xk-huang commited on
Commit
73ddf3b
·
verified ·
1 Parent(s): d78b18b

Add files using upload-large-folder tool

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Qwen/Qwen2.5-7B-Instruct",
3
+ "architectures": [
4
+ "Qwen2ForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151645,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 3584,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 18944,
13
+ "max_position_embeddings": 32768,
14
+ "max_window_layers": 28,
15
+ "model_type": "qwen2",
16
+ "num_attention_heads": 28,
17
+ "num_hidden_layers": 28,
18
+ "num_key_value_heads": 4,
19
+ "rms_norm_eps": 1e-06,
20
+ "rope_scaling": null,
21
+ "rope_theta": 1000000.0,
22
+ "sliding_window": null,
23
+ "tie_word_embeddings": false,
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.48.3",
26
+ "use_cache": true,
27
+ "use_sliding_window": false,
28
+ "vocab_size": 152064
29
+ }
generation_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "repetition_penalty": 1.05,
10
+ "temperature": 0.7,
11
+ "top_k": 20,
12
+ "top_p": 0.8,
13
+ "transformers_version": "4.48.3"
14
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2cb6e174122180ebc86da06d95449168db4b6bddd49696135a0c285176337361
3
+ size 4976687216
model-00002-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ce6c3bf20fe73d7dd30fd0c46de5b6f23d4e3b3137543489e274ee77bbca8e28
3
+ size 4778622352
model-00003-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:464b9d80079db56d50e1fa71768160cf6cfbddfb38203c7b66b00a52c9c3f7d6
3
+ size 4932743960
model-00004-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ef4542665562b3a5fa3f4ec59acca2df2af8b0a8fcf4f2a41f7cbd36ec53e584
3
+ size 4932743992
model-00005-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:18c82d2ccb2512e9277a45570ed3fdca669bd15ae27e3a7f99bd12f88deb2039
3
+ size 4998852296
model-00006-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1ade4fac7191c45a75a03158fdc28030e4122f40b1b18d3b18b896ad18fdffe4
3
+ size 3662865184
model-00007-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:897f954c5532b4a099afa8811c1b6f8dc3af36ec0e9f4a95009cf01a50026842
3
+ size 2179989632
model.safetensors.index.json ADDED
@@ -0,0 +1,346 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 30462466048
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00007-of-00007.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00007.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00007.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00007.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00007.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00007.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00007.safetensors",
13
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00007.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00007.safetensors",
16
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00007.safetensors",
17
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
18
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00007.safetensors",
19
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
20
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00007.safetensors",
21
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00007.safetensors",
22
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00007.safetensors",
23
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00007.safetensors",
24
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00007.safetensors",
25
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00007.safetensors",
26
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
27
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00007.safetensors",
28
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00007.safetensors",
29
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
30
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00007.safetensors",
31
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
32
+ "model.layers.10.input_layernorm.weight": "model-00003-of-00007.safetensors",
33
+ "model.layers.10.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
34
+ "model.layers.10.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
35
+ "model.layers.10.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
36
+ "model.layers.10.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
37
+ "model.layers.10.self_attn.k_proj.bias": "model-00003-of-00007.safetensors",
38
+ "model.layers.10.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
39
+ "model.layers.10.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
40
+ "model.layers.10.self_attn.q_proj.bias": "model-00003-of-00007.safetensors",
41
+ "model.layers.10.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
42
+ "model.layers.10.self_attn.v_proj.bias": "model-00003-of-00007.safetensors",
43
+ "model.layers.10.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
44
+ "model.layers.11.input_layernorm.weight": "model-00003-of-00007.safetensors",
45
+ "model.layers.11.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
46
+ "model.layers.11.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
47
+ "model.layers.11.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
48
+ "model.layers.11.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
49
+ "model.layers.11.self_attn.k_proj.bias": "model-00003-of-00007.safetensors",
50
+ "model.layers.11.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
51
+ "model.layers.11.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
52
+ "model.layers.11.self_attn.q_proj.bias": "model-00003-of-00007.safetensors",
53
+ "model.layers.11.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
54
+ "model.layers.11.self_attn.v_proj.bias": "model-00003-of-00007.safetensors",
55
+ "model.layers.11.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
56
+ "model.layers.12.input_layernorm.weight": "model-00003-of-00007.safetensors",
57
+ "model.layers.12.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
58
+ "model.layers.12.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
59
+ "model.layers.12.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
60
+ "model.layers.12.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
61
+ "model.layers.12.self_attn.k_proj.bias": "model-00003-of-00007.safetensors",
62
+ "model.layers.12.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
63
+ "model.layers.12.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
64
+ "model.layers.12.self_attn.q_proj.bias": "model-00003-of-00007.safetensors",
65
+ "model.layers.12.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
66
+ "model.layers.12.self_attn.v_proj.bias": "model-00003-of-00007.safetensors",
67
+ "model.layers.12.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
68
+ "model.layers.13.input_layernorm.weight": "model-00004-of-00007.safetensors",
69
+ "model.layers.13.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
70
+ "model.layers.13.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
71
+ "model.layers.13.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
72
+ "model.layers.13.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
73
+ "model.layers.13.self_attn.k_proj.bias": "model-00003-of-00007.safetensors",
74
+ "model.layers.13.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
75
+ "model.layers.13.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
76
+ "model.layers.13.self_attn.q_proj.bias": "model-00003-of-00007.safetensors",
77
+ "model.layers.13.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
78
+ "model.layers.13.self_attn.v_proj.bias": "model-00003-of-00007.safetensors",
79
+ "model.layers.13.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
80
+ "model.layers.14.input_layernorm.weight": "model-00004-of-00007.safetensors",
81
+ "model.layers.14.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
82
+ "model.layers.14.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
83
+ "model.layers.14.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
84
+ "model.layers.14.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
85
+ "model.layers.14.self_attn.k_proj.bias": "model-00004-of-00007.safetensors",
86
+ "model.layers.14.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
87
+ "model.layers.14.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
88
+ "model.layers.14.self_attn.q_proj.bias": "model-00004-of-00007.safetensors",
89
+ "model.layers.14.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
90
+ "model.layers.14.self_attn.v_proj.bias": "model-00004-of-00007.safetensors",
91
+ "model.layers.14.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
92
+ "model.layers.15.input_layernorm.weight": "model-00004-of-00007.safetensors",
93
+ "model.layers.15.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
94
+ "model.layers.15.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
95
+ "model.layers.15.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
96
+ "model.layers.15.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
97
+ "model.layers.15.self_attn.k_proj.bias": "model-00004-of-00007.safetensors",
98
+ "model.layers.15.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
99
+ "model.layers.15.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
100
+ "model.layers.15.self_attn.q_proj.bias": "model-00004-of-00007.safetensors",
101
+ "model.layers.15.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
102
+ "model.layers.15.self_attn.v_proj.bias": "model-00004-of-00007.safetensors",
103
+ "model.layers.15.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
104
+ "model.layers.16.input_layernorm.weight": "model-00004-of-00007.safetensors",
105
+ "model.layers.16.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
106
+ "model.layers.16.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
107
+ "model.layers.16.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
108
+ "model.layers.16.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
109
+ "model.layers.16.self_attn.k_proj.bias": "model-00004-of-00007.safetensors",
110
+ "model.layers.16.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
111
+ "model.layers.16.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
112
+ "model.layers.16.self_attn.q_proj.bias": "model-00004-of-00007.safetensors",
113
+ "model.layers.16.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
114
+ "model.layers.16.self_attn.v_proj.bias": "model-00004-of-00007.safetensors",
115
+ "model.layers.16.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
116
+ "model.layers.17.input_layernorm.weight": "model-00004-of-00007.safetensors",
117
+ "model.layers.17.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
118
+ "model.layers.17.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
119
+ "model.layers.17.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
120
+ "model.layers.17.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
121
+ "model.layers.17.self_attn.k_proj.bias": "model-00004-of-00007.safetensors",
122
+ "model.layers.17.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
123
+ "model.layers.17.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
124
+ "model.layers.17.self_attn.q_proj.bias": "model-00004-of-00007.safetensors",
125
+ "model.layers.17.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
126
+ "model.layers.17.self_attn.v_proj.bias": "model-00004-of-00007.safetensors",
127
+ "model.layers.17.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
128
+ "model.layers.18.input_layernorm.weight": "model-00005-of-00007.safetensors",
129
+ "model.layers.18.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
130
+ "model.layers.18.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
131
+ "model.layers.18.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
132
+ "model.layers.18.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
133
+ "model.layers.18.self_attn.k_proj.bias": "model-00004-of-00007.safetensors",
134
+ "model.layers.18.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
135
+ "model.layers.18.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
136
+ "model.layers.18.self_attn.q_proj.bias": "model-00004-of-00007.safetensors",
