#!/usr/bin/env python3 | |
""" | |
Simple inference script for the merged Phi-4-mini 128K model. | |
""" | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import torch | |
def generate_response(prompt, max_new_tokens=500): | |
model_path = "/data/phi4_merged_128k" | |
# Load model and tokenizer | |
print("Loading model...") | |
model = AutoModelForCausalLM.from_pretrained( | |
model_path, | |
torch_dtype=torch.bfloat16, | |
device_map="auto", | |
trust_remote_code=True | |
) | |
tokenizer = AutoTokenizer.from_pretrained(model_path) | |
# Tokenize input | |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device) | |
# Generate | |
with torch.no_grad(): | |
outputs = model.generate( | |
**inputs, | |
max_new_tokens=max_new_tokens, | |
temperature=0.7, | |
do_sample=True, | |
top_p=0.95 | |
) | |
# Decode and return | |
response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return response | |
if __name__ == "__main__": | |
# Example usage | |
prompt = "What is the capital of France?" | |
response = generate_response(prompt) | |
print(f"Response: {response}") | |