whitphx HF Staff commited on
Commit
2bbf270
·
verified ·
1 Parent(s): cb5fff4

Add/update the quantized ONNX model files and README.md for Transformers.js v3

Browse files

## Applied Quantizations

### ✅ Based on `model.onnx` *with* slimming

↳ ❌ `int8`: `model_int8.onnx` (added but JS-based E2E test failed)
```
/home/ubuntu/src/tjsmigration/node_modules/.pnpm/[email protected]/node_modules/onnxruntime-node/dist/backend.js:25
__classPrivateFieldGet(this, _OnnxruntimeSessionHandler_inferenceSession, "f").loadModel(pathOrBuffer, options);
^

Error: Could not find an implementation for ConvInteger(10) node with name '/resnet/embedder/embedder/convolution/Conv_quant'
at new OnnxruntimeSessionHandler (/home/ubuntu/src/tjsmigration/node_modules/.pnpm/[email protected]/node_modules/onnxruntime-node/dist/backend.js:25:92)
at Immediate.<anonymous> (/home/ubuntu/src/tjsmigration/node_modules/.pnpm/[email protected]/node_modules/onnxruntime-node/dist/backend.js:67:29)
at process.processImmediate (node:internal/timers:485:21)

Node.js v22.16.0
```
↳ ✅ `uint8`: `model_uint8.onnx` (added)
↳ ✅ `q4`: `model_q4.onnx` (added)
↳ ✅ `q4f16`: `model_q4f16.onnx` (added)
↳ ✅ `bnb4`: `model_bnb4.onnx` (added)

README.md CHANGED
@@ -5,4 +5,21 @@ library_name: transformers.js
5
 
6
  https://huggingface.co/microsoft/resnet-50 with ONNX weights to be compatible with Transformers.js.
7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
  Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).
 
5
 
6
  https://huggingface.co/microsoft/resnet-50 with ONNX weights to be compatible with Transformers.js.
7
 
8
+ ## Usage (Transformers.js)
9
+
10
+ If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@huggingface/transformers) using:
11
+ ```bash
12
+ npm i @huggingface/transformers
13
+ ```
14
+
15
+ **Example:** Classify an image.
16
+
17
+ ```js
18
+ import { pipeline } from '@huggingface/transformers';
19
+
20
+ const classifier = await pipeline('image-classification', 'Xenova/resnet-50');
21
+ const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/tiger.jpg';
22
+ const output = await classifier(url);
23
+ ```
24
+
25
  Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).
onnx/model_bnb4.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:17bb07cc34e09aa7a6c57efeb573f7fe61a398f454a6cafd50eeceb3ee4c4b91
3
+ size 102182060
onnx/model_q4.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:17bb07cc34e09aa7a6c57efeb573f7fe61a398f454a6cafd50eeceb3ee4c4b91
3
+ size 102182060
onnx/model_q4f16.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b0567984f4217d72cdb0ae9df39f0f5d25c9bdf732b2652f96ebfc9edc33b2aa
3
+ size 51121285
onnx/model_uint8.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:08ab841979a701e47840ed2f07a5f6049ed926d4bbc7e04f8bb3906d51e6a38a
3
+ size 25792747