137
+ "model.layers.18.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
138
+ "model.layers.18.self_attn.v_proj.bias": "model-00004-of-00007.safetensors",
139
+ "model.layers.18.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
140
+ "model.layers.19.input_layernorm.weight": "model-00005-of-00007.safetensors",
141
+ "model.layers.19.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
142
+ "model.layers.19.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
143
+ "model.layers.19.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
144
+ "model.layers.19.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
145
+ "model.layers.19.self_attn.k_proj.bias": "model-00005-of-00007.safetensors",
146
+ "model.layers.19.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
147
+ "model.layers.19.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
148
+ "model.layers.19.self_attn.q_proj.bias": "model-00005-of-00007.safetensors",
149
+ "model.layers.19.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
150
+ "model.layers.19.self_attn.v_proj.bias": "model-00005-of-00007.safetensors",
151
+ "model.layers.19.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
152
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00007.safetensors",
153
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00007.safetensors",
154
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00007.safetensors",
155
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00007.safetensors",
156
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00007.safetensors",
157
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00007.safetensors",
158
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
159
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00007.safetensors",
160
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00007.safetensors",
161
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
162
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00007.safetensors",
163
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
164
+ "model.layers.20.input_layernorm.weight": "model-00005-of-00007.safetensors",
165
+ "model.layers.20.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
166
+ "model.layers.20.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
167
+ "model.layers.20.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
168
+ "model.layers.20.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
169
+ "model.layers.20.self_attn.k_proj.bias": "model-00005-of-00007.safetensors",
170
+ "model.layers.20.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
171
+ "model.layers.20.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
172
+ "model.layers.20.self_attn.q_proj.bias": "model-00005-of-00007.safetensors",
173
+ "model.layers.20.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
174
+ "model.layers.20.self_attn.v_proj.bias": "model-00005-of-00007.safetensors",
175
+ "model.layers.20.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
176
+ "model.layers.21.input_layernorm.weight": "model-00005-of-00007.safetensors",
177
+ "model.layers.21.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
178
+ "model.layers.21.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
179
+ "model.layers.21.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
180
+ "model.layers.21.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
181
+ "model.layers.21.self_attn.k_proj.bias": "model-00005-of-00007.safetensors",
182
+ "model.layers.21.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
183
+ "model.layers.21.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
184
+ "model.layers.21.self_attn.q_proj.bias": "model-00005-of-00007.safetensors",
185
+ "model.layers.21.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
186
+ "model.layers.21.self_attn.v_proj.bias": "model-00005-of-00007.safetensors",
187
+ "model.layers.21.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
188
+ "model.layers.22.input_layernorm.weight": "model-00005-of-00007.safetensors",
189
+ "model.layers.22.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
190
+ "model.layers.22.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
191
+ "model.layers.22.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
192
+ "model.layers.22.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
193
+ "model.layers.22.self_attn.k_proj.bias": "model-00005-of-00007.safetensors",
194
+ "model.layers.22.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
195
+ "model.layers.22.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
196
+ "model.layers.22.self_attn.q_proj.bias": "model-00005-of-00007.safetensors",
197
+ "model.layers.22.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
198
+ "model.layers.22.self_attn.v_proj.bias": "model-00005-of-00007.safetensors",
199
+ "model.layers.22.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
200
+ "model.layers.23.input_layernorm.weight": "model-00005-of-00007.safetensors",
201
+ "model.layers.23.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
202
+ "model.layers.23.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
203
+ "model.layers.23.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
204
+ "model.layers.23.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
205
+ "model.layers.23.self_attn.k_proj.bias": "model-00005-of-00007.safetensors",
206
+ "model.layers.23.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
207
+ "model.layers.23.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
208
+ "model.layers.23.self_attn.q_proj.bias": "model-00005-of-00007.safetensors",
209
+ "model.layers.23.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
210
+ "model.layers.23.self_attn.v_proj.bias": "model-00005-of-00007.safetensors",
211
+ "model.layers.23.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
212
+ "model.layers.24.input_layernorm.weight": "model-00006-of-00007.safetensors",
213
+ "model.layers.24.mlp.down_proj.weight": "model-00006-of-00007.safetensors",
214
+ "model.layers.24.mlp.gate_proj.weight": "model-00006-of-00007.safetensors",
215
+ "model.layers.24.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
216
+ "model.layers.24.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
217
+ "model.layers.24.self_attn.k_proj.bias": "model-00005-of-00007.safetensors",
218
+ "model.layers.24.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
219
+ "model.layers.24.self_attn.o_proj.weight": "model-00006-of-00007.safetensors",
220
+ "model.layers.24.self_attn.q_proj.bias": "model-00005-of-00007.safetensors",
221
+ "model.layers.24.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
222
+ "model.layers.24.self_attn.v_proj.bias": "model-00005-of-00007.safetensors",
223
+ "model.layers.24.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
224
+ "model.layers.25.input_layernorm.weight": "model-00006-of-00007.safetensors",
225
+ "model.layers.25.mlp.down_proj.weight": "model-00006-of-00007.safetensors",
226
+ "model.layers.25.mlp.gate_proj.weight": "model-00006-of-00007.safetensors",
227
+ "model.layers.25.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
228
+ "model.layers.25.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
229
+ "model.layers.25.self_attn.k_proj.bias": "model-00006-of-00007.safetensors",
230
+ "model.layers.25.self_attn.k_proj.weight": "model-00006-of-00007.safetensors",
231
+ "model.layers.25.self_attn.o_proj.weight": "model-00006-of-00007.safetensors",
232
+ "model.layers.25.self_attn.q_proj.bias": "model-00006-of-00007.safetensors",
233
+ "model.layers.25.self_attn.q_proj.weight": "model-00006-of-00007.safetensors",
234
+ "model.layers.25.self_attn.v_proj.bias": "model-00006-of-00007.safetensors",
235
+ "model.layers.25.self_attn.v_proj.weight": "model-00006-of-00007.safetensors",
236
+ "model.layers.26.input_layernorm.weight": "model-00006-of-00007.safetensors",
237
+ "model.layers.26.mlp.down_proj.weight": "model-00006-of-00007.safetensors",
238
+ "model.layers.26.mlp.gate_proj.weight": "model-00006-of-00007.safetensors",
239
+ "model.layers.26.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
240
+ "model.layers.26.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
241
+ "model.layers.26.self_attn.k_proj.bias": "model-00006-of-00007.safetensors",
242
+ "model.layers.26.self_attn.k_proj.weight": "model-00006-of-00007.safetensors",
243
+ "model.layers.26.self_attn.o_proj.weight": "model-00006-of-00007.safetensors",
244
+ "model.layers.26.self_attn.q_proj.bias": "model-00006-of-00007.safetensors",
245
+ "model.layers.26.self_attn.q_proj.weight": "model-00006-of-00007.safetensors",
246
+ "model.layers.26.self_attn.v_proj.bias": "model-00006-of-00007.safetensors",
247
+ "model.layers.26.self_attn.v_proj.weight": "model-00006-of-00007.safetensors",
248
+ "model.layers.27.input_layernorm.weight": "model-00006-of-00007.safetensors",
249
+ "model.layers.27.mlp.down_proj.weight": "model-00006-of-00007.safetensors",
250
+ "model.layers.27.mlp.gate_proj.weight": "model-00006-of-00007.safetensors",
251
+ "model.layers.27.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
252
+ "model.layers.27.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
253
+ "model.layers.27.self_attn.k_proj.bias": "model-00006-of-00007.safetensors",
254
+ "model.layers.27.self_attn.k_proj.weight": "model-00006-of-00007.safetensors",
255
+ "model.layers.27.self_attn.o_proj.weight": "model-00006-of-00007.safetensors",
256
+ "model.layers.27.self_attn.q_proj.bias": "model-00006-of-00007.safetensors",
257
+ "model.layers.27.self_attn.q_proj.weight": "model-00006-of-00007.safetensors",
258
+ "model.layers.27.self_attn.v_proj.bias": "model-00006-of-00007.safetensors",
259
+ "model.layers.27.self_attn.v_proj.weight": "model-00006-of-00007.safetensors",
260
+ "model.layers.3.input_layernorm.weight": "model-00002-of-00007.safetensors",
261
+ "model.layers.3.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
262
+ "model.layers.3.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
263
+ "model.layers.3.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
264
+ "model.layers.3.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
265
+ "model.layers.3.self_attn.k_proj.bias": "model-00002-of-00007.safetensors",
266
+ "model.layers.3.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
267
+ "model.layers.3.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
268
+ "model.layers.3.self_attn.q_proj.bias": "model-00002-of-00007.safetensors",
269
+ "model.layers.3.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
270
+ "model.layers.3.self_attn.v_proj.bias": "model-00002-of-00007.safetensors",
271
+ "model.layers.3.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
272
+ "model.layers.4.input_layernorm.weight": "model-00002-of-00007.safetensors",
273
+ "model.layers.4.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
274
+ "model.layers.4.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
275
+ "model.layers.4.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
276
+ "model.layers.4.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
277
+ "model.layers.4.self_attn.k_proj.bias": "model-00002-of-00007.safetensors",
278
+ "model.layers.4.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
279
+ "model.layers.4.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
280
+ "model.layers.4.self_attn.q_proj.bias": "model-00002-of-00007.safetensors",
281
+ "model.layers.4.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
282
+ "model.layers.4.self_attn.v_proj.bias": "model-00002-of-00007.safetensors",
283
+ "model.layers.4.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
284
+ "model.layers.5.input_layernorm.weight": "model-00002-of-00007.safetensors",
285
+ "model.layers.5.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
286
+ "model.layers.5.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
287
+ "model.layers.5.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
288
+ "model.layers.5.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
289
+ "model.layers.5.self_attn.k_proj.bias": "model-00002-of-00007.safetensors",
290
