj.bias": "model-00025-of-00029.safetensors",
626
+ "model.layers.55.self_attn.k_proj.weight": "model-00025-of-00029.safetensors",
627
+ "model.layers.55.self_attn.o_proj.weight": "model-00025-of-00029.safetensors",
628
+ "model.layers.55.self_attn.q_proj.bias": "model-00025-of-00029.safetensors",
629
+ "model.layers.55.self_attn.q_proj.weight": "model-00025-of-00029.safetensors",
630
+ "model.layers.55.self_attn.v_proj.bias": "model-00025-of-00029.safetensors",
631
+ "model.layers.55.self_attn.v_proj.weight": "model-00025-of-00029.safetensors",
632
+ "model.layers.56.input_layernorm.weight": "model-00026-of-00029.safetensors",
633
+ "model.layers.56.mlp.down_proj.weight": "model-00026-of-00029.safetensors",
634
+ "model.layers.56.mlp.gate_proj.weight": "model-00025-of-00029.safetensors",
635
+ "model.layers.56.mlp.up_proj.weight": "model-00025-of-00029.safetensors",
636
+ "model.layers.56.post_attention_layernorm.weight": "model-00026-of-00029.safetensors",
637
+ "model.layers.56.self_attn.k_proj.bias": "model-00025-of-00029.safetensors",
638
+ "model.layers.56.self_attn.k_proj.weight": "model-00025-of-00029.safetensors",
639
+ "model.layers.56.self_attn.o_proj.weight": "model-00025-of-00029.safetensors",
640
+ "model.layers.56.self_attn.q_proj.bias": "model-00025-of-00029.safetensors",
641
+ "model.layers.56.self_attn.q_proj.weight": "model-00025-of-00029.safetensors",
642
+ "model.layers.56.self_attn.v_proj.bias": "model-00025-of-00029.safetensors",
643
+ "model.layers.56.self_attn.v_proj.weight": "model-00025-of-00029.safetensors",
644
+ "model.layers.57.input_layernorm.weight": "model-00026-of-00029.safetensors",
645
+ "model.layers.57.mlp.down_proj.weight": "model-00026-of-00029.safetensors",
646
+ "model.layers.57.mlp.gate_proj.weight": "model-00026-of-00029.safetensors",
647
+ "model.layers.57.mlp.up_proj.weight": "model-00026-of-00029.safetensors",
648
+ "model.layers.57.post_attention_layernorm.weight": "model-00026-of-00029.safetensors",
649
+ "model.layers.57.self_attn.k_proj.bias": "model-00026-of-00029.safetensors",
650
+ "model.layers.57.self_attn.k_proj.weight": "model-00026-of-00029.safetensors",
651
+ "model.layers.57.self_attn.o_proj.weight": "model-00026-of-00029.safetensors",
652
+ "model.layers.57.self_attn.q_proj.bias": "model-00026-of-00029.safetensors",
653
+ "model.layers.57.self_attn.q_proj.weight": "model-00026-of-00029.safetensors",
654
+ "model.layers.57.self_attn.v_proj.bias": "model-00026-of-00029.safetensors",
655
+ "model.layers.57.self_attn.v_proj.weight": "model-00026-of-00029.safetensors",
656
+ "model.layers.58.input_layernorm.weight": "model-00026-of-00029.safetensors",
657
+ "model.layers.58.mlp.down_proj.weight": "model-00026-of-00029.safetensors",
658
+ "model.layers.58.mlp.gate_proj.weight": "model-00026-of-00029.safetensors",
659
+ "model.layers.58.mlp.up_proj.weight": "model-00026-of-00029.safetensors",
660
+ "model.layers.58.post_attention_layernorm.weight": "model-00026-of-00029.safetensors",
661
+ "model.layers.58.self_attn.k_proj.bias": "model-00026-of-00029.safetensors",
662
+ "model.layers.58.self_attn.k_proj.weight": "model-00026-of-00029.safetensors",
663
+ "model.layers.58.self_attn.o_proj.weight": "model-00026-of-00029.safetensors",
664
+ "model.layers.58.self_attn.q_proj.bias": "model-00026-of-00029.safetensors",
665
+ "model.layers.58.self_attn.q_proj.weight": "model-00026-of-00029.safetensors",
666
+ "model.layers.58.self_attn.v_proj.bias": "model-00026-of-00029.safetensors",
667
+ "model.layers.58.self_attn.v_proj.weight": "model-00026-of-00029.safetensors",
668
+ "model.layers.59.input_layernorm.weight": "model-00027-of-00029.safetensors",
669
+ "model.layers.59.mlp.down_proj.weight": "model-00027-of-00029.safetensors",
670
+ "model.layers.59.mlp.gate_proj.weight": "model-00027-of-00029.safetensors",
671
+ "model.layers.59.mlp.up_proj.weight": "model-00027-of-00029.safetensors",
672
+ "model.layers.59.post_attention_layernorm.weight": "model-00027-of-00029.safetensors",
673
+ "model.layers.59.self_attn.k_proj.bias": "model-00026-of-00029.safetensors",
674
+ "model.layers.59.self_attn.k_proj.weight": "model-00026-of-00029.safetensors",
675
+ "model.layers.59.self_attn.o_proj.weight": "model-00026-of-00029.safetensors",
676
+ "model.layers.59.self_attn.q_proj.bias": "model-00026-of-00029.safetensors",
677
+ "model.layers.59.self_attn.q_proj.weight": "model-00026-of-00029.safetensors",
678
+ "model.layers.59.self_attn.v_proj.bias": "model-00026-of-00029.safetensors",
679
+ "model.layers.59.self_attn.v_proj.weight": "model-00026-of-00029.safetensors",
680
+ "model.layers.6.input_layernorm.weight": "model-00004-of-00029.safetensors",
681
+ "model.layers.6.mlp.down_proj.weight": "model-00004-of-00029.safetensors",
682
+ "model.layers.6.mlp.gate_proj.weight": "model-00004-of-00029.safetensors",
683
+ "model.layers.6.mlp.up_proj.weight": "model-00004-of-00029.safetensors",
684
+ "model.layers.6.post_attention_layernorm.weight": "model-00004-of-00029.safetensors",
685
+ "model.layers.6.self_attn.k_proj.bias": "model-00004-of-00029.safetensors",
686
+ "model.layers.6.self_attn.k_proj.weight": "model-00004-of-00029.safetensors",
687
+ "model.layers.6.self_attn.o_proj.weight": "model-00004-of-00029.safetensors",
688
+ "model.layers.6.self_attn.q_proj.bias": "model-00004-of-00029.safetensors",
689
+ "model.layers.6.self_attn.q_proj.weight": "model-00004-of-00029.safetensors",
690
+ "model.layers.6.self_attn.v_proj.bias": "model-00004-of-00029.safetensors",
691
+ "model.layers.6.self_attn.v_proj.weight": "model-00004-of-00029.safetensors",
692
+ "model.layers.60.input_layernorm.weight": "model-00027-of-00029.safetensors",
693
+ "model.layers.60.mlp.down_proj.weight": "model-00027-of-00029.safetensors",
694
+ "model.layers.60.mlp.gate_proj.weight": "model-00027-of-00029.safetensors",
695
+ "model.layers.60.mlp.up_proj.weight": "model-00027-of-00029.safetensors",
696
+ "model.layers.60.post_attention_layernorm.weight": "model-00027-of-00029.safetensors",
697
+ "model.layers.60.self_attn.k_proj.bias": "model-00027-of-00029.safetensors",
698
+ "model.layers.60.self_attn.k_proj.weight": "model-00027-of-00029.safetensors",
699
+ "model.layers.60.self_attn.o_proj.weight": "model-00027-of-00029.safetensors",
700
+ "model.layers.60.self_attn.q_proj.bias": "model-00027-of-00029.safetensors",
701
+ "model.layers.60.self_attn.q_proj.weight": "model-00027-of-00029.safetensors",
702
+ "model.layers.60.self_attn.v_proj.bias": "model-00027-of-00029.safetensors",
703
+ "model.layers.60.self_attn.v_proj.weight": "model-00027-of-00029.safetensors",
704
+ "model.layers.61.input_layernorm.weight": "model-00028-of-00029.safetensors",
705
+ "model.layers.61.mlp.down_proj.weight": "model-00028-of-00029.safetensors",
706
+ "model.layers.61.mlp.gate_proj.weight": "model-00027-of-00029.safetensors",
707
+ "model.layers.61.mlp.up_proj.weight": "model-00028-of-00029.safetensors",
708
+ "model.layers.61.post_attention_layernorm.weight": "model-00028-of-00029.safetensors",
709
+ "model.layers.61.self_attn.k_proj.bias": "model-00027-of-00029.safetensors",
710
+ "model.layers.61.self_attn.k_proj.weight": "model-00027-of-00029.safetensors",
711
+ "model.layers.61.self_attn.o_proj.weight": "model-00027-of-00029.safetensors",
712
+ "model.layers.61.self_attn.q_proj.bias": "model-00027-of-00029.safetensors",
713
+ "model.layers.61.self_attn.q_proj.weight": "model-00027-of-00029.safetensors",
714
+ "model.layers.61.self_attn.v_proj.bias": "model-00027-of-00029.safetensors",
715
+ "model.layers.61.self_attn.v_proj.weight": "model-00027-of-00029.safetensors",
716
+ "model.layers.62.input_layernorm.weight": "model-00028-of-00029.safetensors",
717
+ "model.layers.62.mlp.down_proj.weight": "model-00028-of-00029.safetensors",
718
+ "model.layers.62.mlp.gate_proj.weight": "model-00028-of-00029.safetensors",
719
+ "model.layers.62.mlp.up_proj.weight": "model-00028-of-00029.safetensors",
720
+ "model.layers.62.post_attention_layernorm.weight": "model-00028-of-00029.safetensors",
721
+ "model.layers.62.self_attn.k_proj.bias": "model-00028-of-00029.safetensors",
722
+ "model.layers.62.self_attn.k_proj.weight": "model-00028-of-00029.safetensors",
723
+ "model.layers.62.self_attn.o_proj.weight": "model-00028-of-00029.safetensors",
724
+ "model.layers.62.self_attn.q_proj.bias": "model-00028-of-00029.safetensors",
725
+ "model.layers.62.self_attn.q_proj.weight": "model-00028-of-00029.safetensors",
726
+ "model.layers.62.self_attn.v_proj.bias": "model-00028-of-00029.safetensors",
727
+ "model.layers.62.self_attn.v_proj.weight": "model-00028-of-00029.safetensors",
728
+ "model.layers.63.input_layernorm.weight": "model-00029-of-00029.safetensors",
729
+ "model.layers.63.mlp.down_proj.weight": "model-00029-of-00029.safetensors",
730
+ "model.layers.63.mlp.gate_proj.weight": "model-00028-of-00029.safetensors",
731
+ "model.layers.63.mlp.up_proj.weight": "model-00028-of-00029.safetensors",
732
+ "model.layers.63.post_attention_layernorm.weight": "model-00029-of-00029.safetensors",
733
+ "model.layers.63.self_attn.k_proj.bias": "model-00028-of-00029.safetensors",
734
+ "model.layers.63.self_attn.k_proj.weight": "model-00028-of-00029.safetensors",
735
+ "model.layers.63.self_attn.o_proj.weight": "model-00028-of-00029.safetensors",
736
+ "model.layers.63.self_attn.q_proj.bias": "model-00028-of-00029.safetensors",
737
+ "model.layers.63.self_attn.q_proj.weight": "model-00028-of-00029.safetensors",
738
+ "model.layers.63.self_attn.v_proj.bias": "model-00028-of-00029.safetensors",
739
+ "model.layers.63.self_attn.v_proj.weight": "model-00028-of-00029.safetensors",
740
+ "model.layers.7.input_layernorm.weight": "model-00005-of-00029.safetensors",
741
+ "model.layers.7.mlp.down_proj.weight": "model-00005-of-00029.safetensors",
742
+ "model.layers.7.mlp.gate_proj.weight": "model-00004-of-00029.safetensors",
743
+ "model.layers.7.mlp.up_proj.weight": "model-00004-of-00029.safetensors",
744
+ "model.layers.7.post_attention_layernorm.weight": "model-00005-of-00029.safetensors",
745
+ "model.layers.7.self_attn.k_proj.bias": "model-00004-of-00029.safetensors",
746
+ "model.layers.7.self_attn.k_proj.weight": "model-00004-of-00029.safetensors",
747
+ "model.layers.7.self_attn.o_proj.weight": "model-00004-of-00029.safetensors",
748
+ "model.layers.7.self_attn.q_proj.bias": "model-00004-of-00029.safetensors",
749
+ "model.layers.7.self_attn.q_proj.weight": "model-00004-of-00029.safetensors",
750
+ "model.layers.7.self_attn.v_proj.bias": "model-00004-of-00029.safetensors",
751
+ "model.layers.7.self_attn.v_proj.weight": "model-00004-of-00029.safetensors",
752
+ "model.layers.8.input_layernorm.weight": "model-00005-of-00029.safetensors",
753
+ "model.layers.8.mlp.down_proj.weight": "model-00005-of-00029.safetensors",
