File size: 9,045 Bytes
8aac0e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
066fb2c
7cbe510
2ee793c
cef2366
a8f6777
 
a07982a
a8f6777
083ac46
ae0b978
a8f6777
 
 
50e2071
a8f6777
 
 
 
 
a9f9569
b820e2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2f85b9
b820e2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2f85b9
b820e2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2f85b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08fb46b
a2f85b9
 
 
 
 
 
08fb46b
a2f85b9
 
 
 
 
08fb46b
a2f85b9
 
 
 
 
 
08fb46b
a2f85b9
 
 
 
 
 
 
 
 
 
 
 
 
08fb46b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8eaa256
08fb46b
 
 
 
2714ebc
08fb46b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2f85b9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
---
license: apache-2.0
language:
- en
- zh
base_model:
- agentica-org/DeepCoder-14B-Preview
- EVA-UNIT-01/EVA-Qwen2.5-14B-v0.2
- Azure99/Blossom-V6-14B
- deepcogito/cogito-v1-preview-qwen-14B
- qihoo360/Light-R1-14B-DS
- Qwen/Qwen2.5-14B
- Qwen/Qwen2.5-14B-Instruct
- Qwen/Qwen2.5-14B-Instruct-1M
- Qwen/Qwen2.5-Coder-14B
- Qwen/Qwen2.5-Coder-14B-Instruct
- arcee-ai/SuperNova-Medius
- arcee-ai/Virtuoso-Small-v2
- PKU-DS-LAB/FairyR1-14B-Preview
- FractalAIResearch/Fathom-R1-14B
pipeline_tag: text-generation
tags:
- merge
---

![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/64e174e202fa032de4143324/fWdB3_gWSCHsD3qnQ4ERa.jpeg)

# ZYH-LLM-Qwen2.5-14B-V5

*The ZYH-LLM-Qwen2.5-14B fifth-generation model was officially released!*

It merges **high-performance instruction, code, and reasoning models** built on the **Qwen2.5-14B**.

Recently, many high-performance reasoning models have emerged, such as:

* [deepcogito/cogito-v1-preview-qwen-14B](https://huggingface.co/deepcogito/cogito-v1-preview-qwen-14B)
* [FractalAIResearch/Fathom-R1-14B](https://huggingface.co/FractalAIResearch/Fathom-R1-14B)
* [agentica-org/DeepCoder-14B-Preview](https://huggingface.co/agentica-org/DeepCoder-14B-Preview)
* [PKU-DS-LAB/FairyR1-14B-Preview](https://huggingface.co/PKU-DS-LAB/FairyR1-14B-Preview)
* [qihoo360/Light-R1-14B-DS](https://huggingface.co/qihoo360/Light-R1-14B-DS)

These lay a good foundation for further improving model performance.

## First stage:

### Step 1:
*Create a code model*
```yaml
models:  
  - model: Qwen/Qwen2.5-Coder-14B-Instruct  
    parameters:  
      density: 1  
      weight: 1  
      lambda: 0.9  
merge_method: della  
base_model: Qwen/Qwen2.5-Coder-14B  
parameters:  
  density: 1  
  weight: 1  
  lambda: 0.9  
  normalize: true  
  int8_mask: true  
dtype: bfloat16  
tokenizer_source: base  
name: Qwen2.5-Coder-14B-della
```
### Step 2:
*Create five different instruction models*
```yaml
models:  
  - model: Qwen/Qwen2.5-14B-Instruct  
    parameters:  
      density: 1  
      weight: 1  
      lambda: 0.9
  - model: Qwen/Qwen2.5-14B-Instruct-1M  
    parameters:  
      density: 1  
      weight: 1  
      lambda: 0.9  
merge_method: della  
base_model: Qwen/Qwen2.5-14B  
parameters:  
  density: 1  
  weight: 1  
  lambda: 0.9  
  normalize: true  
  int8_mask: true  
dtype: bfloat16  
tokenizer_source: base  
name: Qwen2.5-14B-della-Base
```
```yaml
models:  
  - model: Qwen/Qwen2.5-14B-Instruct  
    parameters:  
      density: 1  
      weight: 1  
      lambda: 0.9
  - model: Qwen/Qwen2.5-14B-Instruct-1M  
    parameters:  
      density: 1  
      weight: 1  
      lambda: 0.9  
merge_method: della  
base_model: arcee-ai/Virtuoso-Small-v2  
parameters:  
  density: 1  
  weight: 1  
  lambda: 0.9  
  normalize: true  
  int8_mask: true  
dtype: bfloat16  
tokenizer_source: base  
name: Qwen2.5-14B-della-V2
```
```yaml
models:  
  - model: Qwen/Qwen2.5-14B-Instruct  
    parameters:  
      density: 1  
      weight: 1  
      lambda: 0.9
  - model: Qwen/Qwen2.5-14B-Instruct-1M  
    parameters:  
      density: 1  
      weight: 1  
      lambda: 0.9  
merge_method: della  
base_model: arcee-ai/SuperNova-Medius  
parameters:  
  density: 1  
  weight: 1  
  lambda: 0.9  
  normalize: true  
  int8_mask: true  
dtype: bfloat16  
tokenizer_source: base  
name: Qwen2.5-14B-della-Nova
```
```yaml
models:  
  - model: Qwen/Qwen2.5-14B-Instruct  
    parameters:  
      density: 1  
      weight: 1  
      lambda: 0.9
  - model: Qwen/Qwen2.5-14B-Instruct-1M  
    parameters:  
      density: 1  
      weight: 1  
      lambda: 0.9  
merge_method: della  
base_model: Azure99/Blossom-V6-14B  
parameters:  
  density: 1  
  weight: 1  
  lambda: 0.9  
  normalize: true  
  int8_mask: true  
dtype: bfloat16  
tokenizer_source: base  
name: Qwen2.5-14B-della-V6
```
```yaml
models:  
  - model: Qwen/Qwen2.5-14B-Instruct  
    parameters:  
      density: 1  
      weight: 1  
      lambda: 0.9
  - model: Qwen/Qwen2.5-14B-Instruct-1M  
    parameters:  
      density: 1  
      weight: 1  
      lambda: 0.9  
merge_method: della  
base_model: EVA-UNIT-01/EVA-Qwen2.5-14B-v0.2  
parameters:  
  density: 1  
  weight: 1  
  lambda: 0.9  
  normalize: true  
  int8_mask: true  
dtype: bfloat16  
tokenizer_source: base  
name: Qwen2.5-14B-della-EVA
```
### Step 3:
*Use the **arcee_fusion** merging method to incorporate **cogito-v1-preview-qwen-14B** into five instruction models.*
```yaml
models:
  - model: cogito-v1-preview-qwen-14B
merge_method: arcee_fusion
base_model: Qwen2.5-14B-della-Base
parameters:
  normalize: true
  int8_mask: true
dtype: bfloat16
out_dtype: bfloat16
tokenizer_source: base  
name: Qwen2.5-14B-Base-cogito
```
```yaml
models:
  - model: cogito-v1-preview-qwen-14B
merge_method: arcee_fusion
base