+ "model.layers.5.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
291
+ "model.layers.5.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
292
+ "model.layers.5.self_attn.q_proj.bias": "model-00002-of-00007.safetensors",
293
+ "model.layers.5.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
294
+ "model.layers.5.self_attn.v_proj.bias": "model-00002-of-00007.safetensors",
295
+ "model.layers.5.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
296
+ "model.layers.6.input_layernorm.weight": "model-00002-of-00007.safetensors",
297
+ "model.layers.6.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
298
+ "model.layers.6.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
299
+ "model.layers.6.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
300
+ "model.layers.6.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
301
+ "model.layers.6.self_attn.k_proj.bias": "model-00002-of-00007.safetensors",
302
+ "model.layers.6.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
303
+ "model.layers.6.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
304
+ "model.layers.6.self_attn.q_proj.bias": "model-00002-of-00007.safetensors",
305
+ "model.layers.6.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
306
+ "model.layers.6.self_attn.v_proj.bias": "model-00002-of-00007.safetensors",
307
+ "model.layers.6.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
308
+ "model.layers.7.input_layernorm.weight": "model-00002-of-00007.safetensors",
309
+ "model.layers.7.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
310
+ "model.layers.7.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
311
+ "model.layers.7.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
312
+ "model.layers.7.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
313
+ "model.layers.7.self_attn.k_proj.bias": "model-00002-of-00007.safetensors",
314
+ "model.layers.7.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
315
+ "model.layers.7.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
316
+ "model.layers.7.self_attn.q_proj.bias": "model-00002-of-00007.safetensors",
317
+ "model.layers.7.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
318
+ "model.layers.7.self_attn.v_proj.bias": "model-00002-of-00007.safetensors",
319
+ "model.layers.7.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
320
+ "model.layers.8.input_layernorm.weight": "model-00003-of-00007.safetensors",
321
+ "model.layers.8.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
322
+ "model.layers.8.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
323
+ "model.layers.8.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
324
+ "model.layers.8.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
325
+ "model.layers.8.self_attn.k_proj.bias": "model-00002-of-00007.safetensors",
326
+ "model.layers.8.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
327
+ "model.layers.8.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
328
+ "model.layers.8.self_attn.q_proj.bias": "model-00002-of-00007.safetensors",
329
+ "model.layers.8.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
330
+ "model.layers.8.self_attn.v_proj.bias": "model-00002-of-00007.safetensors",
331
+ "model.layers.8.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
332
+ "model.layers.9.input_layernorm.weight": "model-00003-of-00007.safetensors",
333
+ "model.layers.9.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
334
+ "model.layers.9.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
335
+ "model.layers.9.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
336
+ "model.layers.9.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
337
+ "model.layers.9.self_attn.k_proj.bias": "model-00003-of-00007.safetensors",
338
+ "model.layers.9.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
339
+ "model.layers.9.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
340
+ "model.layers.9.self_attn.q_proj.bias": "model-00003-of-00007.safetensors",
341
+ "model.layers.9.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
342
+ "model.layers.9.self_attn.v_proj.bias": "model-00003-of-00007.safetensors",
343
+ "model.layers.9.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
344
+ "model.norm.weight": "model-00006-of-00007.safetensors"
345
+ }
346
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
3
+ size 11421896
tokenizer_config.json ADDED
@@ -0,0 +1,208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|im_end|>",
201
+ "errors": "replace",
202
+ "extra_special_tokens": {},
203
+ "model_max_length": 131072,
204
+ "pad_token": "<|endoftext|>",
205
+ "split_special_tokens": false,
206
+ "tokenizer_class": "Qwen2Tokenizer",
207
+ "unk_token": null
208
+ }
trainer_state.json ADDED
@@ -0,0 +1,2513 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 4.928,
5
+ "eval_steps": 500,
6
+ "global_step": 310,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.016,
13
+ "grad_norm": 13.215581893920898,
14
+ "learning_rate": 6.25e-07,
15
+ "loss": 1.6218,
16
+ "mean_token_accuracy": 0.6110803186893463,
17
+ "step": 1
18
+ },
19
+ {
20
+ "epoch": 0.032,
21
+ "grad_norm": 13.990567207336426,
22
+ "learning_rate": 1.25e-06,
23
+ "loss": 1.7041,
24
+ "mean_token_accuracy": 0.6301040947437286,
25
+ "step": 2
26
+ },
27
+ {
28
+ "epoch": 0.048,
29
+ "grad_norm": 13.211037635803223,
30
+ "learning_rate": 1.8750000000000003e-06,
31
+ "loss": 1.7223,
32
+ "mean_token_accuracy": 0.5843513906002045,
33
+ "step": 3
34
+ },
35
+ {
36
+ "epoch": 0.064,
37
+ "grad_norm": 14.67287826538086,
38
+ "learning_rate": 2.5e-06,
39
+ "loss": 1.7409,
40
+ "mean_token_accuracy": 0.5931073725223541,
41
+ "step": 4
42
+ },
43
+ {
44
+ "epoch": 0.08,
45
+ "grad_norm": 11.63578987121582,
46
+ "learning_rate": 3.125e-06,
47
+ "loss": 1.6771,
48
+ "mean_token_accuracy": 0.59913170337677,
49
+ "step": 5
50
+ },
51
+ {
52
+ "epoch": 0.096,
53
+ "grad_norm": 10.64076042175293,
54
+ "learning_rate": 3.7500000000000005e-06,
55
+ "loss": 1.594,
56
+ "mean_token_accuracy": 0.604899674654007,
57
+ "step": 6
58
+ },
59
+ {
60
+ "epoch": 0.112,
61
+ "grad_norm": 6.09752893447876,
62
+ "learning_rate": 4.3750000000000005e-06,
63
+ "loss": 1.458,
64
+ "mean_token_accuracy": 0.6177553832530975,
65
+ "step": 7
66
+ },
67
+ {
68
+ "epoch": 0.128,
69
+ "grad_norm": 6.3267412185668945,
70
+ "learning_rate": 5e-06,
71
+ "loss": 1.4365,
72
+ "mean_token_accuracy": 0.625266432762146,
73
+ "step": 8
74
+ },
75
+ {
76
+ "epoch": 0.144,
77
+ "grad_norm": 7.116683006286621,
78
+ "learning_rate": 5.625e-06,
79
+ "loss": 1.4384,
80
+ "mean_token_accuracy": 0.6151327192783356,
81
+ "step": 9
82
+ },
83
+ {
84
+ "epoch": 0.16,
85
+ "grad_norm": 5.78098726272583,
86
+ "learning_rate": 6.25e-06,
87
+ "loss": 1.5083,
88
+ "mean_token_accuracy": 0.5956140756607056,
89
+ "step": 10
90
+ },
91
+ {
92
+ "epoch": 0.176,
93
+ "grad_norm": 6.24675989151001,
94
+ "learning_rate": 6.875e-06,
95
+ "loss": 1.4437,
96
+ "mean_token_accuracy": 0.6152209639549255,
97
+ "step": 11
98
+ },
99
+ {
100
+ "epoch": 0.192,
101
+ "grad_norm": 5.379809856414795,
102
+ "learning_rate": 7.500000000000001e-06,
103
+ "loss": 1.3736,
104
+ "mean_token_accuracy": 0.6294114291667938,
105
+ "step": 12
106
+ },
107
+ {
108
+ "epoch": 0.208,
109
+ "grad_norm": 6.314828872680664,
110
+ "learning_rate": 8.125000000000001e-06,
111
+ "loss": 1.2994,
112
+ "mean_token_accuracy": 0.6413589417934418,
113
+ "step": 13
114
+ },
115
+ {
116
+ "epoch": 0.224,
117
+ "grad_norm": 5.699032783508301,
118
+ "learning_rate": 8.750000000000001e-06,
119
+ "loss": 1.4117,
120
+ "mean_token_accuracy": 0.6173716485500336,
121
+ "step": 14
122
+ },
123
+ {
124
+ "epoch": 0.24,
125
+ "grad_norm": 5.353813171386719,
126
+ "learning_rate": 9.375000000000001e-06,
127
+ "loss": 1.3486,
128
+ "mean_token_accuracy": 0.6315614581108093,
129
+ "step": 15
130
+ },
131
+ {
132
+ "epoch": 0.256,
133
+ "grad_norm": 4.132171630859375,
134
+ "learning_rate": 1e-05,
135
+ "loss": 1.2788,
136
+ "mean_token_accuracy": 0.6412823796272278,
137
+ "step": 16
138
+ },
139
+ {
140
+ "epoch": 0.272,
141
+ "grad_norm": 3.82682204246521,
142
+ "learning_rate": 9.999714542826806e-06,
143
+ "loss": 1.299,
144
+ "mean_token_accuracy": 0.6437126398086548,
145
+ "step": 17
146
+ },
147
+ {
148
+ "epoch": 0.288,
149
+ "grad_norm": 3.6106579303741455,
150
+ "learning_rate": 9.99885820390154e-06,
151
+ "loss": 1.2665,
152
+ "mean_token_accuracy": 0.6511238217353821,
153
+ "step": 18
154
+ },
155
+ {
156
+ "epoch": 0.304,
157
+ "grad_norm": 3.483157157897949,
158
+ "learning_rate": 9.99743108100344e-06,
159
+ "loss": 1.182,
160
+ "mean_token_accuracy": 0.6675288081169128,
161
+ "step": 19
162
+ },
163
+ {
164
+ "epoch": 0.32,
165
+ "grad_norm": 3.896629571914673,
166
+ "learning_rate": 9.995433337085492e-06,
167
+ "loss": 1.2832,
168
+ "mean_token_accuracy": 0.6452755331993103,
169
+ "step": 20
170
+ },
171
+ {
172
+ "epoch": 0.336,
173
+ "grad_norm": 3.7331128120422363,
174
+ "learning_rate": 9.992865200255829e-06,
175
+ "loss": 1.2423,
176
+ "mean_token_accuracy": 0.6492677927017212,
177
+ "step": 21
178
+ },
179
+ {
180
+ "epoch": 0.352,
181
+ "grad_norm": 2.90647292137146,
182
+ "learning_rate": 9.989726963751683e-06,
183
+ "loss": 1.1555,
184
+ "mean_token_accuracy": 0.6576137840747833,
185
+ "step": 22
186
+ },
187
+ {
188
+ "epoch": 0.368,
189
+ "grad_norm": 3.1129422187805176,
190
+ "learning_rate": 9.986018985905901e-06,
191
+ "loss": 1.1522,
192
+ "mean_token_accuracy": 0.6654780805110931,
193
+ "step": 23
194
+ },
195
+ {
196
+ "epoch": 0.384,
197
+ "grad_norm": 2.943026304244995,
198
+ "learning_rate": 9.981741690106035e-06,
199
+ "loss": 1.2178,
200
+ "mean_token_accuracy": 0.6560894250869751,
201
+ "step": 24
202
+ },
203
+ {
204
+ "epoch": 0.4,
205
+ "grad_norm": 2.891770362854004,
206
+ "learning_rate": 9.976895564745993e-06,
207
+ "loss": 1.1376,
208
+ "mean_token_accuracy": 0.6699535846710205,
209
+ "step": 25
210
+ },
211
+ {
212
+ "epoch": 0.416,
213
+ "grad_norm": 3.3815524578094482,
214
+ "learning_rate": 9.97148116317027e-06,
215
+ "loss": 1.0781,
216
+ "mean_token_accuracy": 0.6821956038475037,
217
+ "step": 26
218
+ },
219
+ {
220
+ "epoch": 0.432,
221
+ "grad_norm": 2.6959567070007324,
222
+ "learning_rate": 9.965499103610775e-06,
223
+ "loss": 1.186,
224
+ "mean_token_accuracy": 0.6514892578125,
225
+ "step": 27
226
+ },
227
+ {
228
+ "epoch": 0.448,
229
+ "grad_norm": 2.619265079498291,
230
+ "learning_rate": 9.95895006911623e-06,
231
+ "loss": 1.1389,
232
+ "mean_token_accuracy": 0.6814388632774353,
233
+ "step": 28
234
+ },
235
+ {
236
+ "epoch": 0.464,
237
+ "grad_norm": 2.3042593002319336,
238
+ "learning_rate": 9.951834807474191e-06,
239
+ "loss": 1.2518,
240
+ "mean_token_accuracy": 0.6459318101406097,
241
+ "step": 29
242
+ },
243
+ {
244
+ "epoch": 0.48,
245
+ "grad_norm": 2.0451290607452393,
246
+ "learning_rate": 9.944154131125643e-06,
247
+ "loss": 1.2551,
248
+ "mean_token_accuracy": 0.6489538252353668,
249
+ "step": 30
250
+ },
251
+ {
252
+ "epoch": 0.496,
253
+ "grad_norm": 2.3282535076141357,
254
+ "learning_rate": 9.935908917072253e-06,
255
+ "loss": 1.1706,
256
+ "mean_token_accuracy": 0.6664490401744843,
257
+ "step": 31
258
+ },
259
+ {
260
+ "epoch": 0.512,
261
+ "grad_norm": 2.491532802581787,
262
+ "learning_rate": 9.927100106776213e-06,
263
+ "loss": 1.1587,
264
+ "mean_token_accuracy": 0.6678481698036194,
265
+ "step": 32
266
+ },
267
+ {
268
+ "epoch": 0.528,
269
+ "grad_norm": 2.270688533782959,
270
+ "learning_rate": 9.917728706052765e-06,
271
+ "loss": 1.2636,
272
+ "mean_token_accuracy": 0.6454881429672241,
273
+ "step": 33
274
+ },
275
+ {
276
+ "epoch": 0.544,
277
+ "grad_norm": 2.3011410236358643,
278
+ "learning_rate": 9.907795784955327e-06,
279
+ "loss": 1.1625,
280
+ "mean_token_accuracy": 0.6705195307731628,
281
+ "step": 34
282
+ },
283
+ {
284
+ "epoch": 0.56,
285
+ "grad_norm": 2.0805764198303223,
286
+ "learning_rate": 9.897302477653334e-06,
287
+ "loss": 1.1351,
288
+ "mean_token_accuracy": 0.6750719845294952,
289
+ "step": 35
290
+ },
291
+ {
292
+ "epoch": 0.576,
293
+ "grad_norm": 2.144771099090576,
294
+ "learning_rate": 9.88624998230272e-06,
295
