File size: 53,445 Bytes
f8ba0eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project

# Adapted from
# https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/llama/modeling_llama.py
# Copyright 2023 The vLLM team.
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Inference-only MiniCPM-V model compatible with HuggingFace weights."""
import math
from collections import defaultdict
from collections.abc import Iterable, Mapping, Sequence
from functools import partial
from typing import Annotated, Any, Callable, Literal, Optional, Union

import numpy as np
import torch
import torch.types
from torch import nn
from transformers import BatchFeature, PretrainedConfig
from typing_extensions import TypeVar

from vllm.config import VllmConfig
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.layers.quantization.awq import AWQConfig
from vllm.model_executor.layers.quantization.awq_marlin import AWQMarlinConfig
from vllm.model_executor.layers.resampler import (BaseResampler, Resampler2,
                                                  get_2d_sincos_pos_embed)
from vllm.model_executor.model_loader.utils import set_default_torch_dtype
from vllm.model_executor.models.llama import LlamaForCausalLM
from vllm.model_executor.models.minicpm import MiniCPMForCausalLM
from vllm.model_executor.models.module_mapping import MultiModelKeys
from vllm.model_executor.models.qwen2 import Qwen2ForCausalLM
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.multimodal import MULTIMODAL_REGISTRY, MultiModalKwargsItems
from vllm.multimodal.inputs import (MultiModalDataDict, MultiModalFieldConfig,
                                    NestedTensors)
from vllm.multimodal.parse import (DictEmbeddingItems, ImageItem,
                                   ImageProcessorItems, ImageSize,
                                   ModalityData, ModalityDataItems,
                                   MultiModalDataItems, MultiModalDataParser,
                                   VideoItem, VideoProcessorItems)
from vllm.multimodal.processing import (BaseMultiModalProcessor,
                                        BaseProcessingInfo, PromptReplacement,
                                        PromptUpdate, PromptUpdateDetails)
from vllm.multimodal.profiling import BaseDummyInputsBuilder
from vllm.platforms import current_platform
from vllm.sequence import IntermediateTensors
from vllm.utils import flatten_2d_lists
from vllm.utils.tensor_schema import TensorSchema, TensorShape

from .idefics2_vision_model import Idefics2VisionTransformer
from .interfaces import (MultiModalEmbeddings, SupportsLoRA,
                         SupportsMultiModal, SupportsPP)
from .utils import (AutoWeightsLoader, flatten_bn, maybe_prefix,
                    merge_multimodal_embeddings)

# For profile run
_MAX_FRAMES_PER_VIDEO = 16


class MiniCPMVImagePixelInputs(TensorSchema):
    """
    Dimensions:
        - bns: Batch size * number of images * number of slices
        - bn: Batch size * number of images
        - c: Number of channels
        - h: Height
        - w: Width
    """

    type: Literal["pixel_values"] = "pixel_values"

    # Note that the image size may vary, so we pass it as a list instead of a
    # batched tensor.
    pixel_values: Annotated[
        list[torch.Tensor],
        TensorShape("bns", "c", "h", "w", dynamic_dims={"h", "w"}),
    ]
    tgt_sizes: Annotated[
        torch.Tensor,
        TensorShape("bns", 2),  # This should be in `(height, width)` format.
    ]
    num_slices: Annotated[
        torch.Tensor,
        TensorShape("bn"),
    ]


class MiniCPMVImageEmbeddingInputs(TensorSchema):
    """
    Dimensions:
        - bn: Batch size * number of images
        - ns: Number of slices
        - hs: Hidden size (must match language model backbone)
    """

    type: Literal["image_embeds"]
    image_embeds: Annotated[
        Union[torch.Tensor, list[torch.Tensor]],
        TensorShape("bn", "ns", "hs"),
    ]


MiniCPMVImageInputs = Union[MiniCPMVImagePixelInputs,
                            MiniCPMVImageEmbeddingInputs]

DEFAULT_LN = partial(nn.LayerNorm, eps=1e-6)


class Resampler2_5(BaseResampler):

    def __init__(self,
                 num_queries: int,
                 embed_dim: int,
                 num_heads: int,
                 kv_dim: Optional[int] = None,
                 norm_layer: Callable[[int], nn.LayerNorm] = DEFAULT_LN,
                 max_size: tuple[int, int] = (70, 70),
                 quant_config: Optional[QuantizationConfig] = None,
                 prefix: str = "") -> None:
        super().__init__(num_queries,
                         embed_dim,
                         num_heads,
                         kv_dim,
                         norm_layer,
                         quant_config=quant_config,
                         prefix=prefix)

        self.max_size = max_size
        self._set_2d_pos_cache(self.max_size)

    def _set_2d_pos_cache(self,
                          max_size: tuple[int, int],
                          device: torch.types.Device = "cpu") -> None:
        pos_embed_arr = get_2d_sincos_pos_embed(self.embed_dim,
                                                max_size,
                                                version=(2, 5))
        pos_embed = torch.from_numpy(pos_embed_arr).float().to(device)
        self.register_buffer("pos_embed", pos_embed, persistent=False)

    def _adjust_pos_cache(self, tgt_sizes: torch.Tensor,
                          device: torch.types.Device) -> None:
        max_h = tgt_sizes[:, 0].max().item()
        max_w = tgt_sizes[:, 1].max().item()
        assert isinstance(max_h, int) and isinstance(max_w, int)

        if max_h > self.max_size[0] or max_w > self.max_size[1]:
            self.max_size = (
                max(max_h, self.max_size[0]),
                max(max_w, self.max_size[1]),
            )
            self._set_2d_pos_cache(self.max_size, device)

    def forward(self, x: torch.Tensor,
                tgt_sizes: torch.Tensor) -> torch.Tensor:
        assert x.shape[0] == tgt_sizes.shape[0]
        bs = x.shape[0]

        device = x.device
        dtype = x.dtype

        patch_len = tgt_sizes[:, 0] * tgt_sizes[:, 1]

        self._adjust_pos_cache(tgt_sizes, device=device)

        max_patch_len = patch_len.max().item()
        assert isinstance(max_patch_len, int)