754
+ "model.layers.8.mlp.gate_proj.weight": "model-00005-of-00029.safetensors",
755
+ "model.layers.8.mlp.up_proj.weight": "model-00005-of-00029.safetensors",
756
+ "model.layers.8.post_attention_layernorm.weight": "model-00005-of-00029.safetensors",
757
+ "model.layers.8.self_attn.k_proj.bias": "model-00005-of-00029.safetensors",
758
+ "model.layers.8.self_attn.k_proj.weight": "model-00005-of-00029.safetensors",
759
+ "model.layers.8.self_attn.o_proj.weight": "model-00005-of-00029.safetensors",
760
+ "model.layers.8.self_attn.q_proj.bias": "model-00005-of-00029.safetensors",
761
+ "model.layers.8.self_attn.q_proj.weight": "model-00005-of-00029.safetensors",
762
+ "model.layers.8.self_attn.v_proj.bias": "model-00005-of-00029.safetensors",
763
+ "model.layers.8.self_attn.v_proj.weight": "model-00005-of-00029.safetensors",
764
+ "model.layers.9.input_layernorm.weight": "model-00005-of-00029.safetensors",
765
+ "model.layers.9.mlp.down_proj.weight": "model-00005-of-00029.safetensors",
766
+ "model.layers.9.mlp.gate_proj.weight": "model-00005-of-00029.safetensors",
767
+ "model.layers.9.mlp.up_proj.weight": "model-00005-of-00029.safetensors",
768
+ "model.layers.9.post_attention_layernorm.weight": "model-00005-of-00029.safetensors",
769
+ "model.layers.9.self_attn.k_proj.bias": "model-00005-of-00029.safetensors",
770
+ "model.layers.9.self_attn.k_proj.weight": "model-00005-of-00029.safetensors",
771
+ "model.layers.9.self_attn.o_proj.weight": "model-00005-of-00029.safetensors",
772
+ "model.layers.9.self_attn.q_proj.bias": "model-00005-of-00029.safetensors",
773
+ "model.layers.9.self_attn.q_proj.weight": "model-00005-of-00029.safetensors",
774
+ "model.layers.9.self_attn.v_proj.bias": "model-00005-of-00029.safetensors",
775
+ "model.layers.9.self_attn.v_proj.weight": "model-00005-of-00029.safetensors",
776
+ "model.norm.weight": "model-00029-of-00029.safetensors"
777
+ }
778
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
3
+ size 11421896
tokenizer_config.json ADDED
@@ -0,0 +1,208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|im_end|>",
201
+ "errors": "replace",
202
+ "extra_special_tokens": {},
203
+ "model_max_length": 131072,
204
+ "pad_token": "<|endoftext|>",
205
+ "split_special_tokens": false,
206
+ "tokenizer_class": "Qwen2Tokenizer",
207
+ "unk_token": null
208
+ }
trainer_state.json ADDED
@@ -0,0 +1,2553 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 5.0,
5
+ "eval_steps": 500,
6
+ "global_step": 315,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.015873015873015872,
13
+ "grad_norm": 7.645266056060791,
14
+ "learning_rate": 6.25e-07,
15
+ "loss": 1.366,
16
+ "mean_token_accuracy": 0.6359601020812988,
17
+ "step": 1
18
+ },
19
+ {
20
+ "epoch": 0.031746031746031744,
21
+ "grad_norm": 8.354494094848633,
22
+ "learning_rate": 1.25e-06,
23
+ "loss": 1.4918,
24
+ "mean_token_accuracy": 0.648927628993988,
25
+ "step": 2
26
+ },
27
+ {
28
+ "epoch": 0.047619047619047616,
29
+ "grad_norm": 7.670858383178711,
30
+ "learning_rate": 1.8750000000000003e-06,
31
+ "loss": 1.4791,
32
+ "mean_token_accuracy": 0.610198974609375,
33
+ "step": 3
34
+ },
35
+ {
36
+ "epoch": 0.06349206349206349,
37
+ "grad_norm": 8.558603286743164,
38
+ "learning_rate": 2.5e-06,
39
+ "loss": 1.507,
40
+ "mean_token_accuracy": 0.6174368262290955,
41
+ "step": 4
42
+ },
43
+ {
44
+ "epoch": 0.07936507936507936,
45
+ "grad_norm": 7.195960521697998,
46
+ "learning_rate": 3.125e-06,
47
+ "loss": 1.4965,
48
+ "mean_token_accuracy": 0.6209526658058167,
49
+ "step": 5
50
+ },
51
+ {
52
+ "epoch": 0.09523809523809523,
53
+ "grad_norm": 6.573232173919678,
54
+ "learning_rate": 3.7500000000000005e-06,
55
+ "loss": 1.3766,
56
+ "mean_token_accuracy": 0.62288898229599,
57
+ "step": 6
58
+ },
59
+ {
60
+ "epoch": 0.1111111111111111,
61
+ "grad_norm": 4.44756555557251,
62
+ "learning_rate": 4.3750000000000005e-06,
63
+ "loss": 1.2835,
64
+ "mean_token_accuracy": 0.6413974761962891,
65
+ "step": 7
66
+ },
67
+ {
68
+ "epoch": 0.12698412698412698,
69
+ "grad_norm": 4.386582851409912,
70
+ "learning_rate": 5e-06,
71
+ "loss": 1.274,
72
+ "mean_token_accuracy": 0.6449005007743835,
73
+ "step": 8
74
+ },
75
+ {
76
+ "epoch": 0.14285714285714285,
77
+ "grad_norm": 2.9588849544525146,
78
+ "learning_rate": 5.625e-06,
79
+ "loss": 1.2105,
80
+ "mean_token_accuracy": 0.6454917192459106,
81
+ "step": 9
82
+ },
83
+ {
84
+ "epoch": 0.15873015873015872,
85
+ "grad_norm": 2.780573844909668,
86
+ "learning_rate": 6.25e-06,
87
+ "loss": 1.2936,
88
+ "mean_token_accuracy": 0.626201868057251,
89
+ "step": 10
90
+ },
91
+ {
92
+ "epoch": 0.1746031746031746,
93
+ "grad_norm": 2.3944156169891357,
94
+ "learning_rate": 6.875e-06,
95
+ "loss": 1.1906,
96
+ "mean_token_accuracy": 0.6416702270507812,
97
+ "step": 11
98
+ },
99
+ {
100
+ "epoch": 0.19047619047619047,
101
+ "grad_norm": 2.4857006072998047,
102
+ "learning_rate": 7.500000000000001e-06,
103
+ "loss": 1.1477,
104
+ "mean_token_accuracy": 0.6536551713943481,
105
+ "step": 12
106
+ },
107
+ {
108
+ "epoch": 0.20634920634920634,
109
+ "grad_norm": 3.2947516441345215,
110
+ "learning_rate": 8.125000000000001e-06,
111
+ "loss": 1.0916,
112
+ "mean_token_accuracy": 0.674787700176239,
113
+ "step": 13
114
+ },
115
+ {
116
+ "epoch": 0.2222222222222222,
117
+ "grad_norm": 3.138019561767578,
118
+ "learning_rate": 8.750000000000001e-06,
119
+ "loss": 1.181,
120
+ "mean_token_accuracy": 0.6426388025283813,
121
+ "step": 14
122
+ },
123
+ {
124
+ "epoch": 0.23809523809523808,
125
+ "grad_norm": 3.0852348804473877,
126
+ "learning_rate": 9.375000000000001e-06,
127
+ "loss": 1.1424,
128
+ "mean_token_accuracy": 0.6612462997436523,
129
+ "step": 15
130
+ },
131
+ {
132
+ "epoch": 0.25396825396825395,
133
+ "grad_norm": 2.2055983543395996,
134
+ "learning_rate": 1e-05,
135
+ "loss": 1.0388,
136
+ "mean_token_accuracy": 0.6682813167572021,
137
+ "step": 16
138
+ },
139
+ {
140
+ "epoch": 0.2698412698412698,
141
+ "grad_norm": 2.2655630111694336,
142
+ "learning_rate": 9.999724009977419e-06,
143
+ "loss": 1.116,
144
+ "mean_token_accuracy": 0.668512761592865,
145
+ "step": 17
146
+ },
147
+ {
148
+ "epoch": 0.2857142857142857,
149
+ "grad_norm": 3.348353862762451,
150
+ "learning_rate": 9.998896070377873e-06,
151
+ "loss": 1.0509,
152
+ "mean_token_accuracy": 0.6763769388198853,
153
+ "step": 18
154
+ },
155
+ {
156
+ "epoch": 0.30158730158730157,
157
+ "grad_norm": 2.178619861602783,
158
+ "learning_rate": 9.99751627260259e-06,
159
+ "loss": 1.0227,
160
+ "mean_token_accuracy": 0.6901260018348694,
161
+ "step": 19
162
+ },
163
+ {
164
+ "epoch": 0.31746031746031744,
165
+ "grad_norm": 2.036501884460449,
166
+ "learning_rate": 9.995584768975735e-06,
167
+ "loss": 1.0818,
168
+ "mean_token_accuracy": 0.6697351932525635,
169
+ "step": 20
170
+ },
171
+ {
172
+ "epoch": 0.3333333333333333,
173
+ "grad_norm": 1.8429316282272339,
174
+ "learning_rate": 9.993101772727602e-06,
175
+ "loss": 1.081,
176
+ "mean_token_accuracy": 0.6770170331001282,
177
+ "step": 21
178
+ },
179
+ {
180
+ "epoch": 0.3492063492063492,
181
+ "grad_norm": 1.9818006753921509,
182
+ "learning_rate": 9.990067557971068e-06,
183
+ "loss": 1.0054,
184
+ "mean_token_accuracy": 0.6853318810462952,
185
+ "step": 22
186
+ },
187
+ {
188
+ "epoch": 0.36507936507936506,
189
+ "grad_norm": 1.9771008491516113,
190
+ "learning_rate": 9.986482459671332e-06,
191
+ "loss": 0.9637,
192
+ "mean_token_accuracy": 0.6931653618812561,
193
+ "step": 23
194
+ },
195
+ {
196
+ "epoch": 0.38095238095238093,
197
+ "grad_norm": 1.9616119861602783,
198
+ "learning_rate": 9.982346873608936e-06,
199
+ "loss": 1.0484,
200
+ "mean_token_accuracy": 0.6677199006080627,
201
+ "step": 24
202
+ },
203
+ {
204
+ "epoch": 0.3968253968253968,
205
+ "grad_norm": 1.6112979650497437,
206
+ "learning_rate": 9.977661256336081e-06,
207
+ "loss": 0.9638,
208
+ "mean_token_accuracy": 0.6957253813743591,
209
+ "step": 25
210
+ },
211
+ {
212
+ "epoch": 0.4126984126984127,
213
+ "grad_norm": 1.9327082633972168,
214
+ "learning_rate": 9.972426125126208e-06,
215
+ "loss": 0.9339,
216
+ "mean_token_accuracy": 0.702426016330719,
217
+ "step": 26
218
+ },
219
+ {
220
+ "epoch": 0.42857142857142855,
221
+ "grad_norm": 1.7104556560516357,
222
+ "learning_rate": 9.966642057916915e-06,
223
+ "loss": 1.0022,
224
+ "mean_token_accuracy": 0.6801244616508484,
225
+ "step": 27
226
+ },
227
+ {
228
+ "epoch": 0.4444444444444444,
229
+ "grad_norm": 1.5087337493896484,
230
+ "learning_rate": 9.960309693246135e-06,
231
+ "loss": 0.9673,
232
+ "mean_token_accuracy": 0.7036176323890686,
233
+ "step": 28
234
+ },
235
+ {
236
+ "epoch": 0.4603174603174603,
237
+ "grad_norm": 1.4818483591079712,
238
+ "learning_rate": 9.953429730181653e-06,
239
+ "loss": 1.0496,
240
+ "mean_token_accuracy": 0.6714926958084106,
241
+ "step": 29
242
+ },
243
+ {
244
+ "epoch": 0.47619047619047616,
245
+ "grad_norm": 1.4883416891098022,
246
+ "learning_rate": 9.94600292824394e-06,
247
+ "loss": 1.0853,
248
+ "mean_token_accuracy": 0.6756605505943298,
249
+ "step": 30
250
+ },
251
+ {
252
+ "epoch": 0.49206349206349204,
253
+ "grad_norm": 1.6064577102661133,
254
+ "learning_rate": 9.938030107322284e-06,
255
+ "loss": 1.0108,
256
+ "mean_token_accuracy": 0.6843318939208984,
257
+ "step": 31
258
+ },
259
+ {
260
+ "epoch": 0.5079365079365079,
261
+ "grad_norm": 1.2882405519485474,
262
+ "learning_rate": 9.929512147584297e-06,
263
+ "loss": 1.0017,
264
+ "mean_token_accuracy": 0.6932390928268433,
265
+ "step": 32
266
+ },
267
+ {
268
+ "epoch": 0.5238095238095238,
269
+ "grad_norm": 1.462615966796875,
270
+ "learning_rate": 9.920449989378741e-06,
271
+ "loss": 1.0853,
272
+ "mean_token_accuracy": 0.6662924289703369,
273
+ "step": 33
274
+ },
275
+ {
276
+ "epoch": 0.5396825396825397,
277
+ "grad_norm": 1.3395570516586304,
278
+ "learning_rate": 9.910844633131712e-06,
279
+ "loss": 0.991,
280
+ "mean_token_accuracy": 0.6973869800567627,
281
+ "step": 34
282
+ },
283
+ {
284
+ "epoch": 0.5555555555555556,
285
+ "grad_norm": 1.4672247171401978,
286
+ "learning_rate": 9.90069713923621e-06,
287
+ "loss": 0.9711,
288
+ "mean_token_accuracy": 0.6921698451042175,
289
+ "step": 35
290
+ },
291
+ {
292
+ "epoch": 0.5714285714285714,
293
+ "grad_norm": 1.459593415260315,
294
+ "learning_rate": 9.890008627935057e-06,
295
+ "loss": 0.9867,
296
+ "mean_token_accuracy": 0.6826137900352478,
297
+ "step": 36
298
+ },
299
+ {
300
+ "epoch": 0.5873015873015873,
301
+ "grad_norm": 1.4538332223892212,
302
+ "learning_rate": 9.878780279197246e-06,
303
+ "loss": 0.9639,
304
+ "mean_token_accuracy": 0.6869688630104065,
305
+ "step": 37
306
+ },
307
+ {
308
+ "epoch": 0.6031746031746031,
309
+ "grad_norm": 1.4662752151489258,
310
+ "learning_rate": 9.867013332587667e-06,
311
+ "loss": 0.9144,
312
