--- library_name: transformers language: - uz license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer datasets: - risqaliyevds/uzbek_ner metrics: - precision - recall - f1 - accuracy model-index: - name: Uzbek NER model results: [] --- # Uzbek NER model This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the Uzbek Ner dataset. It achieves the following results on the evaluation set: - Loss: 0.1542 - Precision: 0.5799 - Recall: 0.6318 - F1: 0.6047 - Accuracy: 0.9456 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.5172 | 1.0 | 246 | 0.1644 | 0.5574 | 0.5631 | 0.5602 | 0.9434 | | 0.1532 | 2.0 | 492 | 0.1551 | 0.5790 | 0.6188 | 0.5982 | 0.9453 | | 0.143 | 2.9913 | 735 | 0.1542 | 0.5799 | 0.6318 | 0.6047 | 0.9456 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0