        key_padding_mask = torch.zeros((bs, max_patch_len),
                                       dtype=torch.bool,
                                       device=device)

        pos_embed = []
        for i in range(bs):
            tgt_h, tgt_w = tgt_sizes[i].tolist()
            pos_embed.append(self.pos_embed[:tgt_h, :tgt_w, :].reshape(
                (tgt_h * tgt_w, -1)).to(dtype))  # patches * D
            key_padding_mask[i, patch_len[i]:] = True
        pos_embed = torch.nn.utils.rnn.pad_sequence(pos_embed,
                                                    batch_first=True,
                                                    padding_value=0.0).permute(
                                                        1, 0,
                                                        2)  # BLD => L * B * D
        x, _ = self.kv_proj(x)  # B * L * D
        x = self.ln_kv(x).permute(1, 0, 2)  # L * B * D

        q = self.ln_q(self.query)  # Q * D

        out = self.attn(
            self._repeat(q, bs),  # Q * B * D
            x + pos_embed,  # L * B * D +  L * B * D
            x,
            key_padding_mask=key_padding_mask,
        )[0]
        #  out: Q * B * D
        x = out.permute(1, 0, 2)  # B * Q * D

        x = self.ln_post(x)
        x = x @ self.proj
        return x


def get_version_by_config(config: PretrainedConfig) -> tuple[int, ...]:
    version_float = getattr(config, "version", None)

    # The old configs do not include version number
    # TODO: Remove this after the HF repos are updated
    if version_float is None:
        if config.hidden_size == 2304 and config.query_num == 64:
            return (2, 0)
        return (2, 5)
    version_str = str(version_float)
    return tuple(int(x) for x in version_str.split("."))


def _minicpmv_field_config(hf_inputs: Mapping[str, torch.Tensor]):
    pixel_values = hf_inputs.get("pixel_values", torch.empty(0))
    num_images = len(pixel_values)

    video_pixel_values = hf_inputs.get("video_pixel_values", torch.empty(0))
    num_videos = len(video_pixel_values)

    return dict(
        pixel_values=MultiModalFieldConfig.batched("image"),
        image_sizes=MultiModalFieldConfig.batched("image"),
        tgt_sizes=MultiModalFieldConfig.batched("image"),
        image_embeds=MultiModalFieldConfig.batched("image"),
        video_pixel_values=MultiModalFieldConfig.batched("video"),
        video_image_sizes=MultiModalFieldConfig.batched("video"),
        video_tgt_sizes=MultiModalFieldConfig.batched("video"),
        video_embeds=MultiModalFieldConfig.batched("video"),
        image_token_id=MultiModalFieldConfig.shared("image", num_images),
        video_token_id=MultiModalFieldConfig.shared("video", num_videos),
    )


class MiniCPMVImageEmbeddingItems(DictEmbeddingItems):

    def __init__(
        self,
        data: Mapping[str, torch.Tensor],
        fields_factory: Callable[
            [Mapping[str, torch.Tensor]],
            Mapping[str, MultiModalFieldConfig],
        ],
    ) -> None:
        super().__init__(
            data,
            modality="image",
            required_fields={"image_embeds", "image_sizes"},
            fields_factory=fields_factory,
        )

    def get_image_size(self, index: int) -> ImageSize:
        image_size = self.get(index)["image_sizes"].tolist()
        return ImageSize(width=image_size[0], height=image_size[1])


class MiniCPMVVideoEmbeddingItems(DictEmbeddingItems):

    def __init__(
        self,
        data: Mapping[str, torch.Tensor],
        fields_factory: Callable[
            [Mapping[str, torch.Tensor]],
            Mapping[str, MultiModalFieldConfig],
        ],
    ) -> None:
        super().__init__(
            data,
            modality="video",
            required_fields={"video_embeds", "video_image_sizes"},
            fields_factory=fields_factory,
        )

    def get_frame_size(self, index: int) -> ImageSize:
        frame_size = self.get(index)["video_image_sizes"].tolist()
        return ImageSize(width=frame_size[0], height=frame_size[1])

    def get_num_frames(self, index: int) -> int:
        return len(self.get(index)["video_image_sizes"])


class MiniCPMVMultiModalDataParser(MultiModalDataParser):

    def _parse_image_data(
        self,
        data: Union[dict[str, torch.Tensor], ModalityData[ImageItem]],
    ) -> Optional[ModalityDataItems[Any, Any]]:
        if isinstance(data, dict):
            return MiniCPMVImageEmbeddingItems(
                data,
                fields_factory=_minicpmv_field_config,
            )

        return super()._parse_image_data(data)

    def _parse_video_data(
        self,
        data: Union[dict[str, torch.Tensor], ModalityData[VideoItem]],
    ) -> Optional[ModalityDataItems[Any, Any]]:
        if isinstance(data, dict):
            return MiniCPMVVideoEmbeddingItems(
                data,
                fields_factory=_minicpmv_field_config,
            )

        return super()._parse_video_data(data)


class MiniCPMVProcessingInfo(BaseProcessingInfo):
    image_pattern = "(<image>./</image>)"
    video_pattern = "(<video>./</video>)"

    def get_hf_config(self):
        return self.ctx.get_hf_config()

    def get_hf_processor(self, **kwargs: object):
        hf_processor = self.ctx.get_hf_processor(**kwargs)