+ "mean_token_accuracy": 0.7195159196853638,
313
+ "step": 38
314
+ },
315
+ {
316
+ "epoch": 0.6190476190476191,
317
+ "grad_norm": 1.5825181007385254,
318
+ "learning_rate": 9.854709087130261e-06,
319
+ "loss": 0.9851,
320
+ "mean_token_accuracy": 0.697943389415741,
321
+ "step": 39
322
+ },
323
+ {
324
+ "epoch": 0.6349206349206349,
325
+ "grad_norm": 1.6793732643127441,
326
+ "learning_rate": 9.841868901164621e-06,
327
+ "loss": 1.0489,
328
+ "mean_token_accuracy": 0.6596137285232544,
329
+ "step": 40
330
+ },
331
+ {
332
+ "epoch": 0.6507936507936508,
333
+ "grad_norm": 1.4431298971176147,
334
+ "learning_rate": 9.828494192196037e-06,
335
+ "loss": 0.9437,
336
+ "mean_token_accuracy": 0.6924724578857422,
337
+ "step": 41
338
+ },
339
+ {
340
+ "epoch": 0.6666666666666666,
341
+ "grad_norm": 1.5359476804733276,
342
+ "learning_rate": 9.814586436738998e-06,
343
+ "loss": 0.9627,
344
+ "mean_token_accuracy": 0.6844196319580078,
345
+ "step": 42
346
+ },
347
+ {
348
+ "epoch": 0.6825396825396826,
349
+ "grad_norm": 1.5142978429794312,
350
+ "learning_rate": 9.8001471701542e-06,
351
+ "loss": 0.9122,
352
+ "mean_token_accuracy": 0.7117491364479065,
353
+ "step": 43
354
+ },
355
+ {
356
+ "epoch": 0.6984126984126984,
357
+ "grad_norm": 1.6079134941101074,
358
+ "learning_rate": 9.785177986479049e-06,
359
+ "loss": 0.9616,
360
+ "mean_token_accuracy": 0.6850039958953857,
361
+ "step": 44
362
+ },
363
+ {
364
+ "epoch": 0.7142857142857143,
365
+ "grad_norm": 1.4364824295043945,
366
+ "learning_rate": 9.76968053825168e-06,
367
+ "loss": 0.9412,
368
+ "mean_token_accuracy": 0.6876325607299805,
369
+ "step": 45
370
+ },
371
+ {
372
+ "epoch": 0.7301587301587301,
373
+ "grad_norm": 1.6108063459396362,
374
+ "learning_rate": 9.753656536328529e-06,
375
+ "loss": 0.8542,
376
+ "mean_token_accuracy": 0.7127025723457336,
377
+ "step": 46
378
+ },
379
+ {
380
+ "epoch": 0.746031746031746,
381
+ "grad_norm": 1.4979714155197144,
382
+ "learning_rate": 9.737107749695456e-06,
383
+ "loss": 1.0857,
384
+ "mean_token_accuracy": 0.6746847033500671,
385
+ "step": 47
386
+ },
387
+ {
388
+ "epoch": 0.7619047619047619,
389
+ "grad_norm": 1.492646336555481,
390
+ "learning_rate": 9.72003600527246e-06,
391
+ "loss": 0.9565,
392
+ "mean_token_accuracy": 0.678888738155365,
393
+ "step": 48
394
+ },
395
+ {
396
+ "epoch": 0.7777777777777778,
397
+ "grad_norm": 1.5077250003814697,
398
+ "learning_rate": 9.702443187711991e-06,
399
+ "loss": 0.856,
400
+ "mean_token_accuracy": 0.7180086374282837,
401
+ "step": 49
402
+ },
403
+ {
404
+ "epoch": 0.7936507936507936,
405
+ "grad_norm": 1.5432298183441162,
406
+ "learning_rate": 9.6843312391909e-06,
407
+ "loss": 0.9436,
408
+ "mean_token_accuracy": 0.7022880911827087,
409
+ "step": 50
410
+ },
411
+ {
412
+ "epoch": 0.8095238095238095,
413
+ "grad_norm": 1.5827702283859253,
414
+ "learning_rate": 9.665702159196014e-06,
415
+ "loss": 0.9587,
416
+ "mean_token_accuracy": 0.6920652389526367,
417
+ "step": 51
418
+ },
419
+ {
420
+ "epoch": 0.8253968253968254,
421
+ "grad_norm": 1.5026133060455322,
422
+ "learning_rate": 9.646558004303419e-06,
423
+ "loss": 1.0145,
424
+ "mean_token_accuracy": 0.6848466396331787,
425
+ "step": 52
426
+ },
427
+ {
428
+ "epoch": 0.8412698412698413,
429
+ "grad_norm": 1.6121655702590942,
430
+ "learning_rate": 9.62690088795141e-06,
431
+ "loss": 0.9505,
432
+ "mean_token_accuracy": 0.6841768026351929,
433
+ "step": 53
434
+ },
435
+ {
436
+ "epoch": 0.8571428571428571,
437
+ "grad_norm": 1.4861469268798828,
438
+ "learning_rate": 9.606732980207186e-06,
439
+ "loss": 0.9782,
440
+ "mean_token_accuracy": 0.6907793879508972,
441
+ "step": 54
442
+ },
443
+ {
444
+ "epoch": 0.873015873015873,
445
+ "grad_norm": 1.3851877450942993,
446
+ "learning_rate": 9.586056507527266e-06,
447
+ "loss": 1.012,
448
+ "mean_token_accuracy": 0.6789924502372742,
449
+ "step": 55
450
+ },
451
+ {
452
+ "epoch": 0.8888888888888888,
453
+ "grad_norm": 1.5138801336288452,
454
+ "learning_rate": 9.564873752511719e-06,
455
+ "loss": 0.9156,
456
+ "mean_token_accuracy": 0.7050096988677979,
457
+ "step": 56
458
+ },
459
+ {
460
+ "epoch": 0.9047619047619048,
461
+ "grad_norm": 1.4586461782455444,
462
+ "learning_rate": 9.543187053652156e-06,
463
+ "loss": 0.8683,
464
+ "mean_token_accuracy": 0.7179403305053711,
465
+ "step": 57
466
+ },
467
+ {
468
+ "epoch": 0.9206349206349206,
469
+ "grad_norm": 1.3151836395263672,
470
+ "learning_rate": 9.520998805073583e-06,
471
+ "loss": 0.9126,
472
+ "mean_token_accuracy": 0.7062746286392212,
473
+ "step": 58
474
+ },
475
+ {
476
+ "epoch": 0.9365079365079365,
477
+ "grad_norm": 1.466514229774475,
478
+ "learning_rate": 9.498311456270091e-06,
479
+ "loss": 0.9754,
480
+ "mean_token_accuracy": 0.6828599572181702,
481
+ "step": 59
482
+ },
483
+ {
484
+ "epoch": 0.9523809523809523,
485
+ "grad_norm": 1.4227975606918335,
486
+ "learning_rate": 9.475127511834438e-06,
487
+ "loss": 0.9465,
488
+ "mean_token_accuracy": 0.7063090801239014,
489
+ "step": 60
490
+ },
491
+ {
492
+ "epoch": 0.9682539682539683,
493
+ "grad_norm": 1.4949185848236084,
494
+ "learning_rate": 9.451449531181571e-06,
495
+ "loss": 0.9415,
496
+ "mean_token_accuracy": 0.6885518431663513,
497
+ "step": 61
498
+ },
499
+ {
500
+ "epoch": 0.9841269841269841,
501
+ "grad_norm": 1.498402714729309,
502
+ "learning_rate": 9.427280128266049e-06,
503
+ "loss": 0.8661,
504
+ "mean_token_accuracy": 0.715215802192688,
505
+ "step": 62
506
+ },
507
+ {
508
+ "epoch": 1.0,
509
+ "grad_norm": 1.3733229637145996,
510
+ "learning_rate": 9.4026219712935e-06,
511
+ "loss": 0.9046,
512
+ "mean_token_accuracy": 0.6959970593452454,
513
+ "step": 63
514
+ },
515
+ {
516
+ "epoch": 1.0158730158730158,
517
+ "grad_norm": 1.6193804740905762,
518
+ "learning_rate": 9.377477782426041e-06,
519
+ "loss": 0.789,
520
+ "mean_token_accuracy": 0.7177256345748901,
521
+ "step": 64
522
+ },
523
+ {
524
+ "epoch": 1.0317460317460316,
525
+ "grad_norm": 1.4630059003829956,
526
+ "learning_rate": 9.351850337481774e-06,
527
+ "loss": 0.7264,
528
+ "mean_token_accuracy": 0.7328070402145386,
529
+ "step": 65
530
+ },
531
+ {
532
+ "epoch": 1.0476190476190477,
533
+ "grad_norm": 1.2606074810028076,
534
+ "learning_rate": 9.325742465628342e-06,
535
+ "loss": 0.7628,
536
+ "mean_token_accuracy": 0.7213523387908936,
537
+ "step": 66
538
+ },
539
+ {
540
+ "epoch": 1.0634920634920635,
541
+ "grad_norm": 1.392194151878357,
542
+ "learning_rate": 9.299157049070604e-06,
543
+ "loss": 0.7474,
544
+ "mean_token_accuracy": 0.7312816977500916,
545
+ "step": 67
546
+ },
547
+ {
548
+ "epoch": 1.0793650793650793,
549
+ "grad_norm": 1.448189616203308,
550
+ "learning_rate": 9.272097022732444e-06,
551
+ "loss": 0.6216,
552
+ "mean_token_accuracy": 0.7725050449371338,
553
+ "step": 68
554
+ },
555
+ {
556
+ "epoch": 1.0952380952380953,
557
+ "grad_norm": 1.363480567932129,
558
+ "learning_rate": 9.244565373932775e-06,
559
+ "loss": 0.6251,
560
+ "mean_token_accuracy": 0.7715384364128113,
561
+ "step": 69
562
+ },
563
+ {
564
+ "epoch": 1.1111111111111112,
565
+ "grad_norm": 1.3022717237472534,
566
+ "learning_rate": 9.216565142055745e-06,
567
+ "loss": 0.8162,
568
+ "mean_token_accuracy": 0.739141583442688,
569
+ "step": 70
570
+ },
571
+ {
572
+ "epoch": 1.126984126984127,
573
+ "grad_norm": 1.2808637619018555,
574
+ "learning_rate": 9.188099418215208e-06,
575
+ "loss": 0.7196,
576
+ "mean_token_accuracy": 0.7466751337051392,
577
+ "step": 71
578
+ },
579
+ {
580
+ "epoch": 1.1428571428571428,
581
+ "grad_norm": 1.3880754709243774,
582
+ "learning_rate": 9.159171344913469e-06,
583
+ "loss": 0.7558,
584
+ "mean_token_accuracy": 0.7294354438781738,
585
+ "step": 72
586
+ },
587
+ {
588
+ "epoch": 1.1587301587301586,
589
+ "grad_norm": 1.4471501111984253,
590
+ "learning_rate": 9.129784115694368e-06,
591
+ "loss": 0.634,
592
+ "mean_token_accuracy": 0.7721849679946899,
593
+ "step": 73
594
+ },
595
+ {
596
+ "epoch": 1.1746031746031746,
597
+ "grad_norm": 1.5563479661941528,
598
+ "learning_rate": 9.09994097479073e-06,
599
+ "loss": 0.7126,
600
+ "mean_token_accuracy": 0.7434053421020508,
601
+ "step": 74
602
+ },
603
+ {
604
+ "epoch": 1.1904761904761905,
605
+ "grad_norm": 1.3956546783447266,
606
+ "learning_rate": 9.069645216766207e-06,
607
+ "loss": 0.7222,
608
+ "mean_token_accuracy": 0.7285550236701965,
609
+ "step": 75
610
+ },
611
+ {
612
+ "epoch": 1.2063492063492063,
613
+ "grad_norm": 1.2886793613433838,
614
+ "learning_rate": 9.038900186151574e-06,
615
+ "loss": 0.6632,
616
+ "mean_token_accuracy": 0.7603873014450073,
617
+ "step": 76
618
+ },
619
+ {
620
+ "epoch": 1.2222222222222223,
621
+ "grad_norm": 1.3814256191253662,
622
+ "learning_rate": 9.007709277075512e-06,
623
+ "loss": 0.7433,
624
+ "mean_token_accuracy": 0.738385021686554,
625
+ "step": 77
626
+ },
627
+ {
628
+ "epoch": 1.2380952380952381,
629
+ "grad_norm": 1.2273836135864258,
630
+ "learning_rate": 8.976075932889896e-06,
631
+ "loss": 0.7643,
632
+ "mean_token_accuracy": 0.7412843704223633,
633
+ "step": 78
634
+ },
635
+ {
636
+ "epoch": 1.253968253968254,
637
+ "grad_norm": 1.3541786670684814,
638
+ "learning_rate": 8.944003645789678e-06,
639
+ "loss": 0.702,
640
+ "mean_token_accuracy": 0.7366657257080078,
641
+ "step": 79
642
+ },
643
+ {
644
+ "epoch": 1.2698412698412698,
645
+ "grad_norm": 1.5467926263809204,
646
+ "learning_rate": 8.911495956427358e-06,
647
+ "loss": 0.6916,
648
+ "mean_token_accuracy": 0.740810215473175,
649
+ "step": 80
650
+ },
651
+ {
652
+ "epoch": 1.2857142857142856,
653
+ "grad_norm": 1.2560186386108398,
654
+ "learning_rate": 8.8785564535221e-06,
655
+ "loss": 0.6826,
656
+ "mean_token_accuracy": 0.7509929537773132,
657
+ "step": 81
658
+ },
659
+ {
660
+ "epoch": 1.3015873015873016,
661
+ "grad_norm": 1.2027472257614136,
662
+ "learning_rate": 8.845188773463567e-06,
663
+ "loss": 0.7904,
664
+ "mean_token_accuracy": 0.7260932326316833,
665
+ "step": 82
666
+ },
667
+ {
668
+ "epoch": 1.3174603174603174,
669
+ "grad_norm": 1.4221609830856323,
670
+ "learning_rate": 8.811396599910467e-06,
671
+ "loss": 0.7492,
672
+ "mean_token_accuracy": 0.7119400501251221,
673
+ "step": 83
674
+ },
675
+ {
676
+ "epoch": 1.3333333333333333,
677
+ "grad_norm": 1.3599181175231934,
678
+ "learning_rate": 8.777183663383897e-06,
679
+ "loss": 0.7523,
680
+ "mean_token_accuracy": 0.7216988801956177,
681
+ "step": 84
682
+ },
683
+ {
684
+ "epoch": 1.3492063492063493,
685
+ "grad_norm": 1.3047292232513428,
686
+ "learning_rate": 8.742553740855507e-06,
687
+ "loss": 0.7349,
688
+ "mean_token_accuracy": 0.7551175951957703,
689
+ "step": 85
690
+ },
691
+ {
692
+ "epoch": 1.3650793650793651,
693
+ "grad_norm": 1.4084362983703613,
694
+ "learning_rate": 8.707510655330536e-06,
695
+ "loss": 0.6225,
696
+ "mean_token_accuracy": 0.7565320134162903,