+ "loss": 1.1632,
296
+ "mean_token_accuracy": 0.6594493687152863,
297
+ "step": 36
298
+ },
299
+ {
300
+ "epoch": 0.592,
301
+ "grad_norm": 2.3651621341705322,
302
+ "learning_rate": 9.874639560909118e-06,
303
+ "loss": 1.1155,
304
+ "mean_token_accuracy": 0.6659645736217499,
305
+ "step": 37
306
+ },
307
+ {
308
+ "epoch": 0.608,
309
+ "grad_norm": 2.438082695007324,
310
+ "learning_rate": 9.862472539183757e-06,
311
+ "loss": 1.049,
312
+ "mean_token_accuracy": 0.6966923773288727,
313
+ "step": 38
314
+ },
315
+ {
316
+ "epoch": 0.624,
317
+ "grad_norm": 2.3827691078186035,
318
+ "learning_rate": 9.849750306392085e-06,
319
+ "loss": 1.1359,
320
+ "mean_token_accuracy": 0.6755817234516144,
321
+ "step": 39
322
+ },
323
+ {
324
+ "epoch": 0.64,
325
+ "grad_norm": 2.284531831741333,
326
+ "learning_rate": 9.836474315195148e-06,
327
+ "loss": 1.2714,
328
+ "mean_token_accuracy": 0.6394982039928436,
329
+ "step": 40
330
+ },
331
+ {
332
+ "epoch": 0.656,
333
+ "grad_norm": 2.040752410888672,
334
+ "learning_rate": 9.822646081483713e-06,
335
+ "loss": 1.1401,
336
+ "mean_token_accuracy": 0.6642443835735321,
337
+ "step": 41
338
+ },
339
+ {
340
+ "epoch": 0.672,
341
+ "grad_norm": 2.416327476501465,
342
+ "learning_rate": 9.808267184205182e-06,
343
+ "loss": 1.1629,
344
+ "mean_token_accuracy": 0.6591512560844421,
345
+ "step": 42
346
+ },
347
+ {
348
+ "epoch": 0.688,
349
+ "grad_norm": 2.5612552165985107,
350
+ "learning_rate": 9.793339265183303e-06,
351
+ "loss": 1.0806,
352
+ "mean_token_accuracy": 0.6875375807285309,
353
+ "step": 43
354
+ },
355
+ {
356
+ "epoch": 0.704,
357
+ "grad_norm": 2.396414041519165,
358
+ "learning_rate": 9.777864028930705e-06,
359
+ "loss": 1.143,
360
+ "mean_token_accuracy": 0.6633529961109161,
361
+ "step": 44
362
+ },
363
+ {
364
+ "epoch": 0.72,
365
+ "grad_norm": 2.2041707038879395,
366
+ "learning_rate": 9.761843242454261e-06,
367
+ "loss": 1.1267,
368
+ "mean_token_accuracy": 0.6633928120136261,
369
+ "step": 45
370
+ },
371
+ {
372
+ "epoch": 0.736,
373
+ "grad_norm": 2.2253987789154053,
374
+ "learning_rate": 9.745278735053345e-06,
375
+ "loss": 1.052,
376
+ "mean_token_accuracy": 0.6914463341236115,
377
+ "step": 46
378
+ },
379
+ {
380
+ "epoch": 0.752,
381
+ "grad_norm": 2.0851356983184814,
382
+ "learning_rate": 9.728172398110935e-06,
383
+ "loss": 1.2451,
384
+ "mean_token_accuracy": 0.6509403884410858,
385
+ "step": 47
386
+ },
387
+ {
388
+ "epoch": 0.768,
389
+ "grad_norm": 2.110045909881592,
390
+ "learning_rate": 9.710526184877667e-06,
391
+ "loss": 1.1558,
392
+ "mean_token_accuracy": 0.6611768901348114,
393
+ "step": 48
394
+ },
395
+ {
396
+ "epoch": 0.784,
397
+ "grad_norm": 2.5329489707946777,
398
+ "learning_rate": 9.692342110248802e-06,
399
+ "loss": 1.0322,
400
+ "mean_token_accuracy": 0.6901764273643494,
401
+ "step": 49
402
+ },
403
+ {
404
+ "epoch": 0.8,
405
+ "grad_norm": 2.5721609592437744,
406
+ "learning_rate": 9.673622250534155e-06,
407
+ "loss": 1.1132,
408
+ "mean_token_accuracy": 0.6760377287864685,
409
+ "step": 50
410
+ },
411
+ {
412
+ "epoch": 0.816,
413
+ "grad_norm": 2.4259121417999268,
414
+ "learning_rate": 9.654368743221022e-06,
415
+ "loss": 1.1227,
416
+ "mean_token_accuracy": 0.6690613925457001,
417
+ "step": 51
418
+ },
419
+ {
420
+ "epoch": 0.832,
421
+ "grad_norm": 2.1539769172668457,
422
+ "learning_rate": 9.63458378673011e-06,
423
+ "loss": 1.1727,
424
+ "mean_token_accuracy": 0.6630356311798096,
425
+ "step": 52
426
+ },
427
+ {
428
+ "epoch": 0.848,
429
+ "grad_norm": 2.281749963760376,
430
+ "learning_rate": 9.61426964016452e-06,
431
+ "loss": 1.1745,
432
+ "mean_token_accuracy": 0.6740401685237885,
433
+ "step": 53
434
+ },
435
+ {
436
+ "epoch": 0.864,
437
+ "grad_norm": 2.3648617267608643,
438
+ "learning_rate": 9.593428623051793e-06,
439
+ "loss": 1.1393,
440
+ "mean_token_accuracy": 0.6692823767662048,
441
+ "step": 54
442
+ },
443
+ {
444
+ "epoch": 0.88,
445
+ "grad_norm": 2.0223169326782227,
446
+ "learning_rate": 9.572063115079063e-06,
447
+ "loss": 1.1872,
448
+ "mean_token_accuracy": 0.6564280390739441,
449
+ "step": 55
450
+ },
451
+ {
452
+ "epoch": 0.896,
453
+ "grad_norm": 2.4743919372558594,
454
+ "learning_rate": 9.550175555821333e-06,
455
+ "loss": 1.0744,
456
+ "mean_token_accuracy": 0.6807240545749664,
457
+ "step": 56
458
+ },
459
+ {
460
+ "epoch": 0.912,
461
+ "grad_norm": 2.407332181930542,
462
+ "learning_rate": 9.527768444462922e-06,
463
+ "loss": 1.0236,
464
+ "mean_token_accuracy": 0.6924389898777008,
465
+ "step": 57
466
+ },
467
+ {
468
+ "epoch": 0.928,
469
+ "grad_norm": 2.3066141605377197,
470
+ "learning_rate": 9.504844339512096e-06,
471
+ "loss": 1.08,
472
+ "mean_token_accuracy": 0.6853623390197754,
473
+ "step": 58
474
+ },
475
+ {
476
+ "epoch": 0.944,
477
+ "grad_norm": 2.3197851181030273,
478
+ "learning_rate": 9.481405858508935e-06,
479
+ "loss": 1.1733,
480
+ "mean_token_accuracy": 0.6676386296749115,
481
+ "step": 59
482
+ },
483
+ {
484
+ "epoch": 0.96,
485
+ "grad_norm": 2.277989625930786,
486
+ "learning_rate": 9.457455677726447e-06,
487
+ "loss": 1.112,
488
+ "mean_token_accuracy": 0.6790435910224915,
489
+ "step": 60
490
+ },
491
+ {
492
+ "epoch": 0.976,
493
+ "grad_norm": 2.2761218547821045,
494
+ "learning_rate": 9.432996531865001e-06,
495
+ "loss": 1.1124,
496
+ "mean_token_accuracy": 0.6608242690563202,
497
+ "step": 61
498
+ },
499
+ {
500
+ "epoch": 0.992,
501
+ "grad_norm": 2.4564669132232666,
502
+ "learning_rate": 9.408031213740045e-06,
503
+ "loss": 1.0301,
504
+ "mean_token_accuracy": 0.6902466714382172,
505
+ "step": 62
506
+ },
507
+ {
508
+ "epoch": 1.0,
509
+ "grad_norm": 2.897603988647461,
510
+ "learning_rate": 9.382562573963238e-06,
511
+ "loss": 1.1236,
512
+ "mean_token_accuracy": 0.6699228882789612,
513
+ "step": 63
514
+ },
515
+ {
516
+ "epoch": 1.016,
517
+ "grad_norm": 2.5035905838012695,
518
+ "learning_rate": 9.356593520616948e-06,
519
+ "loss": 0.9954,
520
+ "mean_token_accuracy": 0.6969379484653473,
521
+ "step": 64
522
+ },
523
+ {
524
+ "epoch": 1.032,
525
+ "grad_norm": 2.1372523307800293,
526
+ "learning_rate": 9.330127018922195e-06,
527
+ "loss": 0.8832,
528
+ "mean_token_accuracy": 0.7084084153175354,
529
+ "step": 65
530
+ },
531
+ {
532
+ "epoch": 1.048,
533
+ "grad_norm": 2.1107141971588135,
534
+ "learning_rate": 9.303166090900082e-06,
535
+ "loss": 0.997,
536
+ "mean_token_accuracy": 0.6974039673805237,
537
+ "step": 66
538
+ },
539
+ {
540
+ "epoch": 1.064,
541
+ "grad_norm": 2.203361988067627,
542
+ "learning_rate": 9.275713815026732e-06,
543
+ "loss": 0.8926,
544
+ "mean_token_accuracy": 0.7100537419319153,
545
+ "step": 67
546
+ },
547
+ {
548
+ "epoch": 1.08,
549
+ "grad_norm": 2.280200481414795,
550
+ "learning_rate": 9.24777332588177e-06,
551
+ "loss": 0.7885,
552
+ "mean_token_accuracy": 0.7500935792922974,
553
+ "step": 68
554
+ },
555
+ {
556
+ "epoch": 1.096,
557
+ "grad_norm": 1.9387831687927246,
558
+ "learning_rate": 9.219347813790416e-06,
559
+ "loss": 0.7684,
560
+ "mean_token_accuracy": 0.7537571489810944,
561
+ "step": 69
562
+ },
563
+ {
564
+ "epoch": 1.112,
565
+ "grad_norm": 1.8483513593673706,
566
+ "learning_rate": 9.190440524459203e-06,
567
+ "loss": 0.9308,
568
+ "mean_token_accuracy": 0.7234339416027069,
569
+ "step": 70
570
+ },
571
+ {
572
+ "epoch": 1.1280000000000001,
573
+ "grad_norm": 2.085538148880005,
574
+ "learning_rate": 9.16105475860537e-06,
575
+ "loss": 0.892,
576
+ "mean_token_accuracy": 0.7284388244152069,
577
+ "step": 71
578
+ },
579
+ {
580
+ "epoch": 1.144,
581
+ "grad_norm": 2.351925849914551,
582
+ "learning_rate": 9.131193871579975e-06,
583
+ "loss": 0.9014,
584
+ "mean_token_accuracy": 0.709541916847229,
585
+ "step": 72
586
+ },
587
+ {
588
+ "epoch": 1.16,
589
+ "grad_norm": 2.246936798095703,
590
+ "learning_rate": 9.10086127298478e-06,
591
+ "loss": 0.797,
592
+ "mean_token_accuracy": 0.7530255913734436,
593
+ "step": 73
594
+ },
595
+ {
596
+ "epoch": 1.176,
597
+ "grad_norm": 2.2428550720214844,
598
+ "learning_rate": 9.070060426282924e-06,
599
+ "loss": 0.891,
600
+ "mean_token_accuracy": 0.7251231074333191,
601
+ "step": 74
602
+ },
603
+ {
604
+ "epoch": 1.192,
605
+ "grad_norm": 2.2173142433166504,
606
+ "learning_rate": 9.038794848403463e-06,
607
+ "loss": 0.8948,
608
+ "mean_token_accuracy": 0.7141964137554169,
609
+ "step": 75
610
+ },
611
+ {
612
+ "epoch": 1.208,
613
+ "grad_norm": 2.357853889465332,
614
+ "learning_rate": 9.007068109339783e-06,
615
+ "loss": 0.8253,
616
+ "mean_token_accuracy": 0.737085372209549,
617
+ "step": 76
618
+ },
619
+ {
620
+ "epoch": 1.224,
621
+ "grad_norm": 2.5355238914489746,
622
+ "learning_rate": 8.97488383174199e-06,
623
+ "loss": 0.9135,
624
+ "mean_token_accuracy": 0.7259043753147125,
625
+ "step": 77
626
+ },
627
+ {
628
+ "epoch": 1.24,
629
+ "grad_norm": 2.1808676719665527,
630
+ "learning_rate": 8.94224569050324e-06,
631
+ "loss": 0.9373,
632
+ "mean_token_accuracy": 0.718153566122055,
633
+ "step": 78
634
+ },
635
+ {
636
+ "epoch": 1.256,
637
+ "grad_norm": 2.065774917602539,
638
+ "learning_rate": 8.90915741234015e-06,
639
+ "loss": 0.9066,
640
+ "mean_token_accuracy": 0.7267594933509827,
641
+ "step": 79
642
+ },
643
+ {
644
+ "epoch": 1.272,
645
+ "grad_norm": 2.277780055999756,
646
+ "learning_rate": 8.87562277536726e-06,
647
+ "loss": 0.84,
648
+ "mean_token_accuracy": 0.7230830788612366,
649
+ "step": 80
650
+ },
651
+ {
652
+ "epoch": 1.288,
653
+ "grad_norm": 2.232370615005493,
654
+ "learning_rate": 8.84164560866564e-06,
655
+ "loss": 0.8702,
656
+ "mean_token_accuracy": 0.7305114567279816,
657
+ "step": 81
658
+ },
659
+ {
660
+ "epoch": 1.304,
661
+ "grad_norm": 2.038029193878174,
662
+ "learning_rate": 8.807229791845673e-06,
663
+ "loss": 0.9693,
664
+ "mean_token_accuracy": 0.71137934923172,
665
+ "step": 82
666
+ },
667
+ {
668
+ "epoch": 1.32,
669
+ "grad_norm": 2.3167836666107178,
670
+ "learning_rate": 8.772379254604074e-06,
671
+ "loss": 0.9381,
672
+ "mean_token_accuracy": 0.7007491886615753,
673
+ "step": 83
674
+ },
675
+ {
676
+ "epoch": 1.336,
677
+ "grad_norm": 2.048931121826172,
678
+ "learning_rate": 8.737097976275177e-06,
679
+ "loss": 0.9307,
680
+ "mean_token_accuracy": 0.7027971148490906,
681
+ "step": 84
682
+ },
683
+ {
684
+ "epoch": 1.3519999999999999,
685
+ "grad_norm": 1.9068111181259155,
686
+ "learning_rate": 8.701389985376578e-06,
687
+ "loss": 0.8459,
688
+ "mean_token_accuracy": 0.7333859205245972,
689
+ "step": 85
690
+ },
691
+ {
692
+ "epoch": 1.3679999999999999,
693
+ "grad_norm": 2.2652273178100586,
694
+ "learning_rate": 8.665259359149132e-06,
695
+ "loss": 0.8011,
696
+ "mean_token_accuracy": 0.7324046790599823,
697
+ "step": 86
698
+ },
699
+ {
700
+ "epoch": 1.384,
701
+ "grad_norm": 2.2550220489501953,
702
+ "learning_rate": 8.62871022309141e-06,
703
+ "loss": 0.894,
704
+ "mean_token_accuracy": 0.7118227481842041,
705
+ "step": 87
706
+ },
707
+ {
708
+ "epoch": 1.4,
709
+ "grad_norm": 2.1859939098358154,
710
+ "learning_rate": 8.591746750488639e-06,
711
+ "loss": 0.9182,
712
+ "mean_token_accuracy": 0.7196886539459229,
713
+ "step": 88
714
+ },
715
+ {
716
+ "epoch": 1.416,
717
+ "grad_norm": 2.1244003772735596,
718
+ "learning_rate": 8.554373161936176e-06,
719
+ "loss": 0.8451,
720
+ "mean_token_accuracy": 0.7242709100246429,
721
+ "step": 89
722
+ },
723
+ {
724
+ "epoch": 1.432,
725
+ "grad_norm": 2.1248416900634766,
726
+ "learning_rate": 8.516593724857598e-06,
727
+ "loss": 0.7697,
728
+ "mean_token_accuracy": 0.7540797293186188,
729
+ "step": 90
730
+ },
731
+ {
732
+ "epoch": 1.448,
733
+ "grad_norm": 2.0870182514190674,
734
+ "learning_rate": 8.478412753017433e-06,
735
+ "loss": 0.8992,
736
+ "mean_token_accuracy": 0.7169869244098663,
737
+ "step": 91
738
+ },
739
+ {
740
+ "epoch": 1.464,
741
+ "grad_norm": 2.2304399013519287,
742
+ "learning_rate": 8.439834606028594e-06,
743
+ "loss": 0.9942,
744
+ "mean_token_accuracy": 0.7090178430080414,
745
+ "step": 92
746
+ },
747
+ {
748
+ "epoch": 1.48,
749
+ "grad_norm": 2.376088857650757,
750
+ "learning_rate": 8.400863688854598e-06,
751
+ "loss": 0.82,
752
+ "mean_token_accuracy": 0.7365303039550781,
753
+ "step": 93
754
+ },
755
+ {
756