        # NumPy arrays are considered as Iterable but not Sequence in
        # https://github.com/huggingface/transformers/blob/main/src/transformers/image_transforms.py#L428
        image_processor = hf_processor.image_processor  # type: ignore
        for attr in ("mean", "std"):
            val = getattr(image_processor, attr)
            if isinstance(val, np.ndarray):
                setattr(image_processor, attr, val.tolist())

        return hf_processor

    def get_image_processor(self, **kwargs: object):
        return self.get_hf_processor(**kwargs).image_processor

    def get_model_version(self):
        return get_version_by_config(self.get_hf_config())

    def get_supported_mm_limits(self) -> Mapping[str, Optional[int]]:
        mm_limits = {"image": None}
        if self.get_model_version() == (2,
                                        6) or self.get_model_version() == (4,
                                                                           0):
            mm_limits["video"] = None

        return mm_limits

    def get_slice_image_placeholder(
        self,
        image_size: ImageSize,
        # For MiniCPM V/O 2.6
        image_idx: int = 0,
        max_slice_nums: Optional[int] = None,
        use_image_id: bool = True,
    ) -> str:
        image_processor = self.get_image_processor()
        version = self.get_model_version()

        if version == (2, 0) or version == (2, 5):
            return image_processor.get_slice_image_placeholder(image_size)

        return image_processor.get_slice_image_placeholder(
            image_size,
            image_idx=image_idx,
            max_slice_nums=max_slice_nums,
            use_image_id=use_image_id,
        )

    def get_sliced_grid(
        self,
        image_size: ImageSize,
        # For MiniCPM V/O 2.6
        max_slice_nums: Optional[int] = None,
    ) -> Optional[tuple[int, int]]:
        image_processor = self.get_image_processor()
        version = self.get_model_version()

        if version == (2, 0) or version == (2, 5):
            return image_processor.get_sliced_grid(image_size)

        if max_slice_nums is None:
            max_slice_nums = image_processor.max_slice_nums

        return image_processor.get_sliced_grid(
            image_size,
            max_slice_nums=max_slice_nums,
        )

    def get_num_image_tokens(
        self,
        image_size: ImageSize,
        max_slice_nums: Optional[int] = None,
    ) -> int:
        image_processor = self.get_image_processor()

        grid = self.get_sliced_grid(
            image_size,
            max_slice_nums=max_slice_nums,
        )
        if grid is None:
            ncols = nrows = 0
        else:
            ncols, nrows = grid

        return (ncols * nrows + 1) * image_processor.image_feature_size

    def get_max_image_tokens(self) -> int:
        image_size = self.get_image_size_with_most_features()
        return self.get_num_image_tokens(image_size)

    def get_image_max_slice_num(self) -> int:
        return getattr(self.get_hf_config(), "max_slice_num", 9)

    def get_image_size_with_most_features(self) -> ImageSize:
        image_size = getattr(self.get_hf_config(), "image_size", 448)
        max_slice_num = self.get_image_max_slice_num()
        return ImageSize(width=image_size, height=image_size * max_slice_num)

    def get_max_video_frame_tokens(self) -> int:
        frame_size = self.get_video_frame_size_with_most_features()

        return self.get_num_image_tokens(
            frame_size,
            max_slice_nums=self.get_video_max_slice_num(),
        )

    def get_max_video_tokens(
        self,
        seq_len: int,
        mm_counts: Mapping[str, int],
    ) -> int:
        num_frames = self.get_num_frames_with_most_features(seq_len, mm_counts)
        num_video_tokens_total = self.get_max_video_frame_tokens() * num_frames
        return num_video_tokens_total

    def get_video_max_slice_num(self) -> int:
        return 1

    def get_video_frame_size_with_most_features(self) -> ImageSize:
        image_size = getattr(self.get_hf_config(), "image_size", 448)
        max_slice_num = self.get_video_max_slice_num()
        return ImageSize(width=image_size, height=image_size * max_slice_num)

    def get_max_video_frames(self, max_tokens: int) -> int:
        num_frame_tokens = self.get_max_video_frame_tokens()
        num_frames = max_tokens // num_frame_tokens
        return num_frames

    def get_num_frames_with_most_features(
        self,
        seq_len: int,
        mm_counts: Mapping[str, int],
    ) -> int:
        max_images = mm_counts.get("image", 0)
        max_videos = mm_counts.get("video", 0)

        max_image_tokens = self.get_max_image_tokens() * max_images
        max_total_frames = self.get_max_video_frames(seq_len -
                                                     max_image_tokens)
        max_frames_per_video = min(max_total_frames // max(max_videos, 1),
                                   _MAX_FRAMES_PER_VIDEO)

        return max(max_frames_per_video, 1)


_I = TypeVar("_I",
             bound=MiniCPMVProcessingInfo,
             default=MiniCPMVProcessingInfo)


class MiniCPMVDummyInputsBuilder(BaseDummyInputsBuilder[_I]):

    def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
        num_images = mm_counts.get("image", 0)
        num_videos = mm_counts.get("video", 0)

        image_prompt_texts = self.info.image_pattern * num_images
        video_prompt_texts = self.info.video_pattern * num_videos

        return image_prompt_texts + video_prompt_texts

    def get_dummy_mm_data(
        self,
        seq_len: int,
        mm_counts: Mapping[str, int],
    ) -> MultiModalDataDict:
        num_images = mm_counts.get("image", 0)
        num_videos = mm_counts.get("video", 0)

        image_width, image_height = \
            self.info.get_image_size_with_most_features()
        video_width, video_height = \
            self.info.get_video_frame_size_with_most_features()
        num_video_frames = \
            self.info.get_num_frames_with_most_features(seq_len, mm_counts)

        return {
            "image":
            self._get_dummy_images(width=image_width,
                                   height=image_height,
                                   num_images=num_images),
            "video": [
                self._get_dummy_images(width=video_width,
                                       height=video_height,
                                       num_images=num_video_frames)
            ] * num_videos,
        }


class MiniCPMVMultiModalProcessor(BaseMultiModalProcessor[_I]):

    def _get_data_parser(self) -> MultiModalDataParser:
        return MiniCPMVMultiModalDataParser()

    def get_image_prompt_texts(self,
                               image_size: ImageSize,
                               image_idx: int = 0) -> str:
        return self.info.get_slice_image_placeholder(
            image_size,
            image_idx=image_idx,
        )

    def get_video_prompt_texts(self, image_size: ImageSize,
                               num_frames: int) -> str:
        return self.info.get_slice_image_placeholder(
            image_size=image_size,
            image_idx=0,
            max_slice_nums=self.info.get_video_max_slice_num(),
            use_image_id=False,
        ) * num_frames

    def process_images(
        self,
        mm_data: Mapping[str, object],
        mm_kwargs: Mapping[str, object],
        tok_kwargs: Mapping[str, object],
    ) -> Mapping[str, NestedTensors]:
        if (images := mm_data.get("images")) is None:
            return {}