697
+ "step": 86
698
+ },
699
+ {
700
+ "epoch": 1.380952380952381,
701
+ "grad_norm": 1.5446528196334839,
702
+ "learning_rate": 8.672058275425773e-06,
703
+ "loss": 0.7056,
704
+ "mean_token_accuracy": 0.7259581089019775,
705
+ "step": 87
706
+ },
707
+ {
708
+ "epoch": 1.3968253968253967,
709
+ "grad_norm": 1.1988624334335327,
710
+ "learning_rate": 8.636200514942466e-06,
711
+ "loss": 0.6895,
712
+ "mean_token_accuracy": 0.7405627965927124,
713
+ "step": 88
714
+ },
715
+ {
716
+ "epoch": 1.4126984126984126,
717
+ "grad_norm": 1.3339022397994995,
718
+ "learning_rate": 8.59994133243427e-06,
719
+ "loss": 0.6864,
720
+ "mean_token_accuracy": 0.752083420753479,
721
+ "step": 89
722
+ },
723
+ {
724
+ "epoch": 1.4285714285714286,
725
+ "grad_norm": 1.3587596416473389,
726
+ "learning_rate": 8.563284730770222e-06,
727
+ "loss": 0.6124,
728
+ "mean_token_accuracy": 0.7803294658660889,
729
+ "step": 90
730
+ },
731
+ {
732
+ "epoch": 1.4444444444444444,
733
+ "grad_norm": 1.2187806367874146,
734
+ "learning_rate": 8.52623475669285e-06,
735
+ "loss": 0.7382,
736
+ "mean_token_accuracy": 0.7305276393890381,
737
+ "step": 91
738
+ },
739
+ {
740
+ "epoch": 1.4603174603174602,
741
+ "grad_norm": 1.2334811687469482,
742
+ "learning_rate": 8.488795500371427e-06,
743
+ "loss": 0.7677,
744
+ "mean_token_accuracy": 0.7154316306114197,
745
+ "step": 92
746
+ },
747
+ {
748
+ "epoch": 1.4761904761904763,
749
+ "grad_norm": 1.3801590204238892,
750
+ "learning_rate": 8.450971094950433e-06,
751
+ "loss": 0.6484,
752
+ "mean_token_accuracy": 0.7606028318405151,
753
+ "step": 93
754
+ },
755
+ {
756
+ "epoch": 1.492063492063492,
757
+ "grad_norm": 1.3321889638900757,
758
+ "learning_rate": 8.412765716093273e-06,
759
+ "loss": 0.6363,
760
+ "mean_token_accuracy": 0.7536671161651611,
761
+ "step": 94
762
+ },
763
+ {
764
+ "epoch": 1.507936507936508,
765
+ "grad_norm": 1.2593462467193604,
766
+ "learning_rate": 8.374183581521288e-06,
767
+ "loss": 0.7035,
768
+ "mean_token_accuracy": 0.7448620200157166,
769
+ "step": 95
770
+ },
771
+ {
772
+ "epoch": 1.5238095238095237,
773
+ "grad_norm": 1.2974730730056763,
774
+ "learning_rate": 8.335228950548164e-06,
775
+ "loss": 0.7209,
776
+ "mean_token_accuracy": 0.7377753853797913,
777
+ "step": 96
778
+ },
779
+ {
780
+ "epoch": 1.5396825396825395,
781
+ "grad_norm": 1.3005163669586182,
782
+ "learning_rate": 8.29590612360969e-06,
783
+ "loss": 0.7118,
784
+ "mean_token_accuracy": 0.7413659691810608,
785
+ "step": 97
786
+ },
787
+ {
788
+ "epoch": 1.5555555555555556,
789
+ "grad_norm": 1.2531510591506958,
790
+ "learning_rate": 8.256219441789023e-06,
791
+ "loss": 0.6691,
792
+ "mean_token_accuracy": 0.7775458097457886,
793
+ "step": 98
794
+ },
795
+ {
796
+ "epoch": 1.5714285714285714,
797
+ "grad_norm": 1.2969629764556885,
798
+ "learning_rate": 8.216173286337449e-06,
799
+ "loss": 0.7427,
800
+ "mean_token_accuracy": 0.7308691740036011,
801
+ "step": 99
802
+ },
803
+ {
804
+ "epoch": 1.5873015873015874,
805
+ "grad_norm": 1.2509957551956177,
806
+ "learning_rate": 8.175772078190706e-06,
807
+ "loss": 0.614,
808
+ "mean_token_accuracy": 0.7691511511802673,
809
+ "step": 100
810
+ },
811
+ {
812
+ "epoch": 1.6031746031746033,
813
+ "grad_norm": 1.285543441772461,
814
+ "learning_rate": 8.135020277480933e-06,
815
+ "loss": 0.6741,
816
+ "mean_token_accuracy": 0.7384034395217896,
817
+ "step": 101
818
+ },
819
+ {
820
+ "epoch": 1.619047619047619,
821
+ "grad_norm": 1.4988497495651245,
822
+ "learning_rate": 8.093922383044293e-06,
823
+ "loss": 0.7753,
824
+ "mean_token_accuracy": 0.729863703250885,
825
+ "step": 102
826
+ },
827
+ {
828
+ "epoch": 1.6349206349206349,
829
+ "grad_norm": 1.2798858880996704,
830
+ "learning_rate": 8.052482931924307e-06,
831
+ "loss": 0.7676,
832
+ "mean_token_accuracy": 0.7343738675117493,
833
+ "step": 103
834
+ },
835
+ {
836
+ "epoch": 1.6507936507936507,
837
+ "grad_norm": 1.3362586498260498,
838
+ "learning_rate": 8.010706498870997e-06,
839
+ "loss": 0.6517,
840
+ "mean_token_accuracy": 0.762486457824707,
841
+ "step": 104
842
+ },
843
+ {
844
+ "epoch": 1.6666666666666665,
845
+ "grad_norm": 1.354143738746643,
846
+ "learning_rate": 7.968597695835845e-06,
847
+ "loss": 0.6297,
848
+ "mean_token_accuracy": 0.7620171308517456,
849
+ "step": 105
850
+ },
851
+ {
852
+ "epoch": 1.6825396825396826,
853
+ "grad_norm": 1.2046130895614624,
854
+ "learning_rate": 7.926161171462647e-06,
855
+ "loss": 0.6443,
856
+ "mean_token_accuracy": 0.7690253257751465,
857
+ "step": 106
858
+ },
859
+ {
860
+ "epoch": 1.6984126984126984,
861
+ "grad_norm": 1.241445541381836,
862
+ "learning_rate": 7.883401610574338e-06,
863
+ "loss": 0.6668,
864
+ "mean_token_accuracy": 0.7507138252258301,
865
+ "step": 107
866
+ },
867
+ {
868
+ "epoch": 1.7142857142857144,
869
+ "grad_norm": 1.3440011739730835,
870
+ "learning_rate": 7.84032373365578e-06,
871
+ "loss": 0.6325,
872
+ "mean_token_accuracy": 0.7514282464981079,
873
+ "step": 108
874
+ },
875
+ {
876
+ "epoch": 1.7301587301587302,
877
+ "grad_norm": 1.4172037839889526,
878
+ "learning_rate": 7.796932296332666e-06,
879
+ "loss": 0.6898,
880
+ "mean_token_accuracy": 0.7555402517318726,
881
+ "step": 109
882
+ },
883
+ {
884
+ "epoch": 1.746031746031746,
885
+ "grad_norm": 1.1736810207366943,
886
+ "learning_rate": 7.753232088846505e-06,
887
+ "loss": 0.778,
888
+ "mean_token_accuracy": 0.737077534198761,
889
+ "step": 110
890
+ },
891
+ {
892
+ "epoch": 1.7619047619047619,
893
+ "grad_norm": 1.1764577627182007,
894
+ "learning_rate": 7.709227935525796e-06,
895
+ "loss": 0.724,
896
+ "mean_token_accuracy": 0.734950065612793,
897
+ "step": 111
898
+ },
899
+ {
900
+ "epoch": 1.7777777777777777,
901
+ "grad_norm": 1.228583574295044,
902
+ "learning_rate": 7.664924694253444e-06,
903
+ "loss": 0.7141,
904
+ "mean_token_accuracy": 0.7455480098724365,
905
+ "step": 112
906
+ },
907
+ {
908
+ "epoch": 1.7936507936507935,
909
+ "grad_norm": 1.3196018934249878,
910
+ "learning_rate": 7.620327255930475e-06,
911
+ "loss": 0.7775,
912
+ "mean_token_accuracy": 0.7201443910598755,
913
+ "step": 113
914
+ },
915
+ {
916
+ "epoch": 1.8095238095238095,
917
+ "grad_norm": 1.3832653760910034,
918
+ "learning_rate": 7.575440543936092e-06,
919
+ "loss": 0.7439,
920
+ "mean_token_accuracy": 0.7421494126319885,
921
+ "step": 114
922
+ },
923
+ {
924
+ "epoch": 1.8253968253968254,
925
+ "grad_norm": 1.3130351305007935,
926
+ "learning_rate": 7.530269513584158e-06,
927
+ "loss": 0.5983,
928
+ "mean_token_accuracy": 0.7735153436660767,
929
+ "step": 115
930
+ },
931
+ {
932
+ "epoch": 1.8412698412698414,
933
+ "grad_norm": 1.2631326913833618,
934
+ "learning_rate": 7.484819151576148e-06,
935
+ "loss": 0.8277,
936
+ "mean_token_accuracy": 0.7191202640533447,
937
+ "step": 116
938
+ },
939
+ {
940
+ "epoch": 1.8571428571428572,
941
+ "grad_norm": 1.2389181852340698,
942
+ "learning_rate": 7.439094475450638e-06,
943
+ "loss": 0.75,
944
+ "mean_token_accuracy": 0.7433958649635315,
945
+ "step": 117
946
+ },
947
+ {
948
+ "epoch": 1.873015873015873,
949
+ "grad_norm": 1.1765884160995483,
950
+ "learning_rate": 7.393100533029383e-06,
951
+ "loss": 0.7157,
952
+ "mean_token_accuracy": 0.757839024066925,
953
+ "step": 118
954
+ },
955
+ {
956
+ "epoch": 1.8888888888888888,
957
+ "grad_norm": 1.1635072231292725,
958
+ "learning_rate": 7.346842401860069e-06,
959
+ "loss": 0.7568,
960
+ "mean_token_accuracy": 0.7247301340103149,
961
+ "step": 119
962
+ },
963
+ {
964
+ "epoch": 1.9047619047619047,
965
+ "grad_norm": 1.2166038751602173,
966
+ "learning_rate": 7.300325188655762e-06,
967
+ "loss": 0.7275,
968
+ "mean_token_accuracy": 0.7342228889465332,
969
+ "step": 120
970
+ },
971
+ {
972
+ "epoch": 1.9206349206349205,
973
+ "grad_norm": 1.2700014114379883,
974
+ "learning_rate": 7.253554028731149e-06,
975
+ "loss": 0.7394,
976
+ "mean_token_accuracy": 0.7326907515525818,
977
+ "step": 121
978
+ },
979
+ {
980
+ "epoch": 1.9365079365079365,
981
+ "grad_norm": 1.2303329706192017,
982
+ "learning_rate": 7.206534085435626e-06,
983
+ "loss": 0.6532,
984
+ "mean_token_accuracy": 0.7559145092964172,
985
+ "step": 122
986
+ },
987
+ {
988
+ "epoch": 1.9523809523809523,
989
+ "grad_norm": 1.426224946975708,
990
+ "learning_rate": 7.159270549583278e-06,
991
+ "loss": 0.6547,
992
+ "mean_token_accuracy": 0.7708938121795654,
993
+ "step": 123
994
+ },
995
+ {
996
+ "epoch": 1.9682539682539684,
997
+ "grad_norm": 1.2642630338668823,
998
+ "learning_rate": 7.111768638879834e-06,
999
+ "loss": 0.6132,
1000
+ "mean_token_accuracy": 0.7534304261207581,
1001
+ "step": 124
1002
+ },
1003
+ {
1004
+ "epoch": 1.9841269841269842,
1005
+ "grad_norm": 1.2871243953704834,
1006
+ "learning_rate": 7.064033597346658e-06,
1007
+ "loss": 0.6769,
1008
+ "mean_token_accuracy": 0.7718325257301331,
1009
+ "step": 125
1010
+ },
1011
+ {
1012
+ "epoch": 2.0,
1013
+ "grad_norm": 1.1990370750427246,
1014
+ "learning_rate": 7.016070694741824e-06,
1015
+ "loss": 0.6836,
1016
+ "mean_token_accuracy": 0.7100950479507446,
1017
+ "step": 126
1018
+ },
1019
+ {
1020
+ "epoch": 2.015873015873016,
1021
+ "grad_norm": 1.434239387512207,
1022
+ "learning_rate": 6.967885225978366e-06,
1023
+ "loss": 0.5373,
1024
+ "mean_token_accuracy": 0.80208820104599,
1025
+ "step": 127
1026
+ },
1027
+ {
1028
+ "epoch": 2.0317460317460316,
1029
+ "grad_norm": 1.1308351755142212,
1030
+ "learning_rate": 6.919482510539723e-06,
1031
+ "loss": 0.5622,
1032
+ "mean_token_accuracy": 0.7496302723884583,
1033
+ "step": 128
1034
+ },
1035
+ {
1036
+ "epoch": 2.0476190476190474,
1037
+ "grad_norm": 1.0369759798049927,
1038
+ "learning_rate": 6.870867891892511e-06,
1039
+ "loss": 0.5444,
1040
+ "mean_token_accuracy": 0.7851538062095642,
1041
+ "step": 129
1042
+ },
1043
+ {
1044
+ "epoch": 2.0634920634920633,
1045
+ "grad_norm": 1.218014121055603,
1046
+ "learning_rate": 6.822046736896607e-06,
1047
+ "loss": 0.5651,
1048
+ "mean_token_accuracy": 0.7711318135261536,
1049
+ "step": 130
1050
+ },
1051
+ {
1052
+ "epoch": 2.0793650793650795,
1053
+ "grad_norm": 1.5595968961715698,
1054
+ "learning_rate": 6.773024435212678e-06,
1055
+ "loss": 0.4641,
1056
+ "mean_token_accuracy": 0.8099368810653687,
1057
+ "step": 131
1058
+ },
1059
+ {
1060
+ "epoch": 2.0952380952380953,
1061
+ "grad_norm": 1.4578797817230225,
1062
+ "learning_rate": 6.723806398707186e-06,
1063
+ "loss": 0.3923,
1064
+ "mean_token_accuracy": 0.8459458351135254,
1065
+ "step": 132
1066
+ },
1067
+ {
1068
+ "epoch": 2.111111111111111,
1069
+ "grad_norm": 1.259845495223999,
1070
+ "learning_rate": 6.674398060854931e-06,
1071
+ "loss": 0.5929,
1072
+ "mean_token_accuracy": 0.7611780762672424,
1073
+ "step": 133
1074
+ },
1075
+ {
1076
+ "epoch": 2.126984126984127,
1077
+ "grad_norm": 1.182294249534607,
1078
