--- license: apache-2.0 datasets: - Tongyi-Zhiwen/DocQA-RL-1.6K base_model: Tongyi-Zhiwen/QwenLong-L1-32B tags: - long-context - large-reasoning-model - mlx - mlx-my-repo --- # WaveCut/QwenLong-L1-32B-mlx-4Bit The Model [WaveCut/QwenLong-L1-32B-mlx-4Bit](https://huggingface.co/WaveCut/QwenLong-L1-32B-mlx-4Bit) was converted to MLX format from [Tongyi-Zhiwen/QwenLong-L1-32B](https://huggingface.co/Tongyi-Zhiwen/QwenLong-L1-32B) using mlx-lm version **0.22.3**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("WaveCut/QwenLong-L1-32B-mlx-4Bit") prompt="hello" if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```