ppo-LunarLander-v2 / config.json
Wodeyuanbukongda's picture
Upload PPO LunarLander-v2 trained agent
34b4511 verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7926e10e0ae0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7926e10e0b80>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7926e10e0c20>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7926e10e0cc0>", "_build": "<function ActorCriticPolicy._build at 0x7926e10e0d60>", "forward": "<function ActorCriticPolicy.forward at 0x7926e10e0e00>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7926e10e0ea0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7926e10e0f40>", "_predict": "<function ActorCriticPolicy._predict at 0x7926e10e0fe0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7926e10e1080>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7926e10e1120>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7926e10e11c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7926e10339c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1739949101460522336, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAPr/F76rjLc9EiVVPjpfUL6JMwA9drr+vAAAAAAAAAAAZkZ/u7PHjD9TLWe98+fwvp2kUD1EKsY9AAAAAAAAAAAzsGm90mSZPn4JvT3zPHy+JutPPWNvKj0AAAAAAAAAAG3YJr6MGpY/xii9vpzeAb951D++Rk4tvgAAAAAAAAAAANzSPBaekT627yQ9FQ2DvputCLtTbOo7AAAAAAAAAADNeeE8JD9CPBWUG75RaEC+R6mwvHaWlLwAAAAAAAAAALovbj7FUWQ/pjJ1PoLf0b5qyYA+jp2svQAAAAAAAAAAzfhnvKhEiT+vRYa9Me22vm1/TDyxJce9AAAAAAAAAADAsjy+Stw+P1VPW7tkipu+0O44vlbV7T0AAAAAAAAAAAAQ/jp75oO6amUxtPJ3zS6MLta67ESYMwAAgD8AAIA/bZYDvsP1RDmsqDs9la5EPLnfEr0125A9AACAPwAAgD8Asp09hbvyuR8wKrhVKz2x0zd6u2ZRRjcAAIA/AACAP5qOpb0URuu6QnfdO7U5lDxZGXK7l0KAPQAAgD8AAIA/Lac6vuOohD+qja6+wR8Dv0wheb7eHzq9AAAAAAAAAADz89+9qWRJPWoTET7lxCi+J8mzPDwWHD0AAAAAAAAAAObE5707N4M9cM7dPfomI75XLHg8QHUqvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVNwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG+p7rkbPyGMAWyUTWEBjAF0lEdAkM5VGgBcRnV9lChoBkdARUYnlXA/LWgHS+1oCEdAkM53Snccl3V9lChoBkdAcW0rxiG34WgHTR0BaAhHQJDOf3nIQvp1fZQoaAZHQHD/cPWhAW1oB00lAWgIR0CQz3NbC79RdX2UKGgGR0BxNCYmb9ZSaAdNGwFoCEdAkNBQJokAxXV9lChoBkdAceX7BfrrxGgHTRQBaAhHQJDRWTnq3Vl1fZQoaAZHQG+wH/1g6U9oB00UAWgIR0CQ0jQ7tAs1dX2UKGgGR0BuobmlqJuVaAdNswFoCEdAkNI83AEdNnV9lChoBkdAcq2Gh24d62gHTSkBaAhHQJDSq7kGRmt1fZQoaAZHQEzYEtdzGPxoB0vQaAhHQJDS95xBE8d1fZQoaAZHQG8YlA/s3Q5oB00lAWgIR0CQ0zClrM1TdX2UKGgGR0BxHUPQOWjXaAdNMgFoCEdAkNSGhmGucXV9lChoBkdAcdMO938n/mgHTQ4BaAhHQJDWGyjYZl51fZQoaAZHQHDvl1KXfIloB0v9aAhHQJDWGgL7XQN1fZQoaAZHQHFC9ilSCOFoB001AWgIR0CQ1yT7VJ+VdX2UKGgGR0BwpBbdJrckaAdNIgFoCEdAkNclb3XZoXV9lChoBkdAcM5G3nZCfGgHTSEBaAhHQJDXPNbC79R1fZQoaAZHQHKmG2w3YL9oB01XAWgIR0CQ119mpVCHdX2UKGgGR0Bu7uwosqaxaAdNMQFoCEdAkNi64MF2V3V9lChoBkdAcayakyk9EGgHTRUBaAhHQJDYxa3Zwn91fZQoaAZHQHEFLCm/FitoB0vwaAhHQJDaTtRekYZ1fZQoaAZHQG+Bvddmg8NoB00oAWgIR0CQ2mfK6nR+dX2UKGgGR0BtwJ8twrDqaAdNFQFoCEdAkNqgXqJMx3V9lChoBkdAcNWwRoRIz2gHTSUBaAhHQJDbGbPQfIV1fZQoaAZHQG1lz3RG+bpoB00UAWgIR0CQ25Gus90SdX2UKGgGR0BtJwoy9EkTaAdNMgFoCEdAkNvf1DjR2XV9lChoBkdAazQVdHDrJWgHS/poCEdAkN2v7m+0xHV9lChoBkdAb/K0pEx7A2gHTTYBaAhHQJDeBMnJDE51fZQoaAZHQG7os6q814xoB0v5aAhHQJDer2L5ylx1fZQoaAZHQG/VvGIbfgtoB01AAWgIR0CQ3/dO6/ZedX2UKGgGR0Bt+RzJZGKAaAdNGgFoCEdAkOAGzSkTH3V9lChoBkdAcY8vUBnzx2gHTTYBaAhHQJDgqTW5H3F1fZQoaAZHQG5M76YVqN9oB005AWgIR0CQ4ONrTH81dX2UKGgGR0BlUpjawljWaAdN6ANoCEdAkOHFO9FnZnV9lChoBkdAM7A3Lmp2lmgHS9hoCEdAkOHUb1h9cHV9lChoBkdAcSCDJ2dNFmgHTTkBaAhHQJDicN8VpK11fZQoaAZHQG1q6isXBP9oB00RAWgIR0CQ4sSYPXkHdX2UKGgGR0BwHZipeeFtaAdNLAFoCEdAkONt65XlsHV9lChoBkdAcIdo8IRh+mgHTScBaAhHQJDjj5RCQcR1fZQoaAZHQHHWXtv4ubtoB00oAWgIR0CQ5NL+PzWgdX2UKGgGR0BxLXXumaYvaAdNSAFoCEdAkOWwqy4WlHV9lChoBkdAcYPzQu27WmgHTQwBaAhHQJDnX2dupCN1fZQoaAZHQHDXLpA2Q4loB00EAWgIR0CQ6MZ5Rjz7dX2UKGgGR0BxGqw3YL9daAdNVgFoCEdAkOm2hmGucXV9lChoBkdAcLnNN8E3bWgHTWIBaAhHQJDpz1nM+vB1fZQoaAZHQG9dsolUp/hoB00eAWgIR0CQ7KGe+VTrdX2UKGgGR0BvYg0XP7emaAdNWgFoCEdAkOy1hoduHnV9lChoBkdAb2hiXIEKV2gHTUABaAhHQJDsxfMOf/Z1fZQoaAZHQG3jT0xubZxoB00WAWgIR0CQ/0tsvZh8dX2UKGgGR0BxO+Yc/+sHaAdNJgFoCEdAkP9uyE+PinV9lChoBkdAcFOW3jMmnmgHTUUBaAhHQJD/q0KJEYx1fZQoaAZHQG8n6/Zdv89oB00bAWgIR0CRAEqnm7rcdX2UKGgGR0BxtYh9srNGaAdNLgFoCEdAkQCxhlUZN3V9lChoBkdAbFGJNTLntGgHTRQBaAhHQJEBZ0EHMU11fZQoaAZHQG4CP8qFyrBoB00hAWgIR0CRAmbxVhkRdX2UKGgGR0Bwa/zI3irDaAdN4AFoCEdAkQMjyvs7dXV9lChoBkdAcwT5zo2XLWgHS/9oCEdAkQQlvddmhHV9lChoBkdAcXP8/UvwmWgHTTYBaAhHQJEENNJvo/11fZQoaAZHQHF8Tqnm7rdoB00jAWgIR0CRBJky1uzhdX2UKGgGR0BD/YfOlfqpaAdLxmgIR0CRBRdSVGCqdX2UKGgGR0BzKPCN0eU7aAdNPAFoCEdAkQXzE74i5nV9lChoBkdAbbfFBppN9GgHS/9oCEdAkQYLLhaTwHV9lChoBkdAcZkWszVMEmgHTQ8BaAhHQJEGdPznRsx1fZQoaAZHQHJR6+zt1IRoB00MAWgIR0CRBwKfWcz7dX2UKGgGR0BxgM23rleXaAdL92gIR0CRB8x20Re1dX2UKGgGR0ByyAK/mDDkaAdNPwFoCEdAkQj3dCVrynV9lChoBkdAbwZMHryDqWgHTRgBaAhHQJELBVwPy091fZQoaAZHQHCf35aePJdoB01lAWgIR0CRCyyaNMoMdX2UKGgGR0BxoXyz5XU6aAdNQgFoCEdAkQtQoCuEEnV9lChoBkdAWFJiLEUCaWgHTegDaAhHQJELWbhFVkt1fZQoaAZHQHFxHfl6qsFoB00SAWgIR0CRC62HLzPKdX2UKGgGR0Bw+boyKvV3aAdNDgFoCEdAkQ0irT6SDHV9lChoBkdAc1/LPD50sGgHTSIBaAhHQJENQ7xNIsl1fZQoaAZHQG9trKmsNlRoB00CAWgIR0CRDmVbiZOSdX2UKGgGR0Bws5pyp71JaAdNSgFoCEdAkQ6nUpd8iXV9lChoBkdAb9CJ/oaDPGgHTTYBaAhHQJEPCSvC/Gl1fZQoaAZHQG+HJ9RaX8hoB00wAWgIR0CRD7ukDZDidX2UKGgGR0BwHjRD1GsnaAdNEwFoCEdAkQ/3y3CsO3V9lChoBkdAa+sKIBRyfmgHTQABaAhHQJEQMdilSCR1fZQoaAZHQHBz9As052hoB0v9aAhHQJETJ0hePaN1fZQoaAZHQG4EbQswtapoB008AWgIR0CRE0JFspG4dX2UKGgGR0BysNSzgMtsaAdL+mgIR0CRE5W1twaSdX2UKGgGR0BuiH/vOQhfaAdNOgFoCEdAkRV2WhRIjHV9lChoBkdAch+UdaMaTGgHTT0BaAhHQJEWFRrJr+J1fZQoaAZHQG/C9u5z5oJoB00pAWgIR0CRGBO/L1VYdX2UKGgGR0BtJNOO801qaAdNFAFoCEdAkRjsM3IdVHV9lChoBkdAb+24yXUpeGgHTUkBaAhHQJEZ4XgtOEd1fZQoaAZHQHAbVNcnmaJoB00lAWgIR0CRGivexfOVdX2UKGgGR0BxlpsO5J9RaAdNHAFoCEdAkRuIuGsV+XV9lChoBkdAcrshE0BOpWgHTQ4BaAhHQJEbpDeCTU11fZQoaAZHQG54yLZSNwRoB00nAWgIR0CRHES/TLGJdX2UKGgGR0ByJscfeUILaAdNUQJoCEdAkRxhdt2s73V9lChoBkdAb4dFS88La2gHTVABaAhHQJEclsqJ/G51fZQoaAZHQHIT7aAWi11oB03PAWgIR0CRHNj2zv7WdX2UKGgGR0BwDAdQwblzaAdNKQFoCEdAkR+Tvuw5enV9lChoBkdAcbXBl+Vkc2gHTQ4BaAhHQJEgHbvgFX91fZQoaAZHQF9qIGQjlgdoB03oA2gIR0CRID2dd3SsdX2UKGgGR0BxiwkMTewcaAdNDAFoCEdAkSBn9zfaYnV9lChoBkdAcimmnfl6q2gHTVYBaAhHQJEgjZi/fwZ1fZQoaAZHQHJYx/NJOFhoB01aAWgIR0CRILvcrRShdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.11.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu124", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}