        parsed_images = (self._get_data_parser().parse_mm_data({
            "image": images
        }).get_items("image",
                     (MiniCPMVImageEmbeddingItems, ImageProcessorItems)))

        if isinstance(parsed_images, MiniCPMVImageEmbeddingItems):
            image_inputs = {}
        else:
            image_inputs = self._base_call_hf_processor(
                prompts=[self.info.image_pattern] * len(parsed_images),
                mm_data={"images": [[image] for image in parsed_images]},
                mm_kwargs=mm_kwargs,
                tok_kwargs=tok_kwargs,
                out_keys={"pixel_values", "image_sizes", "tgt_sizes"},
            )

        tokenizer = self.info.get_tokenizer()
        unk_token_id = tokenizer.get_vocab()["<unk>"]
        image_inputs["image_token_id"] = torch.tensor(unk_token_id)

        return image_inputs

    def process_videos(
        self,
        mm_data: Mapping[str, object],
        mm_kwargs: Mapping[str, object],
        tok_kwargs: Mapping[str, object],
    ) -> Mapping[str, NestedTensors]:
        if (videos := mm_data.get("videos")) is None:
            return {}

        parsed_videos = (self._get_data_parser().parse_mm_data({
            "video": videos
        }).get_items("video",
                     (MiniCPMVVideoEmbeddingItems, VideoProcessorItems)))

        if isinstance(parsed_videos, MiniCPMVVideoEmbeddingItems):
            video_inputs = {}
        else:
            video_inputs = self._base_call_hf_processor(
                prompts=[
                    self.info.image_pattern * len(video)
                    for video in parsed_videos
                ],
                mm_data={"images": list(parsed_videos)},
                mm_kwargs={
                    **mm_kwargs,
                    "max_slice_nums":
                    self.info.get_video_max_slice_num(),
                },
                tok_kwargs=tok_kwargs,
                out_keys={"pixel_values", "image_sizes", "tgt_sizes"},
            )

        video_inputs = {f"video_{k}": v for k, v in video_inputs.items()}

        tokenizer = self.info.get_tokenizer()
        unk_token_id = tokenizer.get_vocab()["<unk>"]
        video_inputs["video_token_id"] = torch.tensor(unk_token_id)

        return video_inputs

    def process_mm_inputs(
        self,
        mm_data: Mapping[str, object],
        mm_kwargs: Mapping[str, object],
        tok_kwargs: Mapping[str, object],
    ) -> Mapping[str, NestedTensors]:
        return {
            **self.process_images(mm_data, mm_kwargs, tok_kwargs),
            **self.process_videos(mm_data, mm_kwargs, tok_kwargs),
        }

    def _base_call_hf_processor(
        self,
        prompts: list[str],
        mm_data: Mapping[str, Sequence[object]],
        mm_kwargs: Mapping[str, object],
        tok_kwargs: Mapping[str, object],
        *,
        out_keys: set[str],
    ) -> dict[str, NestedTensors]:
        # This processor supports zipping prompt and mm_data together
        if self.info.get_model_version() == (
                2, 6) or self.info.get_model_version() == (4, 0):
            inputs = super()._call_hf_processor(
                prompt=prompts,  # type: ignore
                mm_data=mm_data,
                mm_kwargs=mm_kwargs,
                tok_kwargs=tok_kwargs,
            )
        else:
            inputs = defaultdict[str, list[torch.Tensor]](list)

            for i, prompt in enumerate(prompts):
                inputs_one = super()._call_hf_processor(
                    prompt=prompt,
                    mm_data={
                        k: v[i]
                        for k, v in mm_data.items()
                    },
                    mm_kwargs=mm_kwargs,
                    tok_kwargs=tok_kwargs,
                )

                for k, v in inputs_one.items():
                    assert len(v) == 1, (k, len(v))
                    inputs[k].append(v[0])

        return {k: inputs[k] for k in out_keys}

    def _call_hf_processor(
        self,
        prompt: str,
        mm_data: Mapping[str, object],
        mm_kwargs: Mapping[str, object],
        tok_kwargs: Mapping[str, object],
    ) -> BatchFeature:
        tokenizer = self.info.get_tokenizer()

        input_ids = torch.tensor([tokenizer.encode(prompt, **tok_kwargs)])
        mm_inputs = self.process_mm_inputs(mm_data, mm_kwargs, tok_kwargs)

        return BatchFeature({
            "input_ids": input_ids,
            **mm_inputs,
        })

    def _hf_processor_applies_updates(
        self,
        prompt_text: str,
        mm_items: MultiModalDataItems,
        hf_processor_mm_kwargs: Mapping[str, object],
        tokenization_kwargs: Mapping[str, object],
    ) -> bool:
        return False

    def _get_prompt_updates(
        self,
        mm_items: MultiModalDataItems,
        hf_processor_mm_kwargs: Mapping[str, object],
        out_mm_kwargs: MultiModalKwargsItems,
    ) -> Sequence[PromptUpdate]:
        placeholders = [("image", self.info.image_pattern),
                        ("video", self.info.video_pattern)]

        # hard code for inconsistency of encode-decode image_pattern
        additional_placeholders = []
        tokenizer = self.info.get_tokenizer()
        for modality, pattern in placeholders:
            sub_pattern = tokenizer.decode(
                tokenizer.encode(pattern, add_special_tokens=False))
            if sub_pattern != pattern:
                additional_placeholders.append((modality, sub_pattern))
        placeholders += additional_placeholders

        def get_image_replacement(item_idx: int):
            images = mm_items.get_items(
                "image", (MiniCPMVImageEmbeddingItems, ImageProcessorItems))

            image_size = images.get_image_size(item_idx)

            return PromptUpdateDetails.select_text(
                self.get_image_prompt_texts(image_size, item_idx),
                "<unk>",
            )

        def get_video_replacement(item_idx: int):
            videos = mm_items.get_items(
                "video", (MiniCPMVVideoEmbeddingItems, VideoProcessorItems))