+ "learning_rate": 6.624804876139227e-06,
1079
+ "loss": 0.5286,
1080
+ "mean_token_accuracy": 0.7840155959129333,
1081
+ "step": 134
1082
+ },
1083
+ {
1084
+ "epoch": 2.142857142857143,
1085
+ "grad_norm": 1.1326159238815308,
1086
+ "learning_rate": 6.57503231944974e-06,
1087
+ "loss": 0.4789,
1088
+ "mean_token_accuracy": 0.8139358758926392,
1089
+ "step": 135
1090
+ },
1091
+ {
1092
+ "epoch": 2.1587301587301586,
1093
+ "grad_norm": 1.1104531288146973,
1094
+ "learning_rate": 6.525085885478088e-06,
1095
+ "loss": 0.4598,
1096
+ "mean_token_accuracy": 0.8077739477157593,
1097
+ "step": 136
1098
+ },
1099
+ {
1100
+ "epoch": 2.1746031746031744,
1101
+ "grad_norm": 1.4372111558914185,
1102
+ "learning_rate": 6.4749710881112485e-06,
1103
+ "loss": 0.4121,
1104
+ "mean_token_accuracy": 0.8421859741210938,
1105
+ "step": 137
1106
+ },
1107
+ {
1108
+ "epoch": 2.1904761904761907,
1109
+ "grad_norm": 1.2716678380966187,
1110
+ "learning_rate": 6.424693459822843e-06,
1111
+ "loss": 0.4572,
1112
+ "mean_token_accuracy": 0.8043623566627502,
1113
+ "step": 138
1114
+ },
1115
+ {
1116
+ "epoch": 2.2063492063492065,
1117
+ "grad_norm": 1.077424168586731,
1118
+ "learning_rate": 6.374258551062377e-06,
1119
+ "loss": 0.4492,
1120
+ "mean_token_accuracy": 0.8146030306816101,
1121
+ "step": 139
1122
+ },
1123
+ {
1124
+ "epoch": 2.2222222222222223,
1125
+ "grad_norm": 1.1364110708236694,
1126
+ "learning_rate": 6.3236719296424985e-06,
1127
+ "loss": 0.5233,
1128
+ "mean_token_accuracy": 0.7739091515541077,
1129
+ "step": 140
1130
+ },
1131
+ {
1132
+ "epoch": 2.238095238095238,
1133
+ "grad_norm": 1.0795546770095825,
1134
+ "learning_rate": 6.272939180124316e-06,
1135
+ "loss": 0.39,
1136
+ "mean_token_accuracy": 0.8451641201972961,
1137
+ "step": 141
1138
+ },
1139
+ {
1140
+ "epoch": 2.253968253968254,
1141
+ "grad_norm": 1.2171779870986938,
1142
+ "learning_rate": 6.222065903200909e-06,
1143
+ "loss": 0.5816,
1144
+ "mean_token_accuracy": 0.7803935408592224,
1145
+ "step": 142
1146
+ },
1147
+ {
1148
+ "epoch": 2.2698412698412698,
1149
+ "grad_norm": 1.146126627922058,
1150
+ "learning_rate": 6.171057715079012e-06,
1151
+ "loss": 0.4214,
1152
+ "mean_token_accuracy": 0.7971423864364624,
1153
+ "step": 143
1154
+ },
1155
+ {
1156
+ "epoch": 2.2857142857142856,
1157
+ "grad_norm": 1.1783219575881958,
1158
+ "learning_rate": 6.119920246859025e-06,
1159
+ "loss": 0.5536,
1160
+ "mean_token_accuracy": 0.7960186004638672,
1161
+ "step": 144
1162
+ },
1163
+ {
1164
+ "epoch": 2.3015873015873014,
1165
+ "grad_norm": 1.18180513381958,
1166
+ "learning_rate": 6.068659143913349e-06,
1167
+ "loss": 0.4735,
1168
+ "mean_token_accuracy": 0.8162056803703308,
1169
+ "step": 145
1170
+ },
1171
+ {
1172
+ "epoch": 2.317460317460317,
1173
+ "grad_norm": 1.0765876770019531,
1174
+ "learning_rate": 6.0172800652631706e-06,
1175
+ "loss": 0.4516,
1176
+ "mean_token_accuracy": 0.8035807609558105,
1177
+ "step": 146
1178
+ },
1179
+ {
1180
+ "epoch": 2.3333333333333335,
1181
+ "grad_norm": 1.2142268419265747,
1182
+ "learning_rate": 5.965788682953717e-06,
1183
+ "loss": 0.4891,
1184
+ "mean_token_accuracy": 0.8061010241508484,
1185
+ "step": 147
1186
+ },
1187
+ {
1188
+ "epoch": 2.3492063492063493,
1189
+ "grad_norm": 1.0830104351043701,
1190
+ "learning_rate": 5.914190681428098e-06,
1191
+ "loss": 0.5592,
1192
+ "mean_token_accuracy": 0.7947844862937927,
1193
+ "step": 148
1194
+ },
1195
+ {
1196
+ "epoch": 2.365079365079365,
1197
+ "grad_norm": 1.1901891231536865,
1198
+ "learning_rate": 5.862491756899753e-06,
1199
+ "loss": 0.4102,
1200
+ "mean_token_accuracy": 0.8136416077613831,
1201
+ "step": 149
1202
+ },
1203
+ {
1204
+ "epoch": 2.380952380952381,
1205
+ "grad_norm": 1.2062454223632812,
1206
+ "learning_rate": 5.8106976167236236e-06,
1207
+ "loss": 0.3502,
1208
+ "mean_token_accuracy": 0.857958197593689,
1209
+ "step": 150
1210
+ },
1211
+ {
1212
+ "epoch": 2.3968253968253967,
1213
+ "grad_norm": 1.0489780902862549,
1214
+ "learning_rate": 5.758813978766077e-06,
1215
+ "loss": 0.4885,
1216
+ "mean_token_accuracy": 0.7897634506225586,
1217
+ "step": 151
1218
+ },
1219
+ {
1220
+ "epoch": 2.4126984126984126,
1221
+ "grad_norm": 1.1065855026245117,
1222
+ "learning_rate": 5.706846570773677e-06,
1223
+ "loss": 0.5357,
1224
+ "mean_token_accuracy": 0.7911423444747925,
1225
+ "step": 152
1226
+ },
1227
+ {
1228
+ "epoch": 2.4285714285714284,
1229
+ "grad_norm": 1.1048340797424316,
1230
+ "learning_rate": 5.654801129740863e-06,
1231
+ "loss": 0.5444,
1232
+ "mean_token_accuracy": 0.7757133841514587,
1233
+ "step": 153
1234
+ },
1235
+ {
1236
+ "epoch": 2.4444444444444446,
1237
+ "grad_norm": 1.065033197402954,
1238
+ "learning_rate": 5.6026834012766155e-06,
1239
+ "loss": 0.4551,
1240
+ "mean_token_accuracy": 0.8179129362106323,
1241
+ "step": 154
1242
+ },
1243
+ {
1244
+ "epoch": 2.4603174603174605,
1245
+ "grad_norm": 1.134699821472168,
1246
+ "learning_rate": 5.550499138970158e-06,
1247
+ "loss": 0.3377,
1248
+ "mean_token_accuracy": 0.87542325258255,
1249
+ "step": 155
1250
+ },
1251
+ {
1252
+ "epoch": 2.4761904761904763,
1253
+ "grad_norm": 1.147384524345398,
1254
+ "learning_rate": 5.4982541037557825e-06,
1255
+ "loss": 0.4467,
1256
+ "mean_token_accuracy": 0.825996994972229,
1257
+ "step": 156
1258
+ },
1259
+ {
1260
+ "epoch": 2.492063492063492,
1261
+ "grad_norm": 1.2173268795013428,
1262
+ "learning_rate": 5.44595406327687e-06,
1263
+ "loss": 0.5541,
1264
+ "mean_token_accuracy": 0.7744438648223877,
1265
+ "step": 157
1266
+ },
1267
+ {
1268
+ "epoch": 2.507936507936508,
1269
+ "grad_norm": 1.0811070203781128,
1270
+ "learning_rate": 5.393604791249158e-06,
1271
+ "loss": 0.3923,
1272
+ "mean_token_accuracy": 0.8318279981613159,
1273
+ "step": 158
1274
+ },
1275
+ {
1276
+ "epoch": 2.5238095238095237,
1277
+ "grad_norm": 1.0606483221054077,
1278
+ "learning_rate": 5.341212066823356e-06,
1279
+ "loss": 0.3868,
1280
+ "mean_token_accuracy": 0.8136443495750427,
1281
+ "step": 159
1282
+ },
1283
+ {
1284
+ "epoch": 2.5396825396825395,
1285
+ "grad_norm": 1.167754888534546,
1286
+ "learning_rate": 5.288781673947143e-06,
1287
+ "loss": 0.4686,
1288
+ "mean_token_accuracy": 0.7608866095542908,
1289
+ "step": 160
1290
+ },
1291
+ {
1292
+ "epoch": 2.5555555555555554,
1293
+ "grad_norm": 1.2630232572555542,
1294
+ "learning_rate": 5.2363194007266435e-06,
1295
+ "loss": 0.4706,
1296
+ "mean_token_accuracy": 0.8080599308013916,
1297
+ "step": 161
1298
+ },
1299
+ {
1300
+ "epoch": 2.571428571428571,
1301
+ "grad_norm": 1.0766682624816895,
1302
+ "learning_rate": 5.183831038787449e-06,
1303
+ "loss": 0.541,
1304
+ "mean_token_accuracy": 0.7889450788497925,
1305
+ "step": 162
1306
+ },
1307
+ {
1308
+ "epoch": 2.5873015873015874,
1309
+ "grad_norm": 1.18930983543396,
1310
+ "learning_rate": 5.131322382635236e-06,
1311
+ "loss": 0.4729,
1312
+ "mean_token_accuracy": 0.807502031326294,
1313
+ "step": 163
1314
+ },
1315
+ {
1316
+ "epoch": 2.6031746031746033,
1317
+ "grad_norm": 1.173232078552246,
1318
+ "learning_rate": 5.078799229016083e-06,
1319
+ "loss": 0.4129,
1320
+ "mean_token_accuracy": 0.8101903796195984,
1321
+ "step": 164
1322
+ },
1323
+ {
1324
+ "epoch": 2.619047619047619,
1325
+ "grad_norm": 1.0739233493804932,
1326
+ "learning_rate": 5.0262673762765316e-06,
1327
+ "loss": 0.4577,
1328
+ "mean_token_accuracy": 0.8131040930747986,
1329
+ "step": 165
1330
+ },
1331
+ {
1332
+ "epoch": 2.634920634920635,
1333
+ "grad_norm": 1.0806288719177246,
1334
+ "learning_rate": 4.973732623723471e-06,
1335
+ "loss": 0.5123,
1336
+ "mean_token_accuracy": 0.7756950855255127,
1337
+ "step": 166
1338
+ },
1339
+ {
1340
+ "epoch": 2.6507936507936507,
1341
+ "grad_norm": 1.1319019794464111,
1342
+ "learning_rate": 4.921200770983919e-06,
1343
+ "loss": 0.5075,
1344
+ "mean_token_accuracy": 0.7682743668556213,
1345
+ "step": 167
1346
+ },
1347
+ {
1348
+ "epoch": 2.6666666666666665,
1349
+ "grad_norm": 1.1852954626083374,
1350
+ "learning_rate": 4.8686776173647655e-06,
1351
+ "loss": 0.4145,
1352
+ "mean_token_accuracy": 0.820248544216156,
1353
+ "step": 168
1354
+ },
1355
+ {
1356
+ "epoch": 2.682539682539683,
1357
+ "grad_norm": 1.108176589012146,
1358
+ "learning_rate": 4.816168961212553e-06,
1359
+ "loss": 0.4966,
1360
+ "mean_token_accuracy": 0.7906358242034912,
1361
+ "step": 169
1362
+ },
1363
+ {
1364
+ "epoch": 2.6984126984126986,
1365
+ "grad_norm": 1.1852736473083496,
1366
+ "learning_rate": 4.763680599273357e-06,
1367
+ "loss": 0.5509,
1368
+ "mean_token_accuracy": 0.7873461842536926,
1369
+ "step": 170
1370
+ },
1371
+ {
1372
+ "epoch": 2.7142857142857144,
1373
+ "grad_norm": 1.0883158445358276,
1374
+ "learning_rate": 4.711218326052859e-06,
1375
+ "loss": 0.3889,
1376
+ "mean_token_accuracy": 0.8340739011764526,
1377
+ "step": 171
1378
+ },
1379
+ {
1380
+ "epoch": 2.7301587301587302,
1381
+ "grad_norm": 1.0482765436172485,
1382
+ "learning_rate": 4.6587879331766465e-06,
1383
+ "loss": 0.5589,
1384
+ "mean_token_accuracy": 0.7785695195198059,
1385
+ "step": 172
1386
+ },
1387
+ {
1388
+ "epoch": 2.746031746031746,
1389
+ "grad_norm": 1.1065349578857422,
1390
+ "learning_rate": 4.606395208750844e-06,
1391
+ "loss": 0.4934,
1392
+ "mean_token_accuracy": 0.8306599855422974,
1393
+ "step": 173
1394
+ },
1395
+ {
1396
+ "epoch": 2.761904761904762,
1397
+ "grad_norm": 1.0907114744186401,
1398
+ "learning_rate": 4.554045936723132e-06,
1399
+ "loss": 0.4629,
1400
+ "mean_token_accuracy": 0.8285999298095703,
1401
+ "step": 174
1402
+ },
1403
+ {
1404
+ "epoch": 2.7777777777777777,
1405
+ "grad_norm": 1.130142092704773,
1406
+ "learning_rate": 4.501745896244219e-06,
1407
+ "loss": 0.6057,
1408
+ "mean_token_accuracy": 0.7609834671020508,
1409
+ "step": 175
1410
+ },
1411
+ {
1412
+ "epoch": 2.7936507936507935,
1413
+ "grad_norm": 1.2471946477890015,
1414
+ "learning_rate": 4.4495008610298435e-06,
1415
+ "loss": 0.3814,
1416
+ "mean_token_accuracy": 0.8319938778877258,
1417
+ "step": 176
1418
+ },
1419
+ {
1420
+ "epoch": 2.8095238095238093,
1421
+ "grad_norm": 1.151918649673462,
1422
+ "learning_rate": 4.397316598723385e-06,
1423
+ "loss": 0.4777,
1424
+ "mean_token_accuracy": 0.8117051124572754,
1425
+ "step": 177
1426
+ },
1427
+ {
1428
+ "epoch": 2.825396825396825,
1429
+ "grad_norm": 1.0310879945755005,
1430
+ "learning_rate": 4.345198870259139e-06,
1431
+ "loss": 0.5337,
1432
+ "mean_token_accuracy": 0.7743932604789734,
1433
+ "step": 178
1434
+ },
1435
+ {
1436
+ "epoch": 2.8412698412698414,
1437
+ "grad_norm": 1.0700514316558838,
1438
+ "learning_rate": 4.2931534292263265e-06,
1439
+ "loss": 0.4176,
1440
+ "mean_token_accuracy": 0.808311402797699,
1441
+ "step": 179
1442
+ },
1443
+ {
1444
+ "epoch": 2.857142857142857,
1445
+ "grad_norm": 1.2629222869873047,
1446
+ "learning_rate": 4.241186021233925e-06,
1447