+ "epoch": 1.496,
757
+ "grad_norm": 2.288710594177246,
758
+ "learning_rate": 8.361504451306585e-06,
759
+ "loss": 0.8563,
760
+ "mean_token_accuracy": 0.730265200138092,
761
+ "step": 94
762
+ },
763
+ {
764
+ "epoch": 1.512,
765
+ "grad_norm": 2.1162161827087402,
766
+ "learning_rate": 8.321761387535231e-06,
767
+ "loss": 0.8894,
768
+ "mean_token_accuracy": 0.7278172373771667,
769
+ "step": 95
770
+ },
771
+ {
772
+ "epoch": 1.528,
773
+ "grad_norm": 2.040531635284424,
774
+ "learning_rate": 8.281639035517591e-06,
775
+ "loss": 0.8451,
776
+ "mean_token_accuracy": 0.7346065938472748,
777
+ "step": 96
778
+ },
779
+ {
780
+ "epoch": 1.544,
781
+ "grad_norm": 2.139214277267456,
782
+ "learning_rate": 8.241141976538944e-06,
783
+ "loss": 0.9186,
784
+ "mean_token_accuracy": 0.7127924859523773,
785
+ "step": 97
786
+ },
787
+ {
788
+ "epoch": 1.56,
789
+ "grad_norm": 2.0378589630126953,
790
+ "learning_rate": 8.200274834669675e-06,
791
+ "loss": 0.8343,
792
+ "mean_token_accuracy": 0.7423592507839203,
793
+ "step": 98
794
+ },
795
+ {
796
+ "epoch": 1.576,
797
+ "grad_norm": 2.0469090938568115,
798
+ "learning_rate": 8.159042276237308e-06,
799
+ "loss": 0.9495,
800
+ "mean_token_accuracy": 0.7150463759899139,
801
+ "step": 99
802
+ },
803
+ {
804
+ "epoch": 1.592,
805
+ "grad_norm": 1.8930435180664062,
806
+ "learning_rate": 8.117449009293668e-06,
807
+ "loss": 0.7888,
808
+ "mean_token_accuracy": 0.7434406578540802,
809
+ "step": 100
810
+ },
811
+ {
812
+ "epoch": 1.608,
813
+ "grad_norm": 2.1599249839782715,
814
+ "learning_rate": 8.075499783077321e-06,
815
+ "loss": 0.8726,
816
+ "mean_token_accuracy": 0.7206392288208008,
817
+ "step": 101
818
+ },
819
+ {
820
+ "epoch": 1.624,
821
+ "grad_norm": 2.1455466747283936,
822
+ "learning_rate": 8.033199387471278e-06,
823
+ "loss": 0.9613,
824
+ "mean_token_accuracy": 0.7104770839214325,
825
+ "step": 102
826
+ },
827
+ {
828
+ "epoch": 1.6400000000000001,
829
+ "grad_norm": 2.0764999389648438,
830
+ "learning_rate": 7.99055265245608e-06,
831
+ "loss": 0.9353,
832
+ "mean_token_accuracy": 0.7238904535770416,
833
+ "step": 103
834
+ },
835
+ {
836
+ "epoch": 1.6560000000000001,
837
+ "grad_norm": 1.9134161472320557,
838
+ "learning_rate": 7.9475644475583e-06,
839
+ "loss": 0.8277,
840
+ "mean_token_accuracy": 0.7398611009120941,
841
+ "step": 104
842
+ },
843
+ {
844
+ "epoch": 1.6720000000000002,
845
+ "grad_norm": 2.059666872024536,
846
+ "learning_rate": 7.904239681294515e-06,
847
+ "loss": 0.809,
848
+ "mean_token_accuracy": 0.7348803877830505,
849
+ "step": 105
850
+ },
851
+ {
852
+ "epoch": 1.688,
853
+ "grad_norm": 1.903882622718811,
854
+ "learning_rate": 7.860583300610849e-06,
855
+ "loss": 0.779,
856
+ "mean_token_accuracy": 0.7487615942955017,
857
+ "step": 106
858
+ },
859
+ {
860
+ "epoch": 1.704,
861
+ "grad_norm": 1.921822428703308,
862
+ "learning_rate": 7.81660029031811e-06,
863
+ "loss": 0.8543,
864
+ "mean_token_accuracy": 0.7314419448375702,
865
+ "step": 107
866
+ },
867
+ {
868
+ "epoch": 1.72,
869
+ "grad_norm": 1.9682213068008423,
870
+ "learning_rate": 7.772295672522615e-06,
871
+ "loss": 0.8275,
872
+ "mean_token_accuracy": 0.7274343073368073,
873
+ "step": 108
874
+ },
875
+ {
876
+ "epoch": 1.736,
877
+ "grad_norm": 2.098949909210205,
878
+ "learning_rate": 7.727674506052744e-06,
879
+ "loss": 0.862,
880
+ "mean_token_accuracy": 0.7319101393222809,
881
+ "step": 109
882
+ },
883
+ {
884
+ "epoch": 1.752,
885
+ "grad_norm": 1.8602185249328613,
886
+ "learning_rate": 7.682741885881314e-06,
887
+ "loss": 0.8919,
888
+ "mean_token_accuracy": 0.7283230125904083,
889
+ "step": 110
890
+ },
891
+ {
892
+ "epoch": 1.768,
893
+ "grad_norm": 1.8391119241714478,
894
+ "learning_rate": 7.637502942543825e-06,
895
+ "loss": 0.9563,
896
+ "mean_token_accuracy": 0.716068685054779,
897
+ "step": 111
898
+ },
899
+ {
900
+ "epoch": 1.784,
901
+ "grad_norm": 1.818740725517273,
902
+ "learning_rate": 7.591962841552627e-06,
903
+ "loss": 0.8362,
904
+ "mean_token_accuracy": 0.7313212752342224,
905
+ "step": 112
906
+ },
907
+ {
908
+ "epoch": 1.8,
909
+ "grad_norm": 1.9765996932983398,
910
+ "learning_rate": 7.546126782807117e-06,
911
+ "loss": 0.9427,
912
+ "mean_token_accuracy": 0.7000788450241089,
913
+ "step": 113
914
+ },
915
+ {
916
+ "epoch": 1.8159999999999998,
917
+ "grad_norm": 1.8508985042572021,
918
+ "learning_rate": 7.500000000000001e-06,
919
+ "loss": 0.8859,
920
+ "mean_token_accuracy": 0.7213517427444458,
921
+ "step": 114
922
+ },
923
+ {
924
+ "epoch": 1.8319999999999999,
925
+ "grad_norm": 1.936930537223816,
926
+ "learning_rate": 7.453587760019691e-06,
927
+ "loss": 0.8006,
928
+ "mean_token_accuracy": 0.7494409084320068,
929
+ "step": 115
930
+ },
931
+ {
932
+ "epoch": 1.8479999999999999,
933
+ "grad_norm": 1.8357962369918823,
934
+ "learning_rate": 7.406895362348916e-06,
935
+ "loss": 0.9697,
936
+ "mean_token_accuracy": 0.7061353325843811,
937
+ "step": 116
938
+ },
939
+ {
940
+ "epoch": 1.8639999999999999,
941
+ "grad_norm": 1.9790865182876587,
942
+ "learning_rate": 7.359928138459615e-06,
943
+ "loss": 0.9303,
944
+ "mean_token_accuracy": 0.7191019952297211,
945
+ "step": 117
946
+ },
947
+ {
948
+ "epoch": 1.88,
949
+ "grad_norm": 1.857360601425171,
950
+ "learning_rate": 7.312691451204178e-06,
951
+ "loss": 0.8748,
952
+ "mean_token_accuracy": 0.7341600954532623,
953
+ "step": 118
954
+ },
955
+ {
956
+ "epoch": 1.896,
957
+ "grad_norm": 1.8874846696853638,
958
+ "learning_rate": 7.265190694203086e-06,
959
+ "loss": 0.9276,
960
+ "mean_token_accuracy": 0.7085016965866089,
961
+ "step": 119
962
+ },
963
+ {
964
+ "epoch": 1.912,
965
+ "grad_norm": 1.8215382099151611,
966
+ "learning_rate": 7.217431291229068e-06,
967
+ "loss": 0.8696,
968
+ "mean_token_accuracy": 0.712285041809082,
969
+ "step": 120
970
+ },
971
+ {
972
+ "epoch": 1.928,
973
+ "grad_norm": 2.019747257232666,
974
+ "learning_rate": 7.169418695587791e-06,
975
+ "loss": 0.8699,
976
+ "mean_token_accuracy": 0.7117200493812561,
977
+ "step": 121
978
+ },
979
+ {
980
+ "epoch": 1.944,
981
+ "grad_norm": 2.0499608516693115,
982
+ "learning_rate": 7.121158389495187e-06,
983
+ "loss": 0.8163,
984
+ "mean_token_accuracy": 0.7351702451705933,
985
+ "step": 122
986
+ },
987
+ {
988
+ "epoch": 1.96,
989
+ "grad_norm": 1.9624381065368652,
990
+ "learning_rate": 7.072655883451478e-06,
991
+ "loss": 0.8318,
992
+ "mean_token_accuracy": 0.7394059598445892,
993
+ "step": 123
994
+ },
995
+ {
996
+ "epoch": 1.976,
997
+ "grad_norm": 2.178957223892212,
998
+ "learning_rate": 7.023916715611969e-06,
999
+ "loss": 0.8883,
1000
+ "mean_token_accuracy": 0.7379129827022552,
1001
+ "step": 124
1002
+ },
1003
+ {
1004
+ "epoch": 1.992,
1005
+ "grad_norm": 2.058216094970703,
1006
+ "learning_rate": 6.974946451154694e-06,
1007
+ "loss": 0.8657,
1008
+ "mean_token_accuracy": 0.7464525401592255,
1009
+ "step": 125
1010
+ },
1011
+ {
1012
+ "epoch": 2.0,
1013
+ "grad_norm": 2.7633073329925537,
1014
+ "learning_rate": 6.925750681644954e-06,
1015
+ "loss": 0.8745,
1016
+ "mean_token_accuracy": 0.6934740543365479,
1017
+ "step": 126
1018
+ },
1019
+ {
1020
+ "epoch": 2.016,
1021
+ "grad_norm": 2.234250783920288,
1022
+ "learning_rate": 6.876335024396872e-06,
1023
+ "loss": 0.7128,
1024
+ "mean_token_accuracy": 0.7859170734882355,
1025
+ "step": 127
1026
+ },
1027
+ {
1028
+ "epoch": 2.032,
1029
+ "grad_norm": 1.9746248722076416,
1030
+ "learning_rate": 6.8267051218319766e-06,
1031
+ "loss": 0.7826,
1032
+ "mean_token_accuracy": 0.7330600023269653,
1033
+ "step": 128
1034
+ },
1035
+ {
1036
+ "epoch": 2.048,
1037
+ "grad_norm": 1.6777163743972778,
1038
+ "learning_rate": 6.7768666408349445e-06,
1039
+ "loss": 0.7145,
1040
+ "mean_token_accuracy": 0.7724449634552002,
1041
+ "step": 129
1042
+ },
1043
+ {
1044
+ "epoch": 2.064,
1045
+ "grad_norm": 1.8287721872329712,
1046
+ "learning_rate": 6.726825272106539e-06,
1047
+ "loss": 0.7962,
1048
+ "mean_token_accuracy": 0.7566362023353577,
1049
+ "step": 130
1050
+ },
1051
+ {
1052
+ "epoch": 2.08,
1053
+ "grad_norm": 1.8211966753005981,
1054
+ "learning_rate": 6.676586729513823e-06,
1055
+ "loss": 0.603,
1056
+ "mean_token_accuracy": 0.7968634068965912,
1057
+ "step": 131
1058
+ },
1059
+ {
1060
+ "epoch": 2.096,
1061
+ "grad_norm": 2.150343894958496,
1062
+ "learning_rate": 6.626156749437736e-06,
1063
+ "loss": 0.5516,
1064
+ "mean_token_accuracy": 0.8278916776180267,
1065
+ "step": 132
1066
+ },
1067
+ {
1068
+ "epoch": 2.112,
1069
+ "grad_norm": 2.1101906299591064,
1070
+ "learning_rate": 6.575541090118105e-06,
1071
+ "loss": 0.7889,
1072
+ "mean_token_accuracy": 0.7510809600353241,
1073
+ "step": 133
1074
+ },
1075
+ {
1076
+ "epoch": 2.128,
1077
+ "grad_norm": 1.85099196434021,
1078
+ "learning_rate": 6.524745530996137e-06,
1079
+ "loss": 0.6569,
1080
+ "mean_token_accuracy": 0.7761998474597931,
1081
+ "step": 134
1082
+ },
1083
+ {
1084
+ "epoch": 2.144,
1085
+ "grad_norm": 1.9975664615631104,
1086
+ "learning_rate": 6.473775872054522e-06,
1087
+ "loss": 0.6174,
1088
+ "mean_token_accuracy": 0.7907389402389526,
1089
+ "step": 135
1090
+ },
1091
+ {
1092
+ "epoch": 2.16,
1093
+ "grad_norm": 1.923912763595581,
1094
+ "learning_rate": 6.4226379331551625e-06,
1095
+ "loss": 0.6157,
1096
+ "mean_token_accuracy": 0.7957707643508911,
1097
+ "step": 136
1098
+ },
1099
+ {
1100
+ "epoch": 2.176,
1101
+ "grad_norm": 2.096576452255249,
1102
+ "learning_rate": 6.3713375533746525e-06,
1103
+ "loss": 0.5704,
1104
+ "mean_token_accuracy": 0.8159550130367279,
1105
+ "step": 137
1106
+ },
1107
+ {
1108
+ "epoch": 2.192,
1109
+ "grad_norm": 2.174253463745117,
1110
+ "learning_rate": 6.319880590337549e-06,
1111
+ "loss": 0.5904,
1112
+ "mean_token_accuracy": 0.7935393750667572,
1113
+ "step": 138
1114
+ },
1115
+ {
1116
+ "epoch": 2.208,
1117
+ "grad_norm": 1.8152769804000854,
1118
+ "learning_rate": 6.268272919547537e-06,
1119
+ "loss": 0.6239,
1120
+ "mean_token_accuracy": 0.7914057075977325,
1121
+ "step": 139
1122
+ },
1123
+ {
1124
+ "epoch": 2.224,
1125
+ "grad_norm": 1.8336701393127441,
1126
+ "learning_rate": 6.216520433716544e-06,
1127
+ "loss": 0.7358,
1128
+ "mean_token_accuracy": 0.7601068317890167,
1129
+ "step": 140
1130
+ },
1131
+ {
1132
+ "epoch": 2.24,
1133
+ "grad_norm": 1.7724854946136475,
1134
+ "learning_rate": 6.164629042091894e-06,
1135
+ "loss": 0.5178,
1136
+ "mean_token_accuracy": 0.8328815996646881,
1137
+ "step": 141
1138
+ },
1139
+ {
1140
+ "epoch": 2.2560000000000002,
1141
+ "grad_norm": 2.001527786254883,
1142
+ "learning_rate": 6.112604669781572e-06,
1143
+ "loss": 0.7341,
1144
+ "mean_token_accuracy": 0.7661413848400116,
1145
+ "step": 142
1146
+ },
1147
+ {
1148
+ "epoch": 2.2720000000000002,
1149
+ "grad_norm": 1.973062515258789,
1150
+ "learning_rate": 6.060453257077686e-06,
1151
+ "loss": 0.6315,
1152
+ "mean_token_accuracy": 0.7816351056098938,
1153
+ "step": 143
1154
+ },
1155
+ {
1156
+ "epoch": 2.288,
1157
+ "grad_norm": 1.9068118333816528,
1158
+ "learning_rate": 6.008180758778167e-06,
1159
+ "loss": 0.6673,
1160
+ "mean_token_accuracy": 0.7819712162017822,
1161
+ "step": 144
1162
+ },
1163
+ {
1164
+ "epoch": 2.304,
1165
+ "grad_norm": 1.9064576625823975,
1166
+ "learning_rate": 5.955793143506863e-06,
1167
+ "loss": 0.5872,
1168
+ "mean_token_accuracy": 0.8068342804908752,
1169
+ "step": 145
1170
+ },
1171
+ {
1172
+ "epoch": 2.32,
1173
+ "grad_norm": 1.783179759979248,
1174
+ "learning_rate": 5.903296393031996e-06,
1175
+ "loss": 0.6182,
1176
+ "mean_token_accuracy": 0.7834264039993286,
1177
+ "step": 146
1178
+ },
1179
+ {
1180
+ "epoch": 2.336,
1181
+ "grad_norm": 1.8228886127471924,
1182
+ "learning_rate": 5.850696501583164e-06,
1183
+ "loss": 0.6316,
1184
+ "mean_token_accuracy": 0.7983745634555817,
1185
+ "step": 147
1186
+ },
1187
+ {
1188
+ "epoch": 2.352,
1189
+ "grad_norm": 1.7698777914047241,
1190
+ "learning_rate": 5.797999475166897e-06,
1191
+ "loss": 0.7002,
1192
+ "mean_token_accuracy": 0.7744604349136353,
1193
+ "step": 148
1194
+ },
1195
+ {
1196
+ "epoch": 2.368,
1197
+ "grad_norm": 2.0236709117889404,
1198
+ "learning_rate": 5.745211330880872e-06,
1199
+ "loss": 0.6289,
1200
+ "mean_token_accuracy": 0.7845793068408966,
1201