            frame_size = videos.get_frame_size(item_idx)
            num_frames = videos.get_num_frames(item_idx)

            return PromptUpdateDetails.select_text(
                self.get_video_prompt_texts(frame_size, num_frames),
                "<unk>",
            )

        get_replacement = {
            "image": get_image_replacement,
            "video": get_video_replacement,
        }

        return [
            PromptReplacement(modality=modality,
                              target=pattern,
                              replacement=get_replacement[modality])
            for modality, pattern in placeholders
        ]

    def _get_mm_fields_config(
        self,
        hf_inputs: BatchFeature,
        hf_processor_mm_kwargs: Mapping[str, object],
    ) -> Mapping[str, MultiModalFieldConfig]:
        return _minicpmv_field_config(hf_inputs)


class MiniCPMVBaseModel(nn.Module, SupportsMultiModal, SupportsPP):
    """
    The abstract class of MiniCPMV can only be inherited, but cannot be
    instantiated.
    """

    @classmethod
    def get_placeholder_str(cls, modality: str, i: int) -> Optional[str]:
        if modality.startswith("image"):
            return "(<image>./</image>)"
        if modality.startswith("video"):
            return "(<video>./</video>)"

        raise ValueError("Only image or video modality is supported")

    def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
        config = vllm_config.model_config.hf_config
        multimodal_config = vllm_config.model_config.multimodal_config
        quant_config = vllm_config.quant_config
        super().__init__()
        # All MiniCPM-V models disable `tie_word_embeddings` but
        # `PretrainedConfig.tie_word_embeddings` defaults to True; we cannot
        # check `tie_word_embeddings` until vLLM integrate MiniCPM-V model
        # and config class
        self.config = config
        self.multimodal_config = multimodal_config

        self.version = get_version_by_config(self.config)
        self.llm = self.init_llm(vllm_config=vllm_config,
                                 prefix=maybe_prefix(prefix, "llm"))
        self.vpm = self.init_vision_module(config,
                                           quant_config,
                                           prefix=maybe_prefix(prefix, "vpm"))
        self.vision_dim = (self.vpm.embed_dim if self.version == (2, 0) else
                           self.vpm.embeddings.embed_dim)
        self.embed_dim = self.config.hidden_size

        self.resampler = self.init_resampler(self.embed_dim,
                                             self.vision_dim,
                                             quant_config=quant_config,
                                             prefix=maybe_prefix(
                                                 prefix, "resampler"))

        self.mm_token_ids = set[int]()
        self.make_empty_intermediate_tensors = (
            self.llm.make_empty_intermediate_tensors)

    def _parse_and_validate_vision_input(
        self,
        modality: str,
        **kwargs: object,
    ) -> Optional[MiniCPMVImageInputs]:
        pixel_values = kwargs.pop("pixel_values", None)
        image_embeds = kwargs.pop("image_embeds", None)

        if pixel_values is None and image_embeds is None:
            return None

        image_token_id = kwargs.pop("image_token_id")
        if image_token_id is not None:
            assert isinstance(image_token_id, torch.Tensor)
            self.mm_token_ids.add(image_token_id.flatten().unique().item())

        if image_embeds is not None:
            if not isinstance(image_embeds, (torch.Tensor, list)):
                raise ValueError(
                    f"Incorrect type of image_embeds for {modality=}. "
                    f"Got type: {type(image_embeds)}")

            image_embeds_flat = flatten_bn(image_embeds)

            return MiniCPMVImageEmbeddingInputs(
                type="image_embeds",
                image_embeds=image_embeds_flat,
            )

        if not isinstance(pixel_values, (torch.Tensor, list)):
            raise ValueError(
                f"Incorrect type of pixel_values for {modality=}. "
                f"Got type: {type(pixel_values)}")

        tgt_sizes = kwargs.pop("tgt_sizes")
        if not isinstance(tgt_sizes, (torch.Tensor, list)):
            raise ValueError(f"Incorrect type of tgt_sizes for {modality=}. "
                             f"Got type: {type(tgt_sizes)}")

        num_slices = [[len(p) for p in ps] for ps in pixel_values]
        num_slices_flat = flatten_bn(torch.tensor(num_slices))

        pixel_values_flat = flatten_bn(flatten_2d_lists(pixel_values))
        tgt_sizes_flat = flatten_bn(flatten_2d_lists(tgt_sizes), concat=True)

        return MiniCPMVImagePixelInputs(
            type="pixel_values",
            pixel_values=pixel_values_flat,
            tgt_sizes=tgt_sizes_flat,
            num_slices=num_slices_flat,
        )

    def _parse_and_validate_multimodal_inputs(self, **kwargs: object) -> dict:
        modalities = {}

        # Preserve the order of modalities if there are multiple of them
        # from the order of kwargs.
        for input_key in kwargs:
            if input_key in ("pixel_values",
                             "image_embeds") and "images" not in modalities:
                modalities["images"] = self._parse_and_validate_vision_input(
                    "images", **kwargs)
            if input_key in ("video_pixel_values",
                             "video_embeds") and "videos" not in modalities:

                def _image_key(video_key: str):
                    if video_key == "video_token_id":
                        return "image_token_id"

                    return video_key.removeprefix("video_")

                modalities["videos"] = self._parse_and_validate_vision_input(
                    "videos", **{
                        _image_key(k): v
                        for k, v in kwargs.items()
                    })

        return modalities

    def _process_vision_input(
        self,
        image_input: MiniCPMVImageInputs,
    ) -> Union[torch.Tensor, list[torch.Tensor], tuple[torch.Tensor, ...]]:
        if image_input["type"] == "image_embeds":
            return image_input["image_embeds"]

        image_features_flat = self.get_vision_hidden_states(image_input)

        num_slices = image_input["num_slices"]
        return [
            e.flatten(0, 1)
            for e in image_features_flat.split(num_slices.tolist())
        ]

    def _process_multimodal_inputs(self, modalities: dict):
        # The result multimodal_embeddings is tuple of tensors, with each
        # tensor correspoending to a multimodal data item (image or video).
        multimodal_embeddings: tuple[torch.Tensor, ...] = ()