+ "loss": 0.4556,
1448
+ "mean_token_accuracy": 0.81524258852005,
1449
+ "step": 180
1450
+ },
1451
+ {
1452
+ "epoch": 2.873015873015873,
1453
+ "grad_norm": 1.1769040822982788,
1454
+ "learning_rate": 4.189302383276378e-06,
1455
+ "loss": 0.4642,
1456
+ "mean_token_accuracy": 0.8150965571403503,
1457
+ "step": 181
1458
+ },
1459
+ {
1460
+ "epoch": 2.888888888888889,
1461
+ "grad_norm": 1.0976675748825073,
1462
+ "learning_rate": 4.137508243100249e-06,
1463
+ "loss": 0.4879,
1464
+ "mean_token_accuracy": 0.7843369841575623,
1465
+ "step": 182
1466
+ },
1467
+ {
1468
+ "epoch": 2.9047619047619047,
1469
+ "grad_norm": 1.0868701934814453,
1470
+ "learning_rate": 4.085809318571905e-06,
1471
+ "loss": 0.4594,
1472
+ "mean_token_accuracy": 0.7947729229927063,
1473
+ "step": 183
1474
+ },
1475
+ {
1476
+ "epoch": 2.9206349206349205,
1477
+ "grad_norm": 1.0909900665283203,
1478
+ "learning_rate": 4.034211317046285e-06,
1479
+ "loss": 0.4022,
1480
+ "mean_token_accuracy": 0.8373859524726868,
1481
+ "step": 184
1482
+ },
1483
+ {
1484
+ "epoch": 2.9365079365079367,
1485
+ "grad_norm": 1.2175990343093872,
1486
+ "learning_rate": 3.982719934736832e-06,
1487
+ "loss": 0.454,
1488
+ "mean_token_accuracy": 0.8179551959037781,
1489
+ "step": 185
1490
+ },
1491
+ {
1492
+ "epoch": 2.9523809523809526,
1493
+ "grad_norm": 1.1618547439575195,
1494
+ "learning_rate": 3.931340856086652e-06,
1495
+ "loss": 0.5671,
1496
+ "mean_token_accuracy": 0.7677510380744934,
1497
+ "step": 186
1498
+ },
1499
+ {
1500
+ "epoch": 2.9682539682539684,
1501
+ "grad_norm": 1.2595247030258179,
1502
+ "learning_rate": 3.880079753140978e-06,
1503
+ "loss": 0.3102,
1504
+ "mean_token_accuracy": 0.8672084808349609,
1505
+ "step": 187
1506
+ },
1507
+ {
1508
+ "epoch": 2.984126984126984,
1509
+ "grad_norm": 1.1393849849700928,
1510
+ "learning_rate": 3.82894228492099e-06,
1511
+ "loss": 0.4904,
1512
+ "mean_token_accuracy": 0.7898647785186768,
1513
+ "step": 188
1514
+ },
1515
+ {
1516
+ "epoch": 3.0,
1517
+ "grad_norm": 0.9801763296127319,
1518
+ "learning_rate": 3.777934096799094e-06,
1519
+ "loss": 0.3096,
1520
+ "mean_token_accuracy": 0.8739486932754517,
1521
+ "step": 189
1522
+ },
1523
+ {
1524
+ "epoch": 3.015873015873016,
1525
+ "grad_norm": 1.1817115545272827,
1526
+ "learning_rate": 3.7270608198756852e-06,
1527
+ "loss": 0.2919,
1528
+ "mean_token_accuracy": 0.8657442331314087,
1529
+ "step": 190
1530
+ },
1531
+ {
1532
+ "epoch": 3.0317460317460316,
1533
+ "grad_norm": 0.9881290197372437,
1534
+ "learning_rate": 3.676328070357503e-06,
1535
+ "loss": 0.2769,
1536
+ "mean_token_accuracy": 0.8417280316352844,
1537
+ "step": 191
1538
+ },
1539
+ {
1540
+ "epoch": 3.0476190476190474,
1541
+ "grad_norm": 0.9517524242401123,
1542
+ "learning_rate": 3.6257414489376217e-06,
1543
+ "loss": 0.3832,
1544
+ "mean_token_accuracy": 0.8356850147247314,
1545
+ "step": 192
1546
+ },
1547
+ {
1548
+ "epoch": 3.0634920634920633,
1549
+ "grad_norm": 0.9438294768333435,
1550
+ "learning_rate": 3.5753065401771577e-06,
1551
+ "loss": 0.3145,
1552
+ "mean_token_accuracy": 0.8428582549095154,
1553
+ "step": 193
1554
+ },
1555
+ {
1556
+ "epoch": 3.0793650793650795,
1557
+ "grad_norm": 0.9360758662223816,
1558
+ "learning_rate": 3.5250289118887515e-06,
1559
+ "loss": 0.301,
1560
+ "mean_token_accuracy": 0.8718671202659607,
1561
+ "step": 194
1562
+ },
1563
+ {
1564
+ "epoch": 3.0952380952380953,
1565
+ "grad_norm": 1.0166903734207153,
1566
+ "learning_rate": 3.4749141145219118e-06,
1567
+ "loss": 0.4573,
1568
+ "mean_token_accuracy": 0.8153039813041687,
1569
+ "step": 195
1570
+ },
1571
+ {
1572
+ "epoch": 3.111111111111111,
1573
+ "grad_norm": 1.1550116539001465,
1574
+ "learning_rate": 3.424967680550261e-06,
1575
+ "loss": 0.2792,
1576
+ "mean_token_accuracy": 0.8631125688552856,
1577
+ "step": 196
1578
+ },
1579
+ {
1580
+ "epoch": 3.126984126984127,
1581
+ "grad_norm": 1.2632681131362915,
1582
+ "learning_rate": 3.3751951238607745e-06,
1583
+ "loss": 0.4172,
1584
+ "mean_token_accuracy": 0.8394821882247925,
1585
+ "step": 197
1586
+ },
1587
+ {
1588
+ "epoch": 3.142857142857143,
1589
+ "grad_norm": 1.038863182067871,
1590
+ "learning_rate": 3.3256019391450696e-06,
1591
+ "loss": 0.3061,
1592
+ "mean_token_accuracy": 0.8498005867004395,
1593
+ "step": 198
1594
+ },
1595
+ {
1596
+ "epoch": 3.1587301587301586,
1597
+ "grad_norm": 1.0904754400253296,
1598
+ "learning_rate": 3.2761936012928147e-06,
1599
+ "loss": 0.348,
1600
+ "mean_token_accuracy": 0.8540592789649963,
1601
+ "step": 199
1602
+ },
1603
+ {
1604
+ "epoch": 3.1746031746031744,
1605
+ "grad_norm": 0.9854816198348999,
1606
+ "learning_rate": 3.226975564787322e-06,
1607
+ "loss": 0.2568,
1608
+ "mean_token_accuracy": 0.875607967376709,
1609
+ "step": 200
1610
+ },
1611
+ {
1612
+ "epoch": 3.1904761904761907,
1613
+ "grad_norm": 0.8879172205924988,
1614
+ "learning_rate": 3.177953263103394e-06,
1615
+ "loss": 0.2795,
1616
+ "mean_token_accuracy": 0.8490285873413086,
1617
+ "step": 201
1618
+ },
1619
+ {
1620
+ "epoch": 3.2063492063492065,
1621
+ "grad_norm": 0.9653210043907166,
1622
+ "learning_rate": 3.1291321081074887e-06,
1623
+ "loss": 0.3708,
1624
+ "mean_token_accuracy": 0.8345485925674438,
1625
+ "step": 202
1626
+ },
1627
+ {
1628
+ "epoch": 3.2222222222222223,
1629
+ "grad_norm": 0.9958736300468445,
1630
+ "learning_rate": 3.0805174894602775e-06,
1631
+ "loss": 0.2408,
1632
+ "mean_token_accuracy": 0.880729615688324,
1633
+ "step": 203
1634
+ },
1635
+ {
1636
+ "epoch": 3.238095238095238,
1637
+ "grad_norm": 1.0178455114364624,
1638
+ "learning_rate": 3.032114774021636e-06,
1639
+ "loss": 0.2956,
1640
+ "mean_token_accuracy": 0.8619508147239685,
1641
+ "step": 204
1642
+ },
1643
+ {
1644
+ "epoch": 3.253968253968254,
1645
+ "grad_norm": 0.8538744449615479,
1646
+ "learning_rate": 2.9839293052581767e-06,
1647
+ "loss": 0.3073,
1648
+ "mean_token_accuracy": 0.8429595828056335,
1649
+ "step": 205
1650
+ },
1651
+ {
1652
+ "epoch": 3.2698412698412698,
1653
+ "grad_norm": 0.9814417958259583,
1654
+ "learning_rate": 2.9359664026533443e-06,
1655
+ "loss": 0.2406,
1656
+ "mean_token_accuracy": 0.8716104030609131,
1657
+ "step": 206
1658
+ },
1659
+ {
1660
+ "epoch": 3.2857142857142856,
1661
+ "grad_norm": 0.9848408699035645,
1662
+ "learning_rate": 2.8882313611201684e-06,
1663
+ "loss": 0.288,
1664
+ "mean_token_accuracy": 0.8815993070602417,
1665
+ "step": 207
1666
+ },
1667
+ {
1668
+ "epoch": 3.3015873015873014,
1669
+ "grad_norm": 0.8855112195014954,
1670
+ "learning_rate": 2.8407294504167238e-06,
1671
+ "loss": 0.2531,
1672
+ "mean_token_accuracy": 0.8810189366340637,
1673
+ "step": 208
1674
+ },
1675
+ {
1676
+ "epoch": 3.317460317460317,
1677
+ "grad_norm": 0.8929734826087952,
1678
+ "learning_rate": 2.793465914564375e-06,
1679
+ "loss": 0.4829,
1680
+ "mean_token_accuracy": 0.8090415000915527,
1681
+ "step": 209
1682
+ },
1683
+ {
1684
+ "epoch": 3.3333333333333335,
1685
+ "grad_norm": 1.0123332738876343,
1686
+ "learning_rate": 2.7464459712688517e-06,
1687
+ "loss": 0.2815,
1688
+ "mean_token_accuracy": 0.8740373849868774,
1689
+ "step": 210
1690
+ },
1691
+ {
1692
+ "epoch": 3.3492063492063493,
1693
+ "grad_norm": 1.0554940700531006,
1694
+ "learning_rate": 2.6996748113442397e-06,
1695
+ "loss": 0.3835,
1696
+ "mean_token_accuracy": 0.8110551834106445,
1697
+ "step": 211
1698
+ },
1699
+ {
1700
+ "epoch": 3.365079365079365,
1701
+ "grad_norm": 0.9500500559806824,
1702
+ "learning_rate": 2.653157598139932e-06,
1703
+ "loss": 0.2907,
1704
+ "mean_token_accuracy": 0.8597709536552429,
1705
+ "step": 212
1706
+ },
1707
+ {
1708
+ "epoch": 3.380952380952381,
1709
+ "grad_norm": 0.9809661507606506,
1710
+ "learning_rate": 2.6068994669706184e-06,
1711
+ "loss": 0.2737,
1712
+ "mean_token_accuracy": 0.8710864186286926,
1713
+ "step": 213
1714
+ },
1715
+ {
1716
+ "epoch": 3.3968253968253967,
1717
+ "grad_norm": 0.967326283454895,
1718
+ "learning_rate": 2.560905524549364e-06,
1719
+ "loss": 0.4357,
1720
+ "mean_token_accuracy": 0.8136948347091675,
1721
+ "step": 214
1722
+ },
1723
+ {
1724
+ "epoch": 3.4126984126984126,
1725
+ "grad_norm": 0.9581484198570251,
1726
+ "learning_rate": 2.515180848423853e-06,
1727
+ "loss": 0.341,
1728
+ "mean_token_accuracy": 0.8100842833518982,
1729
+ "step": 215
1730
+ },
1731
+ {
1732
+ "epoch": 3.4285714285714284,
1733
+ "grad_norm": 0.993191123008728,
1734
+ "learning_rate": 2.469730486415842e-06,
1735
+ "loss": 0.4183,
1736
+ "mean_token_accuracy": 0.8140695095062256,
1737
+ "step": 216
1738
+ },
1739
+ {
1740
+ "epoch": 3.4444444444444446,
1741
+ "grad_norm": 1.1389352083206177,
1742
+ "learning_rate": 2.4245594560639086e-06,
1743
+ "loss": 0.4337,
1744
+ "mean_token_accuracy": 0.8231166005134583,
1745
+ "step": 217
1746
+ },
1747
+ {
1748
+ "epoch": 3.4603174603174605,
1749
+ "grad_norm": 0.9238110780715942,
1750
+ "learning_rate": 2.379672744069527e-06,
1751
+ "loss": 0.2668,
1752
+ "mean_token_accuracy": 0.8638157248497009,
1753
+ "step": 218
1754
+ },
1755
+ {
1756
+ "epoch": 3.4761904761904763,
1757
+ "grad_norm": 0.8576727509498596,
1758
+ "learning_rate": 2.335075305746558e-06,
1759
+ "loss": 0.4097,
1760
+ "mean_token_accuracy": 0.8153740167617798,
1761
+ "step": 219
1762
+ },
1763
+ {
1764
+ "epoch": 3.492063492063492,
1765
+ "grad_norm": 0.9489086270332336,
1766
+ "learning_rate": 2.2907720644742064e-06,
1767
+ "loss": 0.3302,
1768
+ "mean_token_accuracy": 0.8554107546806335,
1769
+ "step": 220
1770
+ },
1771
+ {
1772
+ "epoch": 3.507936507936508,
1773
+ "grad_norm": 0.8985493183135986,
1774
+ "learning_rate": 2.2467679111534963e-06,
1775
+ "loss": 0.2694,
1776
+ "mean_token_accuracy": 0.8727717995643616,
1777
+ "step": 221
1778
+ },
1779
+ {
1780
+ "epoch": 3.5238095238095237,
1781
+ "grad_norm": 0.944635808467865,
1782
+ "learning_rate": 2.2030677036673345e-06,
1783
+ "loss": 0.2121,
1784
+ "mean_token_accuracy": 0.8995314836502075,
1785
+ "step": 222
1786
+ },
1787
+ {
1788
+ "epoch": 3.5396825396825395,
1789
+ "grad_norm": 0.9656152725219727,
1790
+ "learning_rate": 2.159676266344222e-06,
1791
+ "loss": 0.2291,
1792
+ "mean_token_accuracy": 0.878724217414856,
1793
+ "step": 223
1794
+ },
1795
+ {
1796
+ "epoch": 3.5555555555555554,
1797
+ "grad_norm": 0.9597203731536865,
1798
+ "learning_rate": 2.1165983894256647e-06,
1799
+ "loss": 0.3377,
1800
+ "mean_token_accuracy": 0.792270839214325,
1801
+ "step": 224
1802
+ },
1803
+ {
1804
+ "epoch": 3.571428571428571,
1805
+ "grad_norm": 0.9298219084739685,
1806
+ "learning_rate": 2.0738388285373532e-06,
1807
+ "loss": 0.3623,
1808
+ "mean_token_accuracy": 0.8369730710983276,
1809
+ "step": 225
1810
+ },
1811
+ {
1812
+ "epoch": 3.5873015873015874,
1813
+ "grad_norm": 0.9328715801239014,
1814
+ "learning_rate": 2.0314023041641567e-06,
1815
+ "loss": 0.2316,
1816