+ "step": 149
1202
+ },
1203
+ {
1204
+ "epoch": 2.384,
1205
+ "grad_norm": 2.0701353549957275,
1206
+ "learning_rate": 5.69233809622687e-06,
1207
+ "loss": 0.4853,
1208
+ "mean_token_accuracy": 0.8342052102088928,
1209
+ "step": 150
1210
+ },
1211
+ {
1212
+ "epoch": 2.4,
1213
+ "grad_norm": 1.841230034828186,
1214
+ "learning_rate": 5.6393858084225305e-06,
1215
+ "loss": 0.6612,
1216
+ "mean_token_accuracy": 0.7836865186691284,
1217
+ "step": 151
1218
+ },
1219
+ {
1220
+ "epoch": 2.416,
1221
+ "grad_norm": 1.8939555883407593,
1222
+ "learning_rate": 5.586360513712011e-06,
1223
+ "loss": 0.645,
1224
+ "mean_token_accuracy": 0.779130607843399,
1225
+ "step": 152
1226
+ },
1227
+ {
1228
+ "epoch": 2.432,
1229
+ "grad_norm": 1.9395414590835571,
1230
+ "learning_rate": 5.533268266675601e-06,
1231
+ "loss": 0.6672,
1232
+ "mean_token_accuracy": 0.767756462097168,
1233
+ "step": 153
1234
+ },
1235
+ {
1236
+ "epoch": 2.448,
1237
+ "grad_norm": 1.8063210248947144,
1238
+ "learning_rate": 5.480115129538409e-06,
1239
+ "loss": 0.6267,
1240
+ "mean_token_accuracy": 0.7938161492347717,
1241
+ "step": 154
1242
+ },
1243
+ {
1244
+ "epoch": 2.464,
1245
+ "grad_norm": 1.9447354078292847,
1246
+ "learning_rate": 5.426907171478143e-06,
1247
+ "loss": 0.458,
1248
+ "mean_token_accuracy": 0.8398927450180054,
1249
+ "step": 155
1250
+ },
1251
+ {
1252
+ "epoch": 2.48,
1253
+ "grad_norm": 1.9445098638534546,
1254
+ "learning_rate": 5.373650467932122e-06,
1255
+ "loss": 0.5893,
1256
+ "mean_token_accuracy": 0.8068392276763916,
1257
+ "step": 156
1258
+ },
1259
+ {
1260
+ "epoch": 2.496,
1261
+ "grad_norm": 1.9469696283340454,
1262
+ "learning_rate": 5.320351099903565e-06,
1263
+ "loss": 0.7112,
1264
+ "mean_token_accuracy": 0.7803526222705841,
1265
+ "step": 157
1266
+ },
1267
+ {
1268
+ "epoch": 2.512,
1269
+ "grad_norm": 1.8126373291015625,
1270
+ "learning_rate": 5.267015153267246e-06,
1271
+ "loss": 0.5232,
1272
+ "mean_token_accuracy": 0.8252148330211639,
1273
+ "step": 158
1274
+ },
1275
+ {
1276
+ "epoch": 2.528,
1277
+ "grad_norm": 1.9050959348678589,
1278
+ "learning_rate": 5.213648718074584e-06,
1279
+ "loss": 0.5775,
1280
+ "mean_token_accuracy": 0.7865356504917145,
1281
+ "step": 159
1282
+ },
1283
+ {
1284
+ "epoch": 2.544,
1285
+ "grad_norm": 1.998955488204956,
1286
+ "learning_rate": 5.160257887858278e-06,
1287
+ "loss": 0.703,
1288
+ "mean_token_accuracy": 0.7390948235988617,
1289
+ "step": 160
1290
+ },
1291
+ {
1292
+ "epoch": 2.56,
1293
+ "grad_norm": 1.973913311958313,
1294
+ "learning_rate": 5.106848758936508e-06,
1295
+ "loss": 0.6627,
1296
+ "mean_token_accuracy": 0.7834351360797882,
1297
+ "step": 161
1298
+ },
1299
+ {
1300
+ "epoch": 2.576,
1301
+ "grad_norm": 1.9610992670059204,
1302
+ "learning_rate": 5.053427429716867e-06,
1303
+ "loss": 0.676,
1304
+ "mean_token_accuracy": 0.7891885936260223,
1305
+ "step": 162
1306
+ },
1307
+ {
1308
+ "epoch": 2.592,
1309
+ "grad_norm": 1.9601593017578125,
1310
+ "learning_rate": 5e-06,
1311
+ "loss": 0.6207,
1312
+ "mean_token_accuracy": 0.7994289994239807,
1313
+ "step": 163
1314
+ },
1315
+ {
1316
+ "epoch": 2.608,
1317
+ "grad_norm": 1.98080575466156,
1318
+ "learning_rate": 4.946572570283135e-06,
1319
+ "loss": 0.5899,
1320
+ "mean_token_accuracy": 0.7986661791801453,
1321
+ "step": 164
1322
+ },
1323
+ {
1324
+ "epoch": 2.624,
1325
+ "grad_norm": 1.8518565893173218,
1326
+ "learning_rate": 4.893151241063493e-06,
1327
+ "loss": 0.6278,
1328
+ "mean_token_accuracy": 0.7949875593185425,
1329
+ "step": 165
1330
+ },
1331
+ {
1332
+ "epoch": 2.64,
1333
+ "grad_norm": 1.865482211112976,
1334
+ "learning_rate": 4.839742112141725e-06,
1335
+ "loss": 0.6787,
1336
+ "mean_token_accuracy": 0.7608937621116638,
1337
+ "step": 166
1338
+ },
1339
+ {
1340
+ "epoch": 2.656,
1341
+ "grad_norm": 2.0454063415527344,
1342
+ "learning_rate": 4.786351281925417e-06,
1343
+ "loss": 0.7028,
1344
+ "mean_token_accuracy": 0.7533181011676788,
1345
+ "step": 167
1346
+ },
1347
+ {
1348
+ "epoch": 2.672,
1349
+ "grad_norm": 1.9324195384979248,
1350
+ "learning_rate": 4.732984846732755e-06,
1351
+ "loss": 0.5646,
1352
+ "mean_token_accuracy": 0.8008407652378082,
1353
+ "step": 168
1354
+ },
1355
+ {
1356
+ "epoch": 2.6879999999999997,
1357
+ "grad_norm": 1.8085490465164185,
1358
+ "learning_rate": 4.679648900096436e-06,
1359
+ "loss": 0.6662,
1360
+ "mean_token_accuracy": 0.7686671316623688,
1361
+ "step": 169
1362
+ },
1363
+ {
1364
+ "epoch": 2.7039999999999997,
1365
+ "grad_norm": 1.8703786134719849,
1366
+ "learning_rate": 4.626349532067879e-06,
1367
+ "loss": 0.7152,
1368
+ "mean_token_accuracy": 0.7892328798770905,
1369
+ "step": 170
1370
+ },
1371
+ {
1372
+ "epoch": 2.7199999999999998,
1373
+ "grad_norm": 2.0019490718841553,
1374
+ "learning_rate": 4.573092828521857e-06,
1375
+ "loss": 0.569,
1376
+ "mean_token_accuracy": 0.8060936331748962,
1377
+ "step": 171
1378
+ },
1379
+ {
1380
+ "epoch": 2.7359999999999998,
1381
+ "grad_norm": 1.706632137298584,
1382
+ "learning_rate": 4.5198848704615915e-06,
1383
+ "loss": 0.6882,
1384
+ "mean_token_accuracy": 0.7672425508499146,
1385
+ "step": 172
1386
+ },
1387
+ {
1388
+ "epoch": 2.752,
1389
+ "grad_norm": 1.881160855293274,
1390
+ "learning_rate": 4.466731733324399e-06,
1391
+ "loss": 0.6283,
1392
+ "mean_token_accuracy": 0.8031312525272369,
1393
+ "step": 173
1394
+ },
1395
+ {
1396
+ "epoch": 2.768,
1397
+ "grad_norm": 1.8949018716812134,
1398
+ "learning_rate": 4.413639486287992e-06,
1399
+ "loss": 0.5711,
1400
+ "mean_token_accuracy": 0.8097128570079803,
1401
+ "step": 174
1402
+ },
1403
+ {
1404
+ "epoch": 2.784,
1405
+ "grad_norm": 1.7667330503463745,
1406
+ "learning_rate": 4.3606141915774695e-06,
1407
+ "loss": 0.8263,
1408
+ "mean_token_accuracy": 0.7537855207920074,
1409
+ "step": 175
1410
+ },
1411
+ {
1412
+ "epoch": 2.8,
1413
+ "grad_norm": 1.8455729484558105,
1414
+ "learning_rate": 4.307661903773129e-06,
1415
+ "loss": 0.5854,
1416
+ "mean_token_accuracy": 0.8064002692699432,
1417
+ "step": 176
1418
+ },
1419
+ {
1420
+ "epoch": 2.816,
1421
+ "grad_norm": 1.8596807718276978,
1422
+ "learning_rate": 4.254788669119127e-06,
1423
+ "loss": 0.6915,
1424
+ "mean_token_accuracy": 0.7887419760227203,
1425
+ "step": 177
1426
+ },
1427
+ {
1428
+ "epoch": 2.832,
1429
+ "grad_norm": 1.7176703214645386,
1430
+ "learning_rate": 4.2020005248331056e-06,
1431
+ "loss": 0.6683,
1432
+ "mean_token_accuracy": 0.7633313834667206,
1433
+ "step": 178
1434
+ },
1435
+ {
1436
+ "epoch": 2.848,
1437
+ "grad_norm": 1.7099390029907227,
1438
+ "learning_rate": 4.149303498416838e-06,
1439
+ "loss": 0.5278,
1440
+ "mean_token_accuracy": 0.7912513315677643,
1441
+ "step": 179
1442
+ },
1443
+ {
1444
+ "epoch": 2.864,
1445
+ "grad_norm": 1.9386448860168457,
1446
+ "learning_rate": 4.096703606968007e-06,
1447
+ "loss": 0.6205,
1448
+ "mean_token_accuracy": 0.787754625082016,
1449
+ "step": 180
1450
+ },
1451
+ {
1452
+ "epoch": 2.88,
1453
+ "grad_norm": 1.731827974319458,
1454
+ "learning_rate": 4.04420685649314e-06,
1455
+ "loss": 0.6155,
1456
+ "mean_token_accuracy": 0.8019371926784515,
1457
+ "step": 181
1458
+ },
1459
+ {
1460
+ "epoch": 2.896,
1461
+ "grad_norm": 1.9536575078964233,
1462
+ "learning_rate": 3.991819241221836e-06,
1463
+ "loss": 0.6656,
1464
+ "mean_token_accuracy": 0.7672460973262787,
1465
+ "step": 182
1466
+ },
1467
+ {
1468
+ "epoch": 2.912,
1469
+ "grad_norm": 1.7277284860610962,
1470
+ "learning_rate": 3.939546742922318e-06,
1471
+ "loss": 0.6124,
1472
+ "mean_token_accuracy": 0.7833640873432159,
1473
+ "step": 183
1474
+ },
1475
+ {
1476
+ "epoch": 2.928,
1477
+ "grad_norm": 1.7660479545593262,
1478
+ "learning_rate": 3.887395330218429e-06,
1479
+ "loss": 0.5523,
1480
+ "mean_token_accuracy": 0.8151686191558838,
1481
+ "step": 184
1482
+ },
1483
+ {
1484
+ "epoch": 2.944,
1485
+ "grad_norm": 1.7463651895523071,
1486
+ "learning_rate": 3.835370957908108e-06,
1487
+ "loss": 0.5803,
1488
+ "mean_token_accuracy": 0.8114446699619293,
1489
+ "step": 185
1490
+ },
1491
+ {
1492
+ "epoch": 2.96,
1493
+ "grad_norm": 1.9581048488616943,
1494
+ "learning_rate": 3.783479566283457e-06,
1495
+ "loss": 0.7512,
1496
+ "mean_token_accuracy": 0.7575298547744751,
1497
+ "step": 186
1498
+ },
1499
+ {
1500
+ "epoch": 2.976,
1501
+ "grad_norm": 2.0337820053100586,
1502
+ "learning_rate": 3.731727080452464e-06,
1503
+ "loss": 0.4586,
1504
+ "mean_token_accuracy": 0.8477471768856049,
1505
+ "step": 187
1506
+ },
1507
+ {
1508
+ "epoch": 2.992,
1509
+ "grad_norm": 2.0532712936401367,
1510
+ "learning_rate": 3.6801194096624515e-06,
1511
+ "loss": 0.7017,
1512
+ "mean_token_accuracy": 0.7881054580211639,
1513
+ "step": 188
1514
+ },
1515
+ {
1516
+ "epoch": 3.0,
1517
+ "grad_norm": 2.616175651550293,
1518
+ "learning_rate": 3.6286624466253496e-06,
1519
+ "loss": 0.4702,
1520
+ "mean_token_accuracy": 0.8436923027038574,
1521
+ "step": 189
1522
+ },
1523
+ {
1524
+ "epoch": 3.016,
1525
+ "grad_norm": 1.8989686965942383,
1526
+ "learning_rate": 3.5773620668448384e-06,
1527
+ "loss": 0.4499,
1528
+ "mean_token_accuracy": 0.8539375066757202,
1529
+ "step": 190
1530
+ },
1531
+ {
1532
+ "epoch": 3.032,
1533
+ "grad_norm": 1.7433695793151855,
1534
+ "learning_rate": 3.526224127945479e-06,
1535
+ "loss": 0.44,
1536
+ "mean_token_accuracy": 0.834608644247055,
1537
+ "step": 191
1538
+ },
1539
+ {
1540
+ "epoch": 3.048,
1541
+ "grad_norm": 1.5851784944534302,
1542
+ "learning_rate": 3.475254469003865e-06,
1543
+ "loss": 0.526,
1544
+ "mean_token_accuracy": 0.8261672258377075,
1545
+ "step": 192
1546
+ },
1547
+ {
1548
+ "epoch": 3.064,
1549
+ "grad_norm": 1.618119239807129,
1550
+ "learning_rate": 3.424458909881897e-06,
1551
+ "loss": 0.4833,
1552
+ "mean_token_accuracy": 0.8181418478488922,
1553
+ "step": 193
1554
+ },
1555
+ {
1556
+ "epoch": 3.08,
1557
+ "grad_norm": 1.6358258724212646,
1558
+ "learning_rate": 3.3738432505622653e-06,
1559
+ "loss": 0.3926,
1560
+ "mean_token_accuracy": 0.8705029785633087,
1561
+ "step": 194
1562
+ },
1563
+ {
1564
+ "epoch": 3.096,
1565
+ "grad_norm": 1.7759870290756226,
1566
+ "learning_rate": 3.3234132704861786e-06,
1567
+ "loss": 0.6084,
1568
+ "mean_token_accuracy": 0.8052189946174622,
1569
+ "step": 195
1570
+ },
1571
+ {
1572
+ "epoch": 3.112,
1573
+ "grad_norm": 1.9421766996383667,
1574
+ "learning_rate": 3.273174727893463e-06,
1575
+ "loss": 0.4258,
1576
+ "mean_token_accuracy": 0.8420732915401459,
1577
+ "step": 196
1578
+ },
1579
+ {
1580
+ "epoch": 3.128,
1581
+ "grad_norm": 2.129655361175537,
1582
+ "learning_rate": 3.2231333591650567e-06,
1583
+ "loss": 0.4995,
1584
+ "mean_token_accuracy": 0.8285854160785675,
1585
+ "step": 197
1586
+ },
1587
+ {
1588
+ "epoch": 3.144,
1589
+ "grad_norm": 1.9939950704574585,
1590
+ "learning_rate": 3.173294878168025e-06,
1591
+ "loss": 0.4836,
1592
+ "mean_token_accuracy": 0.8304620087146759,
1593
+ "step": 198
1594
+ },
1595
+ {
1596
+ "epoch": 3.16,
1597
+ "grad_norm": 2.111128330230713,
1598
+ "learning_rate": 3.12366497560313e-06,
1599
+ "loss": 0.4879,
1600
+ "mean_token_accuracy": 0.8432117104530334,
1601
+ "step": 199
1602
+ },
1603
+ {
1604
+ "epoch": 3.176,
1605
+ "grad_norm": 1.8537310361862183,
1606
+ "learning_rate": 3.074249318355046e-06,
1607
+ "loss": 0.4127,
1608
+ "mean_token_accuracy": 0.850278377532959,
1609
+ "step": 200
1610
+ },
1611
+ {
1612
+ "epoch": 3.192,
1613
+ "grad_norm": 1.8146088123321533,
1614
+ "learning_rate": 3.0250535488453077e-06,
1615
+ "loss": 0.4438,
1616
+ "mean_token_accuracy": 0.830359548330307,
1617
+ "step": 201
1618
+ },
1619
+ {
1620
+ "epoch": 3.208,
1621
+ "grad_norm": 1.8513424396514893,
1622
+ "learning_rate": 2.976083284388031e-06,
1623
+ "loss": 0.4974,
1624
+ "mean_token_accuracy": 0.8160843849182129,
1625
+ "step": 202
1626
+ },
1627
+ {
1628
+ "epoch": 3.224,
1629
+ "grad_norm": 1.7857319116592407,
1630
+ "learning_rate": 2.9273441165485227e-06,
1631
+ "loss": 0.4141,
1632
+ "mean_token_accuracy": 0.8569373190402985,
1633
+ "step": 203
1634
+ },
1635
+ {
1636
+ "epoch": 3.24,
1637
+ "grad_norm": 1.8783490657806396,
1638
+ "learning_rate": 2.8788416105048124e-06,
1639
+ "loss": 0.3886,
1640
+ "mean_token_accuracy": 0.850079745054245,
1641
