from transformers import Qwen2_5_VLForConditionalGeneration, AutoTokenizer, AutoProcessor from qwen_vl_utils import process_vision_info MODEL_PATH = "Qwen/Qwen2.5-VL-7B-Instruct-AWQ" model = Qwen2_5_VLForConditionalGeneration.from_pretrained( MODEL_PATH, device_map="auto" ) processor = AutoProcessor.from_pretrained(MODEL_PATH) messages = [{ "role": "user", "content": [ {"type": "image", "image": "https://raw.githubusercontent.com/ymcui/Chinese-LLaMA-Alpaca-3/refs/heads/main/pics/banner.png"}, {"type": "text", "text": "请你描述一下这张图片。"}, ], }] text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) image_inputs, video_inputs = process_vision_info(messages) inputs = processor( text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt", ).to("cuda") generated_ids = model.generate(**inputs, max_new_tokens=512) generated_ids_trimmed = [out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)] output_text = processor.batch_decode(generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False) print(output_text[0])