+ "mean_token_accuracy": 0.8964474201202393,
1817
+ "step": 226
1818
+ },
1819
+ {
1820
+ "epoch": 3.6031746031746033,
1821
+ "grad_norm": 0.9059308171272278,
1822
+ "learning_rate": 1.9892935011290037e-06,
1823
+ "loss": 0.3551,
1824
+ "mean_token_accuracy": 0.82100510597229,
1825
+ "step": 227
1826
+ },
1827
+ {
1828
+ "epoch": 3.619047619047619,
1829
+ "grad_norm": 0.9704643487930298,
1830
+ "learning_rate": 1.947517068075694e-06,
1831
+ "loss": 0.3542,
1832
+ "mean_token_accuracy": 0.819314181804657,
1833
+ "step": 228
1834
+ },
1835
+ {
1836
+ "epoch": 3.634920634920635,
1837
+ "grad_norm": 0.9183152914047241,
1838
+ "learning_rate": 1.9060776169557083e-06,
1839
+ "loss": 0.3369,
1840
+ "mean_token_accuracy": 0.8172284364700317,
1841
+ "step": 229
1842
+ },
1843
+ {
1844
+ "epoch": 3.6507936507936507,
1845
+ "grad_norm": 0.8920512199401855,
1846
+ "learning_rate": 1.864979722519068e-06,
1847
+ "loss": 0.3374,
1848
+ "mean_token_accuracy": 0.8380458950996399,
1849
+ "step": 230
1850
+ },
1851
+ {
1852
+ "epoch": 3.6666666666666665,
1853
+ "grad_norm": 0.9079098701477051,
1854
+ "learning_rate": 1.8242279218092968e-06,
1855
+ "loss": 0.3542,
1856
+ "mean_token_accuracy": 0.810836672782898,
1857
+ "step": 231
1858
+ },
1859
+ {
1860
+ "epoch": 3.682539682539683,
1861
+ "grad_norm": 0.9223353862762451,
1862
+ "learning_rate": 1.7838267136625536e-06,
1863
+ "loss": 0.323,
1864
+ "mean_token_accuracy": 0.8441075682640076,
1865
+ "step": 232
1866
+ },
1867
+ {
1868
+ "epoch": 3.6984126984126986,
1869
+ "grad_norm": 0.9578335285186768,
1870
+ "learning_rate": 1.743780558210979e-06,
1871
+ "loss": 0.3374,
1872
+ "mean_token_accuracy": 0.8461949825286865,
1873
+ "step": 233
1874
+ },
1875
+ {
1876
+ "epoch": 3.7142857142857144,
1877
+ "grad_norm": 0.9013341665267944,
1878
+ "learning_rate": 1.704093876390312e-06,
1879
+ "loss": 0.3819,
1880
+ "mean_token_accuracy": 0.8001118302345276,
1881
+ "step": 234
1882
+ },
1883
+ {
1884
+ "epoch": 3.7301587301587302,
1885
+ "grad_norm": 0.9634210467338562,
1886
+ "learning_rate": 1.664771049451837e-06,
1887
+ "loss": 0.334,
1888
+ "mean_token_accuracy": 0.8557538986206055,
1889
+ "step": 235
1890
+ },
1891
+ {
1892
+ "epoch": 3.746031746031746,
1893
+ "grad_norm": 0.9999906420707703,
1894
+ "learning_rate": 1.6258164184787123e-06,
1895
+ "loss": 0.3963,
1896
+ "mean_token_accuracy": 0.8313020467758179,
1897
+ "step": 236
1898
+ },
1899
+ {
1900
+ "epoch": 3.761904761904762,
1901
+ "grad_norm": 0.8461647033691406,
1902
+ "learning_rate": 1.5872342839067305e-06,
1903
+ "loss": 0.2897,
1904
+ "mean_token_accuracy": 0.8658589124679565,
1905
+ "step": 237
1906
+ },
1907
+ {
1908
+ "epoch": 3.7777777777777777,
1909
+ "grad_norm": 0.9704185724258423,
1910
+ "learning_rate": 1.5490289050495678e-06,
1911
+ "loss": 0.2794,
1912
+ "mean_token_accuracy": 0.8769487738609314,
1913
+ "step": 238
1914
+ },
1915
+ {
1916
+ "epoch": 3.7936507936507935,
1917
+ "grad_norm": 0.9365107417106628,
1918
+ "learning_rate": 1.511204499628574e-06,
1919
+ "loss": 0.2495,
1920
+ "mean_token_accuracy": 0.85855633020401,
1921
+ "step": 239
1922
+ },
1923
+ {
1924
+ "epoch": 3.8095238095238093,
1925
+ "grad_norm": 0.8701555728912354,
1926
+ "learning_rate": 1.4737652433071515e-06,
1927
+ "loss": 0.2165,
1928
+ "mean_token_accuracy": 0.9040277600288391,
1929
+ "step": 240
1930
+ },
1931
+ {
1932
+ "epoch": 3.825396825396825,
1933
+ "grad_norm": 0.8181148767471313,
1934
+ "learning_rate": 1.4367152692297799e-06,
1935
+ "loss": 0.2553,
1936
+ "mean_token_accuracy": 0.8754419088363647,
1937
+ "step": 241
1938
+ },
1939
+ {
1940
+ "epoch": 3.8412698412698414,
1941
+ "grad_norm": 0.9489231705665588,
1942
+ "learning_rate": 1.4000586675657312e-06,
1943
+ "loss": 0.3396,
1944
+ "mean_token_accuracy": 0.8487692475318909,
1945
+ "step": 242
1946
+ },
1947
+ {
1948
+ "epoch": 3.857142857142857,
1949
+ "grad_norm": 0.900195300579071,
1950
+ "learning_rate": 1.3637994850575342e-06,
1951
+ "loss": 0.3302,
1952
+ "mean_token_accuracy": 0.8432536721229553,
1953
+ "step": 243
1954
+ },
1955
+ {
1956
+ "epoch": 3.873015873015873,
1957
+ "grad_norm": 0.8330630660057068,
1958
+ "learning_rate": 1.3279417245742288e-06,
1959
+ "loss": 0.3202,
1960
+ "mean_token_accuracy": 0.8341889977455139,
1961
+ "step": 244
1962
+ },
1963
+ {
1964
+ "epoch": 3.888888888888889,
1965
+ "grad_norm": 0.8900310397148132,
1966
+ "learning_rate": 1.2924893446694648e-06,
1967
+ "loss": 0.2512,
1968
+ "mean_token_accuracy": 0.9006067514419556,
1969
+ "step": 245
1970
+ },
1971
+ {
1972
+ "epoch": 3.9047619047619047,
1973
+ "grad_norm": 1.012221097946167,
1974
+ "learning_rate": 1.257446259144494e-06,
1975
+ "loss": 0.2737,
1976
+ "mean_token_accuracy": 0.8853955864906311,
1977
+ "step": 246
1978
+ },
1979
+ {
1980
+ "epoch": 3.9206349206349205,
1981
+ "grad_norm": 0.9133668541908264,
1982
+ "learning_rate": 1.222816336616104e-06,
1983
+ "loss": 0.3018,
1984
+ "mean_token_accuracy": 0.8480285406112671,
1985
+ "step": 247
1986
+ },
1987
+ {
1988
+ "epoch": 3.9365079365079367,
1989
+ "grad_norm": 0.9964957237243652,
1990
+ "learning_rate": 1.1886034000895341e-06,
1991
+ "loss": 0.2809,
1992
+ "mean_token_accuracy": 0.8873778581619263,
1993
+ "step": 248
1994
+ },
1995
+ {
1996
+ "epoch": 3.9523809523809526,
1997
+ "grad_norm": 0.9411323666572571,
1998
+ "learning_rate": 1.1548112265364336e-06,
1999
+ "loss": 0.2238,
2000
+ "mean_token_accuracy": 0.8850132822990417,
2001
+ "step": 249
2002
+ },
2003
+ {
2004
+ "epoch": 3.9682539682539684,
2005
+ "grad_norm": 1.0889853239059448,
2006
+ "learning_rate": 1.1214435464779006e-06,
2007
+ "loss": 0.2481,
2008
+ "mean_token_accuracy": 0.8736922144889832,
2009
+ "step": 250
2010
+ },
2011
+ {
2012
+ "epoch": 3.984126984126984,
2013
+ "grad_norm": 0.9061523675918579,
2014
+ "learning_rate": 1.088504043572643e-06,
2015
+ "loss": 0.3973,
2016
+ "mean_token_accuracy": 0.8074966073036194,
2017
+ "step": 251
2018
+ },
2019
+ {
2020
+ "epoch": 4.0,
2021
+ "grad_norm": 0.730003833770752,
2022
+ "learning_rate": 1.055996354210323e-06,
2023
+ "loss": 0.2061,
2024
+ "mean_token_accuracy": 0.8607027530670166,
2025
+ "step": 252
2026
+ },
2027
+ {
2028
+ "epoch": 4.015873015873016,
2029
+ "grad_norm": 1.1500871181488037,
2030
+ "learning_rate": 1.0239240671101065e-06,
2031
+ "loss": 0.3139,
2032
+ "mean_token_accuracy": 0.850020170211792,
2033
+ "step": 253
2034
+ },
2035
+ {
2036
+ "epoch": 4.031746031746032,
2037
+ "grad_norm": 1.156367540359497,
2038
+ "learning_rate": 9.922907229244905e-07,
2039
+ "loss": 0.2297,
2040
+ "mean_token_accuracy": 0.8770912289619446,
2041
+ "step": 254
2042
+ },
2043
+ {
2044
+ "epoch": 4.0476190476190474,
2045
+ "grad_norm": 0.7985445261001587,
2046
+ "learning_rate": 9.610998138484262e-07,
2047
+ "loss": 0.3192,
2048
+ "mean_token_accuracy": 0.8431568145751953,
2049
+ "step": 255
2050
+ },
2051
+ {
2052
+ "epoch": 4.063492063492063,
2053
+ "grad_norm": 0.815024733543396,
2054
+ "learning_rate": 9.303547832337934e-07,
2055
+ "loss": 0.3501,
2056
+ "mean_token_accuracy": 0.8213564157485962,
2057
+ "step": 256
2058
+ },
2059
+ {
2060
+ "epoch": 4.079365079365079,
2061
+ "grad_norm": 0.8376876711845398,
2062
+ "learning_rate": 9.000590252092701e-07,
2063
+ "loss": 0.2319,
2064
+ "mean_token_accuracy": 0.8903968930244446,
2065
+ "step": 257
2066
+ },
2067
+ {
2068
+ "epoch": 4.095238095238095,
2069
+ "grad_norm": 0.8753305673599243,
2070
+ "learning_rate": 8.702158843056319e-07,
2071
+ "loss": 0.192,
2072
+ "mean_token_accuracy": 0.8974818587303162,
2073
+ "step": 258
2074
+ },
2075
+ {
2076
+ "epoch": 4.111111111111111,
2077
+ "grad_norm": 0.6304527521133423,
2078
+ "learning_rate": 8.408286550865319e-07,
2079
+ "loss": 0.1804,
2080
+ "mean_token_accuracy": 0.8988710045814514,
2081
+ "step": 259
2082
+ },
2083
+ {
2084
+ "epoch": 4.1269841269841265,
2085
+ "grad_norm": 0.789614737033844,
2086
+ "learning_rate": 8.119005817847924e-07,
2087
+ "loss": 0.2458,
2088
+ "mean_token_accuracy": 0.881997287273407,
2089
+ "step": 260
2090
+ },
2091
+ {
2092
+ "epoch": 4.142857142857143,
2093
+ "grad_norm": 0.6855416297912598,
2094
+ "learning_rate": 7.834348579442552e-07,
2095
+ "loss": 0.2613,
2096
+ "mean_token_accuracy": 0.8605210781097412,
2097
+ "step": 261
2098
+ },
2099
+ {
2100
+ "epoch": 4.158730158730159,
2101
+ "grad_norm": 1.0017073154449463,
2102
+ "learning_rate": 7.554346260672263e-07,
2103
+ "loss": 0.2093,
2104
+ "mean_token_accuracy": 0.9028944373130798,
2105
+ "step": 262
2106
+ },
2107
+ {
2108
+ "epoch": 4.174603174603175,
2109
+ "grad_norm": 0.8033848404884338,
2110
+ "learning_rate": 7.279029772675572e-07,
2111
+ "loss": 0.2089,
2112
+ "mean_token_accuracy": 0.8698593378067017,
2113
+ "step": 263
2114
+ },
2115
+ {
2116
+ "epoch": 4.190476190476191,
2117
+ "grad_norm": 0.9745374321937561,
2118
+ "learning_rate": 7.008429509293979e-07,
2119
+ "loss": 0.3764,
2120
+ "mean_token_accuracy": 0.8211672306060791,
2121
+ "step": 264
2122
+ },
2123
+ {
2124
+ "epoch": 4.2063492063492065,
2125
+ "grad_norm": 0.7626347541809082,
2126
+ "learning_rate": 6.742575343716584e-07,
2127
+ "loss": 0.1828,
2128
+ "mean_token_accuracy": 0.9040178656578064,
2129
+ "step": 265
2130
+ },
2131
+ {
2132
+ "epoch": 4.222222222222222,
2133
+ "grad_norm": 0.7874695062637329,
2134
+ "learning_rate": 6.481496625182271e-07,
2135
+ "loss": 0.2049,
2136
+ "mean_token_accuracy": 0.9025614261627197,
2137
+ "step": 266
2138
+ },
2139
+ {
2140
+ "epoch": 4.238095238095238,
2141
+ "grad_norm": 0.7818242311477661,
2142
+ "learning_rate": 6.225222175739598e-07,
2143
+ "loss": 0.2095,
2144
+ "mean_token_accuracy": 0.8919832706451416,
2145
+ "step": 267
2146
+ },
2147
+ {
2148
+ "epoch": 4.253968253968254,
2149
+ "grad_norm": 0.7495545148849487,
2150
+ "learning_rate": 5.973780287065007e-07,
2151
+ "loss": 0.1767,
2152
+ "mean_token_accuracy": 0.8752344250679016,
2153
+ "step": 268
2154
+ },
2155
+ {
2156
+ "epoch": 4.26984126984127,
2157
+ "grad_norm": 0.7969830632209778,
2158
+ "learning_rate": 5.727198717339511e-07,
2159
+ "loss": 0.2481,
2160
+ "mean_token_accuracy": 0.8807870149612427,
2161
+ "step": 269
2162
+ },
2163
+ {
2164
+ "epoch": 4.285714285714286,
2165
+ "grad_norm": 0.8366702198982239,
2166
+ "learning_rate": 5.485504688184307e-07,
2167
+ "loss": 0.2136,
2168
+ "mean_token_accuracy": 0.8853451609611511,
2169
+ "step": 270
2170
+ },
2171
+ {
2172
+ "epoch": 4.301587301587301,
2173
+ "grad_norm": 0.7982764840126038,
2174
+ "learning_rate": 5.24872488165562e-07,
2175
+ "loss": 0.3475,
2176
+ "mean_token_accuracy": 0.8398772478103638,
2177
+ "step": 271
2178
+ },
2179
+ {
2180
+ "epoch": 4.317460317460317,
2181
+ "grad_norm": 0.8142274022102356,
2182
+ "learning_rate": 5.016885437299113e-07,
2183
+ "loss": 0.1818,
2184
+ "mean_token_accuracy": 0.9124555587768555,
2185
+ "step": 272
2186
+ },