+ "step": 204
1642
+ },
1643
+ {
1644
+ "epoch": 3.2560000000000002,
1645
+ "grad_norm": 1.798640489578247,
1646
+ "learning_rate": 2.83058130441221e-06,
1647
+ "loss": 0.434,
1648
+ "mean_token_accuracy": 0.8334758579730988,
1649
+ "step": 205
1650
+ },
1651
+ {
1652
+ "epoch": 3.2720000000000002,
1653
+ "grad_norm": 1.7705386877059937,
1654
+ "learning_rate": 2.782568708770933e-06,
1655
+ "loss": 0.4141,
1656
+ "mean_token_accuracy": 0.8566360175609589,
1657
+ "step": 206
1658
+ },
1659
+ {
1660
+ "epoch": 3.288,
1661
+ "grad_norm": 1.741195797920227,
1662
+ "learning_rate": 2.734809305796915e-06,
1663
+ "loss": 0.4204,
1664
+ "mean_token_accuracy": 0.8755166530609131,
1665
+ "step": 207
1666
+ },
1667
+ {
1668
+ "epoch": 3.304,
1669
+ "grad_norm": 1.6184072494506836,
1670
+ "learning_rate": 2.687308548795825e-06,
1671
+ "loss": 0.3762,
1672
+ "mean_token_accuracy": 0.8658173084259033,
1673
+ "step": 208
1674
+ },
1675
+ {
1676
+ "epoch": 3.32,
1677
+ "grad_norm": 1.733109712600708,
1678
+ "learning_rate": 2.6400718615403852e-06,
1679
+ "loss": 0.5744,
1680
+ "mean_token_accuracy": 0.8061816394329071,
1681
+ "step": 209
1682
+ },
1683
+ {
1684
+ "epoch": 3.336,
1685
+ "grad_norm": 1.9283976554870605,
1686
+ "learning_rate": 2.5931046376510875e-06,
1687
+ "loss": 0.4062,
1688
+ "mean_token_accuracy": 0.8531254231929779,
1689
+ "step": 210
1690
+ },
1691
+ {
1692
+ "epoch": 3.352,
1693
+ "grad_norm": 1.7725756168365479,
1694
+ "learning_rate": 2.5464122399803126e-06,
1695
+ "loss": 0.5576,
1696
+ "mean_token_accuracy": 0.800176590681076,
1697
+ "step": 211
1698
+ },
1699
+ {
1700
+ "epoch": 3.368,
1701
+ "grad_norm": 1.6289314031600952,
1702
+ "learning_rate": 2.5000000000000015e-06,
1703
+ "loss": 0.4405,
1704
+ "mean_token_accuracy": 0.8461686670780182,
1705
+ "step": 212
1706
+ },
1707
+ {
1708
+ "epoch": 3.384,
1709
+ "grad_norm": 1.7887394428253174,
1710
+ "learning_rate": 2.4538732171928847e-06,
1711
+ "loss": 0.4359,
1712
+ "mean_token_accuracy": 0.8430683016777039,
1713
+ "step": 213
1714
+ },
1715
+ {
1716
+ "epoch": 3.4,
1717
+ "grad_norm": 1.781262993812561,
1718
+ "learning_rate": 2.408037158447375e-06,
1719
+ "loss": 0.6237,
1720
+ "mean_token_accuracy": 0.8007213473320007,
1721
+ "step": 214
1722
+ },
1723
+ {
1724
+ "epoch": 3.416,
1725
+ "grad_norm": 1.6724776029586792,
1726
+ "learning_rate": 2.3624970574561773e-06,
1727
+ "loss": 0.4734,
1728
+ "mean_token_accuracy": 0.8019916415214539,
1729
+ "step": 215
1730
+ },
1731
+ {
1732
+ "epoch": 3.432,
1733
+ "grad_norm": 1.624058485031128,
1734
+ "learning_rate": 2.317258114118686e-06,
1735
+ "loss": 0.5263,
1736
+ "mean_token_accuracy": 0.8112485110759735,
1737
+ "step": 216
1738
+ },
1739
+ {
1740
+ "epoch": 3.448,
1741
+ "grad_norm": 1.5671225786209106,
1742
+ "learning_rate": 2.272325493947257e-06,
1743
+ "loss": 0.5377,
1744
+ "mean_token_accuracy": 0.8191773295402527,
1745
+ "step": 217
1746
+ },
1747
+ {
1748
+ "epoch": 3.464,
1749
+ "grad_norm": 1.6635698080062866,
1750
+ "learning_rate": 2.2277043274773856e-06,
1751
+ "loss": 0.4164,
1752
+ "mean_token_accuracy": 0.8735319077968597,
1753
+ "step": 218
1754
+ },
1755
+ {
1756
+ "epoch": 3.48,
1757
+ "grad_norm": 1.5347254276275635,
1758
+ "learning_rate": 2.1833997096818897e-06,
1759
+ "loss": 0.5414,
1760
+ "mean_token_accuracy": 0.8047713041305542,
1761
+ "step": 219
1762
+ },
1763
+ {
1764
+ "epoch": 3.496,
1765
+ "grad_norm": 1.5895464420318604,
1766
+ "learning_rate": 2.139416699389153e-06,
1767
+ "loss": 0.431,
1768
+ "mean_token_accuracy": 0.8373080492019653,
1769
+ "step": 220
1770
+ },
1771
+ {
1772
+ "epoch": 3.512,
1773
+ "grad_norm": 1.728340983390808,
1774
+ "learning_rate": 2.095760318705487e-06,
1775
+ "loss": 0.4073,
1776
+ "mean_token_accuracy": 0.8578878045082092,
1777
+ "step": 221
1778
+ },
1779
+ {
1780
+ "epoch": 3.528,
1781
+ "grad_norm": 1.8697818517684937,
1782
+ "learning_rate": 2.0524355524417017e-06,
1783
+ "loss": 0.4038,
1784
+ "mean_token_accuracy": 0.8781362175941467,
1785
+ "step": 222
1786
+ },
1787
+ {
1788
+ "epoch": 3.544,
1789
+ "grad_norm": 1.7442781925201416,
1790
+ "learning_rate": 2.00944734754392e-06,
1791
+ "loss": 0.3679,
1792
+ "mean_token_accuracy": 0.8618011176586151,
1793
+ "step": 223
1794
+ },
1795
+ {
1796
+ "epoch": 3.56,
1797
+ "grad_norm": 1.6816269159317017,
1798
+ "learning_rate": 1.966800612528723e-06,
1799
+ "loss": 0.5316,
1800
+ "mean_token_accuracy": 0.7882444560527802,
1801
+ "step": 224
1802
+ },
1803
+ {
1804
+ "epoch": 3.576,
1805
+ "grad_norm": 1.6920692920684814,
1806
+ "learning_rate": 1.9245002169226814e-06,
1807
+ "loss": 0.4844,
1808
+ "mean_token_accuracy": 0.8364316821098328,
1809
+ "step": 225
1810
+ },
1811
+ {
1812
+ "epoch": 3.592,
1813
+ "grad_norm": 1.9367053508758545,
1814
+ "learning_rate": 1.8825509907063328e-06,
1815
+ "loss": 0.3735,
1816
+ "mean_token_accuracy": 0.86876380443573,
1817
+ "step": 226
1818
+ },
1819
+ {
1820
+ "epoch": 3.608,
1821
+ "grad_norm": 1.8703553676605225,
1822
+ "learning_rate": 1.8409577237626935e-06,
1823
+ "loss": 0.4888,
1824
+ "mean_token_accuracy": 0.8111458122730255,
1825
+ "step": 227
1826
+ },
1827
+ {
1828
+ "epoch": 3.624,
1829
+ "grad_norm": 1.7826961278915405,
1830
+ "learning_rate": 1.7997251653303249e-06,
1831
+ "loss": 0.4856,
1832
+ "mean_token_accuracy": 0.801908940076828,
1833
+ "step": 228
1834
+ },
1835
+ {
1836
+ "epoch": 3.64,
1837
+ "grad_norm": 1.846787929534912,
1838
+ "learning_rate": 1.7588580234610592e-06,
1839
+ "loss": 0.5526,
1840
+ "mean_token_accuracy": 0.8281767964363098,
1841
+ "step": 229
1842
+ },
1843
+ {
1844
+ "epoch": 3.656,
1845
+ "grad_norm": 1.5192652940750122,
1846
+ "learning_rate": 1.7183609644824096e-06,
1847
+ "loss": 0.4609,
1848
+ "mean_token_accuracy": 0.8234535455703735,
1849
+ "step": 230
1850
+ },
1851
+ {
1852
+ "epoch": 3.672,
1853
+ "grad_norm": 1.6722280979156494,
1854
+ "learning_rate": 1.67823861246477e-06,
1855
+ "loss": 0.5246,
1856
+ "mean_token_accuracy": 0.7935002446174622,
1857
+ "step": 231
1858
+ },
1859
+ {
1860
+ "epoch": 3.6879999999999997,
1861
+ "grad_norm": 1.5522016286849976,
1862
+ "learning_rate": 1.6384955486934157e-06,
1863
+ "loss": 0.4526,
1864
+ "mean_token_accuracy": 0.8310949802398682,
1865
+ "step": 232
1866
+ },
1867
+ {
1868
+ "epoch": 3.7039999999999997,
1869
+ "grad_norm": 1.7835192680358887,
1870
+ "learning_rate": 1.5991363111454023e-06,
1871
+ "loss": 0.4427,
1872
+ "mean_token_accuracy": 0.8425520956516266,
1873
+ "step": 233
1874
+ },
1875
+ {
1876
+ "epoch": 3.7199999999999998,
1877
+ "grad_norm": 1.6655128002166748,
1878
+ "learning_rate": 1.5601653939714073e-06,
1879
+ "loss": 0.5791,
1880
+ "mean_token_accuracy": 0.8191401064395905,
1881
+ "step": 234
1882
+ },
1883
+ {
1884
+ "epoch": 3.7359999999999998,
1885
+ "grad_norm": 1.6413390636444092,
1886
+ "learning_rate": 1.5215872469825682e-06,
1887
+ "loss": 0.4886,
1888
+ "mean_token_accuracy": 0.8357130289077759,
1889
+ "step": 235
1890
+ },
1891
+ {
1892
+ "epoch": 3.752,
1893
+ "grad_norm": 1.6971957683563232,
1894
+ "learning_rate": 1.4834062751424018e-06,
1895
+ "loss": 0.5311,
1896
+ "mean_token_accuracy": 0.8187433481216431,
1897
+ "step": 236
1898
+ },
1899
+ {
1900
+ "epoch": 3.768,
1901
+ "grad_norm": 1.489127516746521,
1902
+ "learning_rate": 1.4456268380638262e-06,
1903
+ "loss": 0.4431,
1904
+ "mean_token_accuracy": 0.8484348654747009,
1905
+ "step": 237
1906
+ },
1907
+ {
1908
+ "epoch": 3.784,
1909
+ "grad_norm": 1.6830918788909912,
1910
+ "learning_rate": 1.4082532495113627e-06,
1911
+ "loss": 0.4008,
1912
+ "mean_token_accuracy": 0.8682940900325775,
1913
+ "step": 238
1914
+ },
1915
+ {
1916
+ "epoch": 3.8,
1917
+ "grad_norm": 1.8044171333312988,
1918
+ "learning_rate": 1.3712897769085903e-06,
1919
+ "loss": 0.3821,
1920
+ "mean_token_accuracy": 0.8439038991928101,
1921
+ "step": 239
1922
+ },
1923
+ {
1924
+ "epoch": 3.816,
1925
+ "grad_norm": 1.6815401315689087,
1926
+ "learning_rate": 1.3347406408508695e-06,
1927
+ "loss": 0.3555,
1928
+ "mean_token_accuracy": 0.8827997744083405,
1929
+ "step": 240
1930
+ },
1931
+ {
1932
+ "epoch": 3.832,
1933
+ "grad_norm": 1.5818198919296265,
1934
+ "learning_rate": 1.298610014623423e-06,
1935
+ "loss": 0.3805,
1936
+ "mean_token_accuracy": 0.8539446592330933,
1937
+ "step": 241
1938
+ },
1939
+ {
1940
+ "epoch": 3.848,
1941
+ "grad_norm": 1.6825566291809082,
1942
+ "learning_rate": 1.2629020237248241e-06,
1943
+ "loss": 0.4691,
1944
+ "mean_token_accuracy": 0.8389621675014496,
1945
+ "step": 242
1946
+ },
1947
+ {
1948
+ "epoch": 3.864,
1949
+ "grad_norm": 1.8937445878982544,
1950
+ "learning_rate": 1.2276207453959283e-06,
1951
+ "loss": 0.4858,
1952
+ "mean_token_accuracy": 0.8229635059833527,
1953
+ "step": 243
1954
+ },
1955
+ {
1956
+ "epoch": 3.88,
1957
+ "grad_norm": 1.7236624956130981,
1958
+ "learning_rate": 1.1927702081543279e-06,
1959
+ "loss": 0.5053,
1960
+ "mean_token_accuracy": 0.8316462635993958,
1961
+ "step": 244
1962
+ },
1963
+ {
1964
+ "epoch": 3.896,
1965
+ "grad_norm": 1.700505256652832,
1966
+ "learning_rate": 1.158354391334362e-06,
1967
+ "loss": 0.3465,
1968
+ "mean_token_accuracy": 0.8770395815372467,
1969
+ "step": 245
1970
+ },
1971
+ {
1972
+ "epoch": 3.912,
1973
+ "grad_norm": 1.7477822303771973,
1974
+ "learning_rate": 1.1243772246327416e-06,
1975
+ "loss": 0.4043,
1976
+ "mean_token_accuracy": 0.8705323040485382,
1977
+ "step": 246
1978
+ },
1979
+ {
1980
+ "epoch": 3.928,
1981
+ "grad_norm": 1.6631226539611816,
1982
+ "learning_rate": 1.0908425876598512e-06,
1983
+ "loss": 0.446,
1984
+ "mean_token_accuracy": 0.8587776124477386,
1985
+ "step": 247
1986
+ },
1987
+ {
1988
+ "epoch": 3.944,
1989
+ "grad_norm": 1.7363426685333252,
1990
+ "learning_rate": 1.0577543094967613e-06,
1991
+ "loss": 0.4081,
1992
+ "mean_token_accuracy": 0.871842622756958,
1993
+ "step": 248
1994
+ },
1995
+ {
1996
+ "epoch": 3.96,
1997
+ "grad_norm": 1.7819398641586304,
1998
+ "learning_rate": 1.0251161682580125e-06,
1999
+ "loss": 0.3599,
2000
+ "mean_token_accuracy": 0.8662829697132111,
2001
+ "step": 249
2002
+ },
2003
+ {
2004
+ "epoch": 3.976,
2005
+ "grad_norm": 1.8177067041397095,
2006
+ "learning_rate": 9.929318906602176e-07,
2007
+ "loss": 0.4463,
2008
+ "mean_token_accuracy": 0.8615152835845947,
2009
+ "step": 250
2010
+ },
2011
+ {
2012
+ "epoch": 3.992,
2013
+ "grad_norm": 1.6980502605438232,
2014
+ "learning_rate": 9.612051515965388e-07,
2015
+ "loss": 0.5262,
2016
+ "mean_token_accuracy": 0.7997405827045441,
2017
+ "step": 251
2018
+ },
2019
+ {
2020
+ "epoch": 4.0,
2021
+ "grad_norm": 2.324087619781494,
2022
+ "learning_rate": 9.299395737170758e-07,
2023
+ "loss": 0.3421,
2024
+ "mean_token_accuracy": 0.8514267802238464,
2025
+ "step": 252
2026
+ },
2027
+ {
2028
+ "epoch": 4.016,
2029
+ "grad_norm": 1.6846673488616943,
2030
+ "learning_rate": 8.991387270152202e-07,
2031
+ "loss": 0.4377,
2032
+ "mean_token_accuracy": 0.8406525552272797,
2033
+ "step": 253
2034
+ },
2035
+ {
2036
+ "epoch": 4.032,
2037
+ "grad_norm": 1.7401528358459473,
2038
+ "learning_rate": 8.688061284200266e-07,
2039
+ "loss": 0.3745,
2040
+ "mean_token_accuracy": 0.862852543592453,
2041
+ "step": 254
2042
+ },
2043
+ {
2044
+ "epoch": 4.048,
2045
+ "grad_norm": 1.5129587650299072,
2046
+ "learning_rate": 8.389452413946314e-07,
2047
+ "loss": 0.4453,
2048
+ "mean_token_accuracy": 0.8313189148902893,
2049
+ "step": 255
2050
+ },
2051
+ {
2052
+ "epoch": 4.064,
2053
+ "grad_norm": 1.4720897674560547,
2054
+ "learning_rate": 8.095594755407971e-07,
2055
+ "loss": 0.5333,
2056
+ "mean_token_accuracy": 0.8177091777324677,
2057
+ "step": 256
2058
+ },
2059
+ {
2060
+ "epoch": 4.08,
2061
+ "grad_norm": 1.5798670053482056,
2062
+ "learning_rate": 7.806521862095834e-07,
2063
+ "loss": 0.3594,
2064
+ "mean_token_accuracy": 0.878955602645874,
2065
+ "step": 257
2066
+ },
2067
+ {
2068
+ "epoch": 4.096,
2069
+ "grad_norm": 1.5988901853561401,
2070
+ "learning_rate": 7.522266741182305e-07,
2071
+ "loss": 0.3372,
2072
+ "mean_token_accuracy": 0.8858175873756409,
2073
+ "step": 258
2074
+ },
2075
+ {
2076
+ "epoch": 4.112,
2077
+ "grad_norm": 1.3429925441741943,
2078
+ "learning_rate": 7.242861849732696e-07,
2079