        # NOTE: It is important to iterate over the keys in this dictionary
        # to preserve the order of the modalities.
        for modality in modalities:
            if modality == "images":
                image_input = modalities["images"]
                image_features = self._process_vision_input(image_input)
                multimodal_embeddings += tuple(image_features)
            if modality == "videos":
                video_input = modalities["videos"]
                video_features = self._process_vision_input(video_input)
                multimodal_embeddings += tuple(video_features)

        return multimodal_embeddings

    def get_language_model(self) -> torch.nn.Module:
        return self.llm

    def get_multimodal_embeddings(self,
                                  **kwargs: object) -> MultiModalEmbeddings:
        modalities = self._parse_and_validate_multimodal_inputs(**kwargs)
        if not modalities:
            return []

        return self._process_multimodal_inputs(modalities)

    def get_input_embeddings(
        self,
        input_ids: torch.Tensor,
        multimodal_embeddings: Optional[MultiModalEmbeddings] = None,
    ) -> torch.Tensor:
        inputs_embeds = self.llm.get_input_embeddings(input_ids)
        if multimodal_embeddings is not None \
            and len(multimodal_embeddings) != 0:
            assert len(self.mm_token_ids) > 0
            inputs_embeds = merge_multimodal_embeddings(
                input_ids,
                inputs_embeds,
                multimodal_embeddings,
                list(self.mm_token_ids),
            )
        return inputs_embeds

    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
        intermediate_tensors: Optional[IntermediateTensors] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
        **kwargs: Any,
    ) -> torch.Tensor:
        if intermediate_tensors is not None:
            inputs_embeds = None

        # NOTE: In v1, inputs_embeds is always generated at model runner from
        # `get_multimodal_embeddings` and `get_input_embeddings`, this
        # condition is only for v0 compatibility.
        elif inputs_embeds is None:
            vision_embeddings = self.get_multimodal_embeddings(**kwargs)

            inputs_embeds = self.get_input_embeddings(input_ids,
                                                      vision_embeddings)
            input_ids = None

        hidden_states = self.llm.model(
            input_ids=input_ids,
            positions=positions,
            intermediate_tensors=intermediate_tensors,
            inputs_embeds=inputs_embeds,
        )
        return hidden_states

    def compute_logits(
        self,
        hidden_states: torch.Tensor,
        sampling_metadata: SamplingMetadata,
    ) -> Optional[torch.Tensor]:
        return self.llm.compute_logits(hidden_states, sampling_metadata)

    def load_weights(self, weights: Iterable[tuple[str,
                                                   torch.Tensor]]) -> set[str]:
        loader = AutoWeightsLoader(self)
        return loader.load_weights(weights)

    def get_mm_mapping(self) -> MultiModelKeys:
        """
        Get the module prefix in multimodal models
        """
        return MultiModelKeys.from_string_field(language_model="llm",
                                                connector="resampler",
                                                tower_model="vpm")

    def init_llm(
        self,
        vllm_config: VllmConfig,
        prefix: str = "",
    ) -> nn.Module:
        raise NotImplementedError

    def init_vision_module(
        self,
        config: PretrainedConfig,
        quant_config: Optional[QuantizationConfig],
        prefix: str = "",
    ) -> nn.Module:
        raise NotImplementedError

    def init_resampler(self,
                       embed_dim: int,
                       vision_dim: int,
                       quant_config: Optional[QuantizationConfig] = None,
                       prefix: str = "") -> nn.Module:
        raise NotImplementedError

    def get_vision_hidden_states(
            self, data: MiniCPMVImagePixelInputs) -> torch.Tensor:
        raise NotImplementedError


class MiniCPMV2_0(MiniCPMVBaseModel):

    def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
        super().__init__(vllm_config=vllm_config, prefix=prefix)
        assert self.version == (2, 0)

    def init_llm(
        self,
        vllm_config: VllmConfig,
        prefix: str = "",
    ) -> nn.Module:
        return MiniCPMForCausalLM(vllm_config=vllm_config, prefix=prefix)

    def init_vision_module(
        self,
        config: PretrainedConfig,
        quant_config: Optional[QuantizationConfig],
        prefix: str = "",
    ) -> nn.Module:
        # TODO: refactor vision model through timm wrapper from transformers
        try:
            import timm
        except ImportError:
            raise ImportError("Please install timm==0.9.10") from ImportError

        with set_default_torch_dtype(torch.float16):
            model = timm.create_model(
                "vit_so400m_patch14_siglip_384.webli",
                pretrained=False,
                num_classes=0,
                dynamic_img_size=True,
                dynamic_img_pad=True,
            )

        model = model.to(dtype=torch.get_default_dtype())

        if (isinstance(model, timm.models.VisionTransformer)
                and model.attn_pool is not None):
            model.attn_pool = torch.nn.Identity()

        if self.config.drop_vision_last_layer:
            model.blocks = model.blocks[:-1]

        return model

    def init_resampler(self,
                       embed_dim: int,
                       vision_dim: int,
                       quant_config: Optional[QuantizationConfig] = None,
                       prefix: str = "") -> nn.Module:
        with set_default_torch_dtype(torch.float16):
            resampler = Resampler2(embed_dim=embed_dim,
                                   num_heads=embed_dim // 128,
                                   grid_size=int(
                                       math.sqrt(self.config.query_num)),
                                   kv_dim=vision_dim,
                                   adaptive=False,
                                   do_post_projection=True,
                                   quant_config=quant_config,
                                   prefix=prefix)

        return resampler.to(device=current_platform.device_type,
                            dtype=torch.get_default_dtype())

    def get_vision_hidden_states(
            self, data: MiniCPMVImagePixelInputs) -> torch.Tensor:
        pixel_values = data["pixel_values"]

        P_h, P_w = self.vpm.patch_embed.patch_size
        dtype: torch.dtype = self.vpm.pos_embed.data.dtype
        num_prefix_tokens = getattr(self.vpm, "num_prefix_tokens", 0)

        res = list[torch.Tensor]()
        for pixel_value in pixel_values:
            H, W = pixel_value[0].shape[-2:]
            tgt_size = (math.ceil(H / P_h), math.ceil(W / P_w))
            vision_embedding = self.vpm.forward_features(
                pixel_value.unsqueeze(0).type(dtype))

            if num_prefix_tokens > 0:
                vision_embedding = vision_embedding[:, num_prefix_tokens:]
            res.append(self.resampler(vision_embedding, tgt_size))

        return torch.vstack(res)


class MiniCPMV2_5(MiniCPMVBaseModel, SupportsLoRA):
    packed_modules_mapping = {
        "qkv_proj": [
            "q_proj",
            "k_proj",
            "v_proj",
        ],
        "gate_up_proj": [
            "gate_proj",
            "up_proj",
        ],
    }

    def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
        super().__init__(vllm_config=vllm_config, prefix=prefix)
        assert self.version == (2, 5)

    def init_llm(
        self,
        vllm_config: VllmConfig,
        prefix: str = "",
    ) -> nn.Module:
        return LlamaForCausalLM(vllm_config=vllm_config, prefix=prefix)

    def init_vision_module(
        self,
        config: PretrainedConfig,
        quant_config: Optional[QuantizationConfig],
        prefix: str = "",
    ) -> nn.Module:
        model = Idefics2VisionTransformer(config.vision_config,
                                          quant_config=quant_config,
                                          prefix=prefix)
        if self.config.drop_vision_last_layer:
            model.encoder.layers = model.encoder.layers[:-1]
        return model

    def init_resampler(self,
                       embed_dim: int,
                       vision_dim: int,
                       quant_config: Optional[QuantizationConfig] = None,
                       prefix: str = "") -> nn.Module:
        with set_default_torch_dtype(torch.float16):
            resampler = Resampler2_5(num_queries=self.config.query_num,
                                     embed_dim=embed_dim,
                                     num_heads=embed_dim // 128,
                                     kv_dim=vision_dim,
                                     quant_config=quant_config,
                                     prefix=prefix)

        return resampler.to(device=current_platform.device_type,
                            dtype=torch.get_default_dtype())

    def get_vision_hidden_states(
            self, data: MiniCPMVImagePixelInputs) -> torch.Tensor:
        pixel_values = data["pixel_values"]
        tgt_sizes = data["tgt_sizes"]

        B = len(pixel_values)
        P = pixel_values[0].shape[-2]
        L = max(item.shape[-1] for item in pixel_values)
        device = pixel_values[0].device
        dtype = pixel_values[0].dtype

        all_pixel_values = torch.zeros((B, 3, P, L),
                                       dtype=dtype,
                                       device=device)
        for i, pixel_values_item in enumerate(pixel_values):
            L_item = pixel_values_item.shape[-1]
            all_pixel_values[i, ..., :L_item] = pixel_values_item

        num_patches = tgt_sizes.prod(-1)
        max_patches = num_patches.max().item()
        assert isinstance(max_patches, int)

        patch_attn_mask = torch.zeros((B, max_patches),
                                      dtype=torch.bool,
                                      device=device)
        for i, num_patches_item in enumerate(num_patches):
            patch_attn_mask[i, :num_patches_item] = True

        vision_embedding = self.vpm(
            all_pixel_values,
            patch_attention_mask=patch_attn_mask.unsqueeze(1),
            tgt_sizes=None,
        )

        return self.resampler(vision_embedding, tgt_sizes)


class MiniCPMV2_6(MiniCPMVBaseModel, SupportsLoRA):
    packed_modules_mapping = {
        "qkv_proj": [
            "q_proj",
            "k_proj",
            "v_proj",
        ],
        "gate_up_proj": [
            "gate_proj",
            "up_proj",
        ],
    }

    def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
        super().__init__(vllm_config=vllm_config, prefix=prefix)
        assert self.version == (2, 6)

    def init_llm(
        self,
        vllm_config: VllmConfig,
        prefix: str = "",
    ) -> nn.Module:
        return Qwen2ForCausalLM(vllm_config=vllm_config, prefix=prefix)

    def init_vision_module(
        self,
        config: PretrainedConfig,
        quant_config: Optional[QuantizationConfig] = None,
        prefix: str = "",
    ) -> nn.Module:
        model = Idefics2VisionTransformer(config.vision_config,
                                          quant_config=quant_config,
                                          prefix=prefix)
        if self.config.drop_vision_last_layer:
            model.encoder.layers = model.encoder.layers[:-1]
        return model

    def init_resampler(self,
                       embed_dim: int,
                       vision_dim: int,
                       quant_config: Optional[QuantizationConfig] = None,
                       prefix: str = "") -> nn.Module:
        with set_default_torch_dtype(torch.float16):
            # The resampler in 2.6 remains consistent with the one in 2.5.
            resampler = Resampler2_5(num_queries=self.config.query_num,
                                     embed_dim=embed_dim,
                                     num_heads=embed_dim // 128,
                                     kv_dim=vision_dim,
                                     quant_config=quant_config,
                                     prefix=prefix)

        return resampler.to(device=current_platform.device_type,
                            dtype=torch.get_default_dtype())

    def get_vision_hidden_states(
            self, data: MiniCPMVImagePixelInputs) -> torch.Tensor:
        pixel_values = data["pixel_values"]
        tgt_sizes = data["tgt_sizes"]

        B = len(pixel_values)
        P = pixel_values[0].shape[-2]
        L = max(item.shape[-1] for item in pixel_values)
        device = pixel_values[0].device
        dtype = pixel_values[0].dtype

        all_pixel_values = torch.zeros((B, 3, P, L),
                                       dtype=dtype,
                                       device=device)
        for i, pixel_values_item in enumerate(pixel_values):
            L_item = pixel_values_item.shape[-1]
            all_pixel_values[i, ..., :L_item] = pixel_values_item

        num_patches = tgt_sizes.prod(-1)
        max_patches = num_patches.max().item()
        assert isinstance(max_patches, int)

        patch_attn_mask = torch.zeros((B, max_patches),
                                      dtype=torch.bool,
                                      device=device)
        for i, num_patches_item in enumerate(num_patches):
            patch_attn_mask[i, :num_patches_item] = True

        vision_embedding = self.vpm(
            all_pixel_values,
            patch_attention_mask=patch_attn_mask.unsqueeze(1),
            tgt_sizes=tgt_sizes,
        )

        return self.resampler(vision_embedding, tgt_sizes)

    def load_weights(self, weights: Iterable[tuple[str,
                                                   torch.Tensor]]) -> set[str]:
        loader = AutoWeightsLoader(self,
                                   skip_prefixes=["apm.", "audio", "tts"])
        return loader.load_weights(weights)


class MiniCPMV4_0(MiniCPMVBaseModel, SupportsLoRA):
    packed_modules_mapping = {
        "qkv_proj": [
            "q_proj",
            "k_proj",
            "v_proj",
        ],
        "gate_up_proj": [
            "gate_proj",
            "up_proj",
        ],
    }

    def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
        super().__init__(vllm_config=vllm_config, prefix=prefix)
        assert self.version == (4, 0)

    def _maybe_ignore_quant_config(self, quant_config: QuantizationConfig):
        if isinstance(quant_config, (AWQConfig, AWQMarlinConfig)):
            return None
        return quant_config

    def init_llm(
        self,
        vllm_config: VllmConfig,
        prefix: str = "",
    ) -> nn.Module:
        return LlamaForCausalLM(vllm_config=vllm_config, prefix=prefix)

    def init_vision_module(
        self,
        config: PretrainedConfig,
        quant_config: Optional[QuantizationConfig] = None,
        prefix: str = "",
    ) -> nn.Module:
        quant_config = self._maybe_ignore_quant_config(quant_config)
        model = Idefics2VisionTransformer(config.vision_config,
                                          quant_config=quant_config,
                                          prefix=prefix)
        if self.config.drop_vision_last_layer:
            model.encoder.layers = model.encoder.layers[:-1]
        return model

    def init_resampler(
        self,
        embed_dim: int,
        vision_dim: int,
        quant_config: Optional[QuantizationConfig] = None,
        prefix: str = "",
    ) -> nn.Module:
        quant_config = self._maybe_ignore_quant_config(quant_config)
        with set_default_torch_dtype(torch.float16):
            # The resampler in 4.0 remains consistent with the one in 2.5/2.6.
            resampler = Resampler2_5(num_queries=self.config.query_num,
                                     embed_dim=embed_dim,
                                     num_heads=embed_dim // 128,
                                     kv_dim=vision_dim,
                                     quant_config=quant_config,
                                     prefix=prefix)

        return resampler.to(device=current_platform.device_type,
                            dtype=torch.get_default_dtype())

    def get_vision_hidden_states(
            self, data: MiniCPMVImagePixelInputs) -> torch.Tensor:
        pixel_values = data["pixel_values"]
        tgt_sizes = data["tgt_sizes"]

        B = len(pixel_values)
        P = pixel_values[0].shape[-2]
        L = max(item.shape[-1] for item in pixel_values)
        device = pixel_values[0].device
        dtype = pixel_values[0].dtype

        all_pixel_values = torch.zeros((B, 3, P, L),
                                       dtype=dtype,
                                       device=device)
        for i, pixel_values_item in enumerate(pixel_values):
            L_item = pixel_values_item.shape[-1]
            all_pixel_values[i, ..., :L_item] = pixel_values_item

        num_patches = tgt_sizes.prod(-1)
        max_patches = num_patches.max().item()
        assert isinstance(max_patches, int)

        patch_attn_mask = torch.zeros((B, max_patches),
                                      dtype=torch.bool,
                                      device=device)
        for i, num_patches_item in enumerate(num_patches):
            patch_attn_mask[i, :num_patches_item] = True

        vision_embedding = self.vpm(
            all_pixel_values,
            patch_attention_mask=patch_attn_mask.unsqueeze(1),
            tgt_sizes=tgt_sizes,
        )

        return self.resampler(vision_embedding, tgt_sizes)

    def load_weights(self, weights: Iterable[tuple[str,
                                                   torch.Tensor]]) -> set[str]:
        loader = AutoWeightsLoader(self,
                                   skip_prefixes=["apm.", "audio", "tts"])
        return loader.load_weights(weights)


_SUPPORT_VERSION = {
    (2, 0): MiniCPMV2_0,
    (2, 5): MiniCPMV2_5,
    (2, 6): MiniCPMV2_6,
    (4, 0): MiniCPMV4_0,
}


@MULTIMODAL_REGISTRY.register_processor(
    MiniCPMVMultiModalProcessor,
    info=MiniCPMVProcessingInfo,
    dummy_inputs=MiniCPMVDummyInputsBuilder)
class MiniCPMV(MiniCPMVBaseModel, SupportsMultiModal, SupportsLoRA):
    """
    Different versions of MiniCPMV use different visual encoders and LLMs,
    which is not conducive to the current integration logic of LoRA and
    bitsandbytes in vLLM. Therefore, it is necessary to separate them.
    """

    def __new__(cls, *, vllm_config: VllmConfig, prefix: str = ""):
        config = vllm_config.model_config.hf_config
        if not hasattr(config, "version"):
            if config.hidden_size == 2304 and config.query_num == 64:
                version = (2, 0)
            else:
                version = (2, 5)
        else:
            version = str(config.version).split(".")
            version = tuple([int(x) for x in version])
        # Dispatch class based on version
        instance_cls = _SUPPORT_VERSION.get(version)
        if instance_cls is None:
            supported_versions = ", ".join(
                [f"{v[0]}.{v[1]}" for v in sorted(_SUPPORT_VERSION.keys())])
            raise ValueError(f"Currently, MiniCPMV only supports versions "
                             f"{supported_versions}. Got version: {version}")

        # quant_config references base class members,
        # so update values before init is called
        cls.packed_modules_mapping.update(instance_cls.packed_modules_mapping)
        cls.embedding_modules.update(instance_cls.embedding_modules)
        cls.embedding_padding_modules += instance_cls.embedding_padding_modules
        return instance_cls(vllm_config=vllm_config, prefix=prefix)