2187
+ {
2188
+ "epoch": 4.333333333333333,
2189
+ "grad_norm": 0.7483785152435303,
2190
+ "learning_rate": 4.790011949264173e-07,
2191
+ "loss": 0.2946,
2192
+ "mean_token_accuracy": 0.8563975095748901,
2193
+ "step": 273
2194
+ },
2195
+ {
2196
+ "epoch": 4.349206349206349,
2197
+ "grad_norm": 0.7258701324462891,
2198
+ "learning_rate": 4.5681294634784437e-07,
2199
+ "loss": 0.2076,
2200
+ "mean_token_accuracy": 0.8760812878608704,
2201
+ "step": 274
2202
+ },
2203
+ {
2204
+ "epoch": 4.365079365079365,
2205
+ "grad_norm": 0.694442093372345,
2206
+ "learning_rate": 4.3512624748828225e-07,
2207
+ "loss": 0.1756,
2208
+ "mean_token_accuracy": 0.9021351337432861,
2209
+ "step": 275
2210
+ },
2211
+ {
2212
+ "epoch": 4.380952380952381,
2213
+ "grad_norm": 0.7568174600601196,
2214
+ "learning_rate": 4.139434924727359e-07,
2215
+ "loss": 0.3157,
2216
+ "mean_token_accuracy": 0.844300389289856,
2217
+ "step": 276
2218
+ },
2219
+ {
2220
+ "epoch": 4.396825396825397,
2221
+ "grad_norm": 0.8990548253059387,
2222
+ "learning_rate": 3.9326701979281623e-07,
2223
+ "loss": 0.3777,
2224
+ "mean_token_accuracy": 0.8513249754905701,
2225
+ "step": 277
2226
+ },
2227
+ {
2228
+ "epoch": 4.412698412698413,
2229
+ "grad_norm": 0.7914615869522095,
2230
+ "learning_rate": 3.7309911204858997e-07,
2231
+ "loss": 0.2545,
2232
+ "mean_token_accuracy": 0.8884080052375793,
2233
+ "step": 278
2234
+ },
2235
+ {
2236
+ "epoch": 4.428571428571429,
2237
+ "grad_norm": 0.6982975006103516,
2238
+ "learning_rate": 3.534419956965823e-07,
2239
+ "loss": 0.2258,
2240
+ "mean_token_accuracy": 0.8522327542304993,
2241
+ "step": 279
2242
+ },
2243
+ {
2244
+ "epoch": 4.444444444444445,
2245
+ "grad_norm": 0.6678464412689209,
2246
+ "learning_rate": 3.3429784080398765e-07,
2247
+ "loss": 0.223,
2248
+ "mean_token_accuracy": 0.858345091342926,
2249
+ "step": 280
2250
+ },
2251
+ {
2252
+ "epoch": 4.4603174603174605,
2253
+ "grad_norm": 0.8046327233314514,
2254
+ "learning_rate": 3.1566876080910193e-07,
2255
+ "loss": 0.2271,
2256
+ "mean_token_accuracy": 0.890484094619751,
2257
+ "step": 281
2258
+ },
2259
+ {
2260
+ "epoch": 4.476190476190476,
2261
+ "grad_norm": 0.6547771096229553,
2262
+ "learning_rate": 2.9755681228800904e-07,
2263
+ "loss": 0.1113,
2264
+ "mean_token_accuracy": 0.9428154826164246,
2265
+ "step": 282
2266
+ },
2267
+ {
2268
+ "epoch": 4.492063492063492,
2269
+ "grad_norm": 0.6625367999076843,
2270
+ "learning_rate": 2.799639947275412e-07,
2271
+ "loss": 0.2267,
2272
+ "mean_token_accuracy": 0.8839855194091797,
2273
+ "step": 283
2274
+ },
2275
+ {
2276
+ "epoch": 4.507936507936508,
2277
+ "grad_norm": 0.6415932178497314,
2278
+ "learning_rate": 2.6289225030454556e-07,
2279
+ "loss": 0.1348,
2280
+ "mean_token_accuracy": 0.9356445074081421,
2281
+ "step": 284
2282
+ },
2283
+ {
2284
+ "epoch": 4.523809523809524,
2285
+ "grad_norm": 0.6927193999290466,
2286
+ "learning_rate": 2.4634346367147233e-07,
2287
+ "loss": 0.1656,
2288
+ "mean_token_accuracy": 0.9024729132652283,
2289
+ "step": 285
2290
+ },
2291
+ {
2292
+ "epoch": 4.5396825396825395,
2293
+ "grad_norm": 0.7541980743408203,
2294
+ "learning_rate": 2.303194617483212e-07,
2295
+ "loss": 0.2002,
2296
+ "mean_token_accuracy": 0.910742998123169,
2297
+ "step": 286
2298
+ },
2299
+ {
2300
+ "epoch": 4.555555555555555,
2301
+ "grad_norm": 0.7845000624656677,
2302
+ "learning_rate": 2.1482201352095277e-07,
2303
+ "loss": 0.2971,
2304
+ "mean_token_accuracy": 0.8502859473228455,
2305
+ "step": 287
2306
+ },
2307
+ {
2308
+ "epoch": 4.571428571428571,
2309
+ "grad_norm": 0.7539421319961548,
2310
+ "learning_rate": 1.998528298458019e-07,
2311
+ "loss": 0.1639,
2312
+ "mean_token_accuracy": 0.9152542352676392,
2313
+ "step": 288
2314
+ },
2315
+ {
2316
+ "epoch": 4.587301587301587,
2317
+ "grad_norm": 0.8608452081680298,
2318
+ "learning_rate": 1.8541356326100436e-07,
2319
+ "loss": 0.221,
2320
+ "mean_token_accuracy": 0.9015839099884033,
2321
+ "step": 289
2322
+ },
2323
+ {
2324
+ "epoch": 4.603174603174603,
2325
+ "grad_norm": 0.6219279170036316,
2326
+ "learning_rate": 1.7150580780396385e-07,
2327
+ "loss": 0.1736,
2328
+ "mean_token_accuracy": 0.8898955583572388,
2329
+ "step": 290
2330
+ },
2331
+ {
2332
+ "epoch": 4.619047619047619,
2333
+ "grad_norm": 0.803567111492157,
2334
+ "learning_rate": 1.5813109883537792e-07,
2335
+ "loss": 0.3578,
2336
+ "mean_token_accuracy": 0.8290396928787231,
2337
+ "step": 291
2338
+ },
2339
+ {
2340
+ "epoch": 4.634920634920634,
2341
+ "grad_norm": 0.7509638071060181,
2342
+ "learning_rate": 1.4529091286973994e-07,
2343
+ "loss": 0.2899,
2344
+ "mean_token_accuracy": 0.8564021587371826,
2345
+ "step": 292
2346
+ },
2347
+ {
2348
+ "epoch": 4.650793650793651,
2349
+ "grad_norm": 0.6981105208396912,
2350
+ "learning_rate": 1.3298666741233424e-07,
2351
+ "loss": 0.1755,
2352
+ "mean_token_accuracy": 0.9039936661720276,
2353
+ "step": 293
2354
+ },
2355
+ {
2356
+ "epoch": 4.666666666666667,
2357
+ "grad_norm": 0.732633650302887,
2358
+ "learning_rate": 1.2121972080275378e-07,
2359
+ "loss": 0.2293,
2360
+ "mean_token_accuracy": 0.8728380799293518,
2361
+ "step": 294
2362
+ },
2363
+ {
2364
+ "epoch": 4.682539682539683,
2365
+ "grad_norm": 0.6291465759277344,
2366
+ "learning_rate": 1.0999137206494315e-07,
2367
+ "loss": 0.2377,
2368
+ "mean_token_accuracy": 0.8596920371055603,
2369
+ "step": 295
2370
+ },
2371
+ {
2372
+ "epoch": 4.698412698412699,
2373
+ "grad_norm": 0.724481999874115,
2374
+ "learning_rate": 9.93028607637908e-08,
2375
+ "loss": 0.2136,
2376
+ "mean_token_accuracy": 0.8830126523971558,
2377
+ "step": 296
2378
+ },
2379
+ {
2380
+ "epoch": 4.714285714285714,
2381
+ "grad_norm": 0.7379451394081116,
2382
+ "learning_rate": 8.915536686828764e-08,
2383
+ "loss": 0.2342,
2384
+ "mean_token_accuracy": 0.8728898763656616,
2385
+ "step": 297
2386
+ },
2387
+ {
2388
+ "epoch": 4.73015873015873,
2389
+ "grad_norm": 0.6381033658981323,
2390
+ "learning_rate": 7.955001062125989e-08,
2391
+ "loss": 0.3198,
2392
+ "mean_token_accuracy": 0.8249152302742004,
2393
+ "step": 298
2394
+ },
2395
+ {
2396
+ "epoch": 4.746031746031746,
2397
+ "grad_norm": 1.0338735580444336,
2398
+ "learning_rate": 7.048785241570321e-08,
2399
+ "loss": 0.3214,
2400
+ "mean_token_accuracy": 0.8409817218780518,
2401
+ "step": 299
2402
+ },
2403
+ {
2404
+ "epoch": 4.761904761904762,
2405
+ "grad_norm": 0.9547169208526611,
2406
+ "learning_rate": 6.19698926777168e-08,
2407
+ "loss": 0.3432,
2408
+ "mean_token_accuracy": 0.85186368227005,
2409
+ "step": 300
2410
+ },
2411
+ {
2412
+ "epoch": 4.777777777777778,
2413
+ "grad_norm": 0.7398821711540222,
2414
+ "learning_rate": 5.399707175606117e-08,
2415
+ "loss": 0.2026,
2416
+ "mean_token_accuracy": 0.8905254006385803,
2417
+ "step": 301
2418
+ },
2419
+ {
2420
+ "epoch": 4.7936507936507935,
2421
+ "grad_norm": 1.3651663064956665,
2422
+ "learning_rate": 4.657026981834623e-08,
2423
+ "loss": 0.166,
2424
+ "mean_token_accuracy": 0.8877707719802856,
2425
+ "step": 302
2426
+ },
2427
+ {
2428
+ "epoch": 4.809523809523809,
2429
+ "grad_norm": 0.5856400728225708,
2430
+ "learning_rate": 3.9690306753866204e-08,
2431
+ "loss": 0.1787,
2432
+ "mean_token_accuracy": 0.87652987241745,
2433
+ "step": 303
2434
+ },
2435
+ {
2436
+ "epoch": 4.825396825396825,
2437
+ "grad_norm": 0.7481511831283569,
2438
+ "learning_rate": 3.3357942083085404e-08,
2439
+ "loss": 0.2439,
2440
+ "mean_token_accuracy": 0.8784143328666687,
2441
+ "step": 304
2442
+ },
2443
+ {
2444
+ "epoch": 4.841269841269841,
2445
+ "grad_norm": 1.0625805854797363,
2446
+ "learning_rate": 2.7573874873791372e-08,
2447
+ "loss": 0.3078,
2448
+ "mean_token_accuracy": 0.8467578887939453,
2449
+ "step": 305
2450
+ },
2451
+ {
2452
+ "epoch": 4.857142857142857,
2453
+ "grad_norm": 0.604770839214325,
2454
+ "learning_rate": 2.233874366391997e-08,
2455
+ "loss": 0.1143,
2456
+ "mean_token_accuracy": 0.9412245750427246,
2457
+ "step": 306
2458
+ },
2459
+ {
2460
+ "epoch": 4.8730158730158735,
2461
+ "grad_norm": 0.7869849801063538,
2462
+ "learning_rate": 1.7653126391063425e-08,
2463
+ "loss": 0.2249,
2464
+ "mean_token_accuracy": 0.9017248749732971,
2465
+ "step": 307
2466
+ },
2467
+ {
2468
+ "epoch": 4.888888888888889,
2469
+ "grad_norm": 0.593639612197876,
2470
+ "learning_rate": 1.3517540328669143e-08,
2471
+ "loss": 0.1476,
2472
+ "mean_token_accuracy": 0.9134231805801392,
2473
+ "step": 308
2474
+ },
2475
+ {
2476
+ "epoch": 4.904761904761905,
2477
+ "grad_norm": 0.727486789226532,
2478
+ "learning_rate": 9.93244202893262e-09,
2479
+ "loss": 0.259,
2480
+ "mean_token_accuracy": 0.8798890709877014,
2481
+ "step": 309
2482
+ },
2483
+ {
2484
+ "epoch": 4.920634920634921,
2485
+ "grad_norm": 0.7199143767356873,
2486
+ "learning_rate": 6.898227272398306e-09,
2487
+ "loss": 0.2811,
2488
+ "mean_token_accuracy": 0.8704081177711487,
2489
+ "step": 310
2490
+ },
2491
+ {
2492
+ "epoch": 4.936507936507937,
2493
+ "grad_norm": 0.6624844670295715,
2494
+ "learning_rate": 4.415231024265665e-09,
2495
+ "loss": 0.1653,
2496
+ "mean_token_accuracy": 0.9027133584022522,
2497
+ "step": 311
2498
+ },
2499
+ {
2500
+ "epoch": 4.9523809523809526,
2501
+ "grad_norm": 0.6468021273612976,
2502
+ "learning_rate": 2.4837273974115393e-09,
2503
+ "loss": 0.2231,
2504
+ "mean_token_accuracy": 0.8691893815994263,
2505
+ "step": 312
2506
+ },
2507
+ {
2508
+ "epoch": 4.968253968253968,
2509
+ "grad_norm": 0.7659016251564026,
2510
+ "learning_rate": 1.1039296221276863e-09,
2511
+ "loss": 0.17,
2512
+ "mean_token_accuracy": 0.9162414073944092,
2513
+ "step": 313
2514
+ },
2515
+ {
2516
+ "epoch": 4.984126984126984,
2517
+ "grad_norm": 0.7621476650238037,
2518
+ "learning_rate": 2.7599002258127395e-10,
2519
+ "loss": 0.4016,
2520
+ "mean_token_accuracy": 0.8406723737716675,
2521
+ "step": 314
2522
+ },
2523
+ {
2524
+ "epoch": 5.0,
2525
+ "grad_norm": 0.7477962374687195,
2526
+ "learning_rate": 0.0,
2527
+ "loss": 0.259,
2528
+ "mean_token_accuracy": 0.898563027381897,
2529
+ "step": 315
2530
+ }
2531
+ ],
2532
+ "logging_steps": 1.0,
2533
+ "max_steps": 315,
2534
+ "num_input_tokens_seen": 0,
2535
+ "num_train_epochs": 5,
2536
+ "save_steps": 500,
2537
+ "stateful_callbacks": {
2538
+ "TrainerControl": {
2539
+ "args": {
2540
+ "should_epoch_stop": false,
2541
+ "should_evaluate": false,
2542
+ "should_log": false,
2543
+ "should_save": true,
2544
+ "should_training_stop": true
2545
+ },
2546
+ "attributes": {}
2547
+ }
2548
+ },
2549
+ "total_flos": 1.1003419865540198e+17,
2550
+ "train_batch_size": 1,
2551
+ "trial_name": null,
2552
+ "trial_params": null
2553
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:57968985d878f5196883f699a1751b4408dbad7e4a38a61484c69971da51118e
3
+ size 5880
vocab.json ADDED
The diff for this file is too large to render. See raw diff