+ "loss": 0.3053,
2080
+ "mean_token_accuracy": 0.8911112546920776,
2081
+ "step": 259
2082
+ },
2083
+ {
2084
+ "epoch": 4.128,
2085
+ "grad_norm": 1.392916202545166,
2086
+ "learning_rate": 6.968339090999188e-07,
2087
+ "loss": 0.3566,
2088
+ "mean_token_accuracy": 0.8763693869113922,
2089
+ "step": 260
2090
+ },
2091
+ {
2092
+ "epoch": 4.144,
2093
+ "grad_norm": 1.3282548189163208,
2094
+ "learning_rate": 6.698729810778065e-07,
2095
+ "loss": 0.3934,
2096
+ "mean_token_accuracy": 0.8518996834754944,
2097
+ "step": 261
2098
+ },
2099
+ {
2100
+ "epoch": 4.16,
2101
+ "grad_norm": 1.3634921312332153,
2102
+ "learning_rate": 6.43406479383053e-07,
2103
+ "loss": 0.2876,
2104
+ "mean_token_accuracy": 0.8888527750968933,
2105
+ "step": 262
2106
+ },
2107
+ {
2108
+ "epoch": 4.176,
2109
+ "grad_norm": 1.5951544046401978,
2110
+ "learning_rate": 6.174374260367611e-07,
2111
+ "loss": 0.3306,
2112
+ "mean_token_accuracy": 0.8580814898014069,
2113
+ "step": 263
2114
+ },
2115
+ {
2116
+ "epoch": 4.192,
2117
+ "grad_norm": 1.8386245965957642,
2118
+ "learning_rate": 5.919687862599549e-07,
2119
+ "loss": 0.5825,
2120
+ "mean_token_accuracy": 0.8090504109859467,
2121
+ "step": 264
2122
+ },
2123
+ {
2124
+ "epoch": 4.208,
2125
+ "grad_norm": 1.6140440702438354,
2126
+ "learning_rate": 5.670034681349995e-07,
2127
+ "loss": 0.3189,
2128
+ "mean_token_accuracy": 0.8884587585926056,
2129
+ "step": 265
2130
+ },
2131
+ {
2132
+ "epoch": 4.224,
2133
+ "grad_norm": 1.5564498901367188,
2134
+ "learning_rate": 5.425443222735527e-07,
2135
+ "loss": 0.3539,
2136
+ "mean_token_accuracy": 0.8893531560897827,
2137
+ "step": 266
2138
+ },
2139
+ {
2140
+ "epoch": 4.24,
2141
+ "grad_norm": 1.6134988069534302,
2142
+ "learning_rate": 5.185941414910673e-07,
2143
+ "loss": 0.3285,
2144
+ "mean_token_accuracy": 0.8698451220989227,
2145
+ "step": 267
2146
+ },
2147
+ {
2148
+ "epoch": 4.256,
2149
+ "grad_norm": 1.657450556755066,
2150
+ "learning_rate": 4.951556604879049e-07,
2151
+ "loss": 0.3152,
2152
+ "mean_token_accuracy": 0.8656443655490875,
2153
+ "step": 268
2154
+ },
2155
+ {
2156
+ "epoch": 4.272,
2157
+ "grad_norm": 1.6017976999282837,
2158
+ "learning_rate": 4.722315555370793e-07,
2159
+ "loss": 0.3683,
2160
+ "mean_token_accuracy": 0.8707852065563202,
2161
+ "step": 269
2162
+ },
2163
+ {
2164
+ "epoch": 4.288,
2165
+ "grad_norm": 1.5347394943237305,
2166
+ "learning_rate": 4.4982444417866753e-07,
2167
+ "loss": 0.3373,
2168
+ "mean_token_accuracy": 0.8773435652256012,
2169
+ "step": 270
2170
+ },
2171
+ {
2172
+ "epoch": 4.304,
2173
+ "grad_norm": 1.658043384552002,
2174
+ "learning_rate": 4.279368849209381e-07,
2175
+ "loss": 0.4898,
2176
+ "mean_token_accuracy": 0.8278676569461823,
2177
+ "step": 271
2178
+ },
2179
+ {
2180
+ "epoch": 4.32,
2181
+ "grad_norm": 1.503208875656128,
2182
+ "learning_rate": 4.0657137694820826e-07,
2183
+ "loss": 0.2716,
2184
+ "mean_token_accuracy": 0.9029871225357056,
2185
+ "step": 272
2186
+ },
2187
+ {
2188
+ "epoch": 4.336,
2189
+ "grad_norm": 1.4751423597335815,
2190
+ "learning_rate": 3.8573035983548167e-07,
2191
+ "loss": 0.4335,
2192
+ "mean_token_accuracy": 0.8453833758831024,
2193
+ "step": 273
2194
+ },
2195
+ {
2196
+ "epoch": 4.352,
2197
+ "grad_norm": 1.5802851915359497,
2198
+ "learning_rate": 3.6541621326989183e-07,
2199
+ "loss": 0.372,
2200
+ "mean_token_accuracy": 0.8641645312309265,
2201
+ "step": 274
2202
+ },
2203
+ {
2204
+ "epoch": 4.368,
2205
+ "grad_norm": 1.4285887479782104,
2206
+ "learning_rate": 3.4563125677897936e-07,
2207
+ "loss": 0.2716,
2208
+ "mean_token_accuracy": 0.8914371728897095,
2209
+ "step": 275
2210
+ },
2211
+ {
2212
+ "epoch": 4.384,
2213
+ "grad_norm": 1.543737769126892,
2214
+ "learning_rate": 3.263777494658449e-07,
2215
+ "loss": 0.4701,
2216
+ "mean_token_accuracy": 0.8330877125263214,
2217
+ "step": 276
2218
+ },
2219
+ {
2220
+ "epoch": 4.4,
2221
+ "grad_norm": 1.5941988229751587,
2222
+ "learning_rate": 3.076578897511978e-07,
2223
+ "loss": 0.4733,
2224
+ "mean_token_accuracy": 0.8405623137950897,
2225
+ "step": 277
2226
+ },
2227
+ {
2228
+ "epoch": 4.416,
2229
+ "grad_norm": 1.4298094511032104,
2230
+ "learning_rate": 2.894738151223331e-07,
2231
+ "loss": 0.3411,
2232
+ "mean_token_accuracy": 0.8751503527164459,
2233
+ "step": 278
2234
+ },
2235
+ {
2236
+ "epoch": 4.432,
2237
+ "grad_norm": 1.4553662538528442,
2238
+ "learning_rate": 2.71827601889067e-07,
2239
+ "loss": 0.4069,
2240
+ "mean_token_accuracy": 0.8369295597076416,
2241
+ "step": 279
2242
+ },
2243
+ {
2244
+ "epoch": 4.448,
2245
+ "grad_norm": 1.3951661586761475,
2246
+ "learning_rate": 2.547212649466568e-07,
2247
+ "loss": 0.3843,
2248
+ "mean_token_accuracy": 0.846329540014267,
2249
+ "step": 280
2250
+ },
2251
+ {
2252
+ "epoch": 4.464,
2253
+ "grad_norm": 1.5225402116775513,
2254
+ "learning_rate": 2.3815675754573885e-07,
2255
+ "loss": 0.3576,
2256
+ "mean_token_accuracy": 0.8736283481121063,
2257
+ "step": 281
2258
+ },
2259
+ {
2260
+ "epoch": 4.48,
2261
+ "grad_norm": 1.6082041263580322,
2262
+ "learning_rate": 2.2213597106929608e-07,
2263
+ "loss": 0.2575,
2264
+ "mean_token_accuracy": 0.9190754592418671,
2265
+ "step": 282
2266
+ },
2267
+ {
2268
+ "epoch": 4.496,
2269
+ "grad_norm": 1.5779746770858765,
2270
+ "learning_rate": 2.0666073481669714e-07,
2271
+ "loss": 0.3829,
2272
+ "mean_token_accuracy": 0.8619149625301361,
2273
+ "step": 283
2274
+ },
2275
+ {
2276
+ "epoch": 4.5120000000000005,
2277
+ "grad_norm": 1.5220720767974854,
2278
+ "learning_rate": 1.9173281579481896e-07,
2279
+ "loss": 0.2685,
2280
+ "mean_token_accuracy": 0.9106524586677551,
2281
+ "step": 284
2282
+ },
2283
+ {
2284
+ "epoch": 4.5280000000000005,
2285
+ "grad_norm": 1.500473976135254,
2286
+ "learning_rate": 1.7735391851628814e-07,
2287
+ "loss": 0.2973,
2288
+ "mean_token_accuracy": 0.892973393201828,
2289
+ "step": 285
2290
+ },
2291
+ {
2292
+ "epoch": 4.5440000000000005,
2293
+ "grad_norm": 1.5466065406799316,
2294
+ "learning_rate": 1.6352568480485277e-07,
2295
+ "loss": 0.3419,
2296
+ "mean_token_accuracy": 0.8905702233314514,
2297
+ "step": 286
2298
+ },
2299
+ {
2300
+ "epoch": 4.5600000000000005,
2301
+ "grad_norm": 1.4613832235336304,
2302
+ "learning_rate": 1.5024969360791564e-07,
2303
+ "loss": 0.3889,
2304
+ "mean_token_accuracy": 0.8405336439609528,
2305
+ "step": 287
2306
+ },
2307
+ {
2308
+ "epoch": 4.576,
2309
+ "grad_norm": 1.484372615814209,
2310
+ "learning_rate": 1.375274608162447e-07,
2311
+ "loss": 0.2586,
2312
+ "mean_token_accuracy": 0.9031639397144318,
2313
+ "step": 288
2314
+ },
2315
+ {
2316
+ "epoch": 4.592,
2317
+ "grad_norm": 1.6078850030899048,
2318
+ "learning_rate": 1.253604390908819e-07,
2319
+ "loss": 0.3391,
2320
+ "mean_token_accuracy": 0.8819546401500702,
2321
+ "step": 289
2322
+ },
2323
+ {
2324
+ "epoch": 4.608,
2325
+ "grad_norm": 1.6001267433166504,
2326
+ "learning_rate": 1.1375001769728e-07,
2327
+ "loss": 0.311,
2328
+ "mean_token_accuracy": 0.8772971332073212,
2329
+ "step": 290
2330
+ },
2331
+ {
2332
+ "epoch": 4.624,
2333
+ "grad_norm": 1.572523593902588,
2334
+ "learning_rate": 1.0269752234666642e-07,
2335
+ "loss": 0.5671,
2336
+ "mean_token_accuracy": 0.8123734891414642,
2337
+ "step": 291
2338
+ },
2339
+ {
2340
+ "epoch": 4.64,
2341
+ "grad_norm": 1.4202545881271362,
2342
+ "learning_rate": 9.22042150446728e-08,
2343
+ "loss": 0.3798,
2344
+ "mean_token_accuracy": 0.8508090078830719,
2345
+ "step": 292
2346
+ },
2347
+ {
2348
+ "epoch": 4.656,
2349
+ "grad_norm": 1.5495851039886475,
2350
+ "learning_rate": 8.227129394723643e-08,
2351
+ "loss": 0.3317,
2352
+ "mean_token_accuracy": 0.8867059946060181,
2353
+ "step": 293
2354
+ },
2355
+ {
2356
+ "epoch": 4.672,
2357
+ "grad_norm": 1.4975632429122925,
2358
+ "learning_rate": 7.289989322378732e-08,
2359
+ "loss": 0.3868,
2360
+ "mean_token_accuracy": 0.8555810451507568,
2361
+ "step": 294
2362
+ },
2363
+ {
2364
+ "epoch": 4.688,
2365
+ "grad_norm": 1.413699984550476,
2366
+ "learning_rate": 6.409108292774912e-08,
2367
+ "loss": 0.3873,
2368
+ "mean_token_accuracy": 0.8520547449588776,
2369
+ "step": 295
2370
+ },
2371
+ {
2372
+ "epoch": 4.704,
2373
+ "grad_norm": 1.5418516397476196,
2374
+ "learning_rate": 5.584586887435739e-08,
2375
+ "loss": 0.3496,
2376
+ "mean_token_accuracy": 0.863271564245224,
2377
+ "step": 296
2378
+ },
2379
+ {
2380
+ "epoch": 4.72,
2381
+ "grad_norm": 1.517801284790039,
2382
+ "learning_rate": 4.8165192525809754e-08,
2383
+ "loss": 0.402,
2384
+ "mean_token_accuracy": 0.867528647184372,
2385
+ "step": 297
2386
+ },
2387
+ {
2388
+ "epoch": 4.736,
2389
+ "grad_norm": 1.3901314735412598,
2390
+ "learning_rate": 4.104993088376974e-08,
2391
+ "loss": 0.4927,
2392
+ "mean_token_accuracy": 0.8101126849651337,
2393
+ "step": 298
2394
+ },
2395
+ {
2396
+ "epoch": 4.752,
2397
+ "grad_norm": 1.6048532724380493,
2398
+ "learning_rate": 3.450089638922738e-08,
2399
+ "loss": 0.4841,
2400
+ "mean_token_accuracy": 0.836152046918869,
2401
+ "step": 299
2402
+ },
2403
+ {
2404
+ "epoch": 4.768,
2405
+ "grad_norm": 1.39896821975708,
2406
+ "learning_rate": 2.8518836829732332e-08,
2407
+ "loss": 0.4559,
2408
+ "mean_token_accuracy": 0.8460139036178589,
2409
+ "step": 300
2410
+ },
2411
+ {
2412
+ "epoch": 4.784,
2413
+ "grad_norm": 1.40359365940094,
2414
+ "learning_rate": 2.3104435254008852e-08,
2415
+ "loss": 0.2905,
2416
+ "mean_token_accuracy": 0.8796796500682831,
2417
+ "step": 301
2418
+ },
2419
+ {
2420
+ "epoch": 4.8,
2421
+ "grad_norm": 1.392991065979004,
2422
+ "learning_rate": 1.8258309893965375e-08,
2423
+ "loss": 0.3089,
2424
+ "mean_token_accuracy": 0.8802558779716492,
2425
+ "step": 302
2426
+ },
2427
+ {
2428
+ "epoch": 4.816,
2429
+ "grad_norm": 1.6868401765823364,
2430
+ "learning_rate": 1.3981014094099354e-08,
2431
+ "loss": 0.2923,
2432
+ "mean_token_accuracy": 0.8579813539981842,
2433
+ "step": 303
2434
+ },
2435
+ {
2436
+ "epoch": 4.832,
2437
+ "grad_norm": 1.4592156410217285,
2438
+ "learning_rate": 1.0273036248318325e-08,
2439
+ "loss": 0.3833,
2440
+ "mean_token_accuracy": 0.8635309934616089,
2441
+ "step": 304
2442
+ },
2443
+ {
2444
+ "epoch": 4.848,
2445
+ "grad_norm": 1.4995806217193604,
2446
+ "learning_rate": 7.13479974417175e-09,
2447
+ "loss": 0.4708,
2448
+ "mean_token_accuracy": 0.8479401469230652,
2449
+ "step": 305
2450
+ },
2451
+ {
2452
+ "epoch": 4.864,
2453
+ "grad_norm": 1.4440363645553589,
2454
+ "learning_rate": 4.56666291450858e-09,
2455
+ "loss": 0.2393,
2456
+ "mean_token_accuracy": 0.9273587167263031,
2457
+ "step": 306
2458
+ },
2459
+ {
2460
+ "epoch": 4.88,
2461
+ "grad_norm": 1.4790477752685547,
2462
+ "learning_rate": 2.568918996560532e-09,
2463
+ "loss": 0.3455,
2464
+ "mean_token_accuracy": 0.8849050998687744,
2465
+ "step": 307
2466
+ },
2467
+ {
2468
+ "epoch": 4.896,
2469
+ "grad_norm": 1.658073902130127,
2470
+ "learning_rate": 1.1417960984605459e-09,
2471
+ "loss": 0.2981,
2472
+ "mean_token_accuracy": 0.8946259915828705,
2473
+ "step": 308
2474
+ },
2475
+ {
2476
+ "epoch": 4.912,
2477
+ "grad_norm": 1.4868714809417725,
2478
+ "learning_rate": 2.854571731947253e-10,
2479
+ "loss": 0.3557,
2480
+ "mean_token_accuracy": 0.8737443387508392,
2481
+ "step": 309
2482
+ },
2483
+ {
2484
+ "epoch": 4.928,
2485
+ "grad_norm": 1.462461233139038,
2486
+ "learning_rate": 0.0,
2487
+ "loss": 0.3918,
2488
+ "mean_token_accuracy": 0.8558708727359772,
2489
+ "step": 310
2490
+ }
2491
+ ],
2492
+ "logging_steps": 1.0,
2493
+ "max_steps": 310,
2494
+ "num_input_tokens_seen": 0,
2495
+ "num_train_epochs": 5,
2496
+ "save_steps": 500,
2497
+ "stateful_callbacks": {
2498
+ "TrainerControl": {
2499
+ "args": {
2500
+ "should_epoch_stop": false,
2501
+ "should_evaluate": false,
2502
+ "should_log": false,
2503
+ "should_save": true,
2504
+ "should_training_stop": true
2505
+ },
2506
+ "attributes": {}
2507
+ }
2508
+ },
2509
+ "total_flos": 4.75424678173737e+16,
2510
+ "train_batch_size": 1,
2511
+ "trial_name": null,
2512
+ "trial_params": null
2513
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:365b22c47a23ae7c01e16a3d1d0dfd70b7253834c525374254deff018aea05c0
3
+ size 5944
vocab.json ADDED
The diff for this file is too large to render. See raw diff