import os import uuid import base64 from typing import List import time import psutil import ollama import uvicorn from fastapi import FastAPI, File, UploadFile, Form, HTTPException from fastapi.responses import JSONResponse try: import pynvml pynvml.nvmlInit() GPU_METRICS_AVAILABLE = True except (ImportError, pynvml.NVMLError): GPU_METRICS_AVAILABLE = False from video_processor import extract_frames, FrameSamplingMethod, encode_frames_to_base64 import logging import argparse parser = argparse.ArgumentParser() parser.add_argument("--model_name", type=str, default="qwen2.5vl-int4:latest") args = parser.parse_args() os.makedirs(f'logs/{args.model_name}', exist_ok=True) # 初始化FastAPI应用 app = FastAPI(title="Qwen2.5-VL Video Inference Service") # 定义一个临时目录来存储上传的视频 TEMP_VIDEO_DIR = "temp_videos" os.makedirs(TEMP_VIDEO_DIR, exist_ok=True) # 使用当前时间戳生成唯一的日志文件名 log_filename = f"logs/{args.model_name}/{time.strftime('%Y%m%d_%H%M%S')}.log" logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s', datefmt='%Y-%m-%d %H:%M:%S', filename=log_filename, filemode='a') @app.post("/video-inference/") async def video_inference( prompt: str = Form(...), video_file: UploadFile = File(...), sampling_method: FrameSamplingMethod = Form(FrameSamplingMethod.CONTENT_AWARE), sampling_rate: int = Form(5), ): """ 接收视频和文本提示,进行推理并返回结果。 - prompt: 用户的问题。 - video_file: 上传的视频文件。 - sampling_method: 帧采样方法 ('uniform' 或 'content_aware')。 - sampling_rate: 采样率或阈值。 """ request_start_time = time.time() request_id = str(uuid.uuid4()) logging.info(f"[{request_id}] Received new video inference request. Prompt: '{prompt}', Video: '{video_file.filename}'") # 验证上传的文件类型 if not video_file.content_type.startswith("video/"): logging.error(f"[{request_id}] Uploaded file '{video_file.filename}' is not a video. Content-Type: {video_file.content_type}") raise HTTPException(status_code=400, detail="Uploaded file is not a video.") # 将上传的视频保存到临时文件 file_extension = os.path.splitext(video_file.filename)[1] temp_video_path = os.path.join(TEMP_VIDEO_DIR, f"{request_id}{file_extension}") try: # 1. 保存并提取帧 with open(temp_video_path, "wb") as buffer: content = await video_file.read() buffer.write(content) logging.info(f"[{request_id}] Video saved to temporary file: {temp_video_path}") logging.info(f"[{request_id}] Extracting frames using method: {sampling_method.value}, rate/threshold: {sampling_rate}") frames = extract_frames(temp_video_path, sampling_method, sampling_rate) if not frames: logging.error(f"[{request_id}] Could not extract any frames from the video: {temp_video_path}") raise HTTPException(status_code=400, detail="Could not extract any frames from the video.") logging.info(f"[{request_id}] Extracted {len(frames)} frames successfully.") # 2. 将帧编码为Base64 base64_frames = encode_frames_to_base64(frames) logging.info(f"[{request_id}] Encoded {len(base64_frames)} frames to Base64.") # 3. 构造面向视频的提示 final_prompt = ( f"请分析以下从视频中按时间顺序提取的图像帧序列。" f"根据这些帧回答用户的问题。\n\n" f"用户问题: \"{prompt}\"" ) # 4. 调用Ollama API try: logging.info(f"[{request_id}] Sending request to Ollama model '{args.model_name}'...") # 初始化CPU使用率测量,以便我们测量Ollama调用期间的平均使用率 psutil.cpu_percent(interval=None) psutil.cpu_percent(interval=None, percpu=True) ollama_start_time = time.time() response = ollama.chat( model=args.model_name, # 使用我们创建的自定义模型! messages=[ { 'role': 'user', 'content': final_prompt, 'images': base64_frames, } ] ) ollama_end_time = time.time() # 在Ollama调用后立即获取CPU使用率,以获得准确的平均值 cpu_usage = psutil.cpu_percent(interval=None) cpu_core_utilization = psutil.cpu_percent(interval=None, percpu=True) logging.info(f"[{request_id}] Received response from Ollama successfully.") # --- 指标计算 --- total_request_processing_time = time.time() - request_start_time ollama_total_latency = ollama_end_time - ollama_start_time eval_count = response.get('eval_count', 0) eval_duration_ns = response.get('eval_duration', 1) tokens_per_second = eval_count / (eval_duration_ns / 1e9) if eval_duration_ns > 0 else 0 load_duration_ns = response.get('load_duration', 0) prompt_eval_duration_ns = response.get('prompt_eval_duration', 0) first_token_latency = prompt_eval_duration_ns / 1e9 cpu_freq_info = psutil.cpu_freq() cpu_freq = cpu_freq_info.current if cpu_freq_info else 'N/A' gpu_metrics_log = "Not available (pynvml not installed or NVIDIA driver issue)" if GPU_METRICS_AVAILABLE: try: handle = pynvml.nvmlDeviceGetHandleByIndex(0) utilization = pynvml.nvmlDeviceGetUtilizationRates(handle) memory_info = pynvml.nvmlDeviceGetMemoryInfo(handle) gpu_metrics_log = ( f"GPU Utilization: {utilization.gpu}%, " f"Memory Used: {memory_info.used / (1024**2):.2f}/{memory_info.total / (1024**2):.2f} MB" ) except pynvml.NVMLError as e: gpu_metrics_log = f"Could not retrieve GPU metrics: {e}" # --- 格式化日志 --- log_message = f""" [{request_id}] --- Performance & System Metrics --- [Request Info] - Prompt: "{prompt}" - Model: {response.get('model')} [Latency & Throughput] - Tokens/Second: {tokens_per_second:.2f} - Latency (First Token): {first_token_latency:.4f} s - Latency (Ollama Total): {ollama_total_latency:.4f} s - Batch Processing Latency (Total Request Time): {total_request_processing_time:.4f} s - Throughput (for this request): {1/total_request_processing_time if total_request_processing_time > 0 else float('inf'):.2f} req/s [Token Usage] - Prompt Tokens: {response.get('prompt_eval_count', 'N/A')} - Response Tokens: {eval_count} [System Usage at Completion] - CPU Usage: {cpu_usage}% - CPU Core Utilization: {cpu_core_utilization}% - CPU Frequency: {cpu_freq} MHz - GPU: {gpu_metrics_log} [Response] - {response['message']['content']} ----------------------------------------------------""" logging.info(log_message) # 返回模型的响应内容 return JSONResponse(content={"response": response['message']['content']}) except Exception as ollama_error: # 更具体地处理Ollama的错误 logging.error(f"[{request_id}] Ollama inference failed: {str(ollama_error)}", exc_info=True) raise HTTPException(status_code=503, detail=f"Ollama inference failed: {str(ollama_error)}") except Exception as e: logging.error(f"[{request_id}] An error occurred during processing: {str(e)}", exc_info=True) raise HTTPException(status_code=500, detail=f"An error occurred during processing: {str(e)}") finally: # 清理临时文件 if os.path.exists(temp_video_path): os.remove(temp_video_path) logging.info(f"[{request_id}] Cleaned up temporary file: {temp_video_path}") if __name__ == "__main__": uvicorn.run(app, host="0.0.0.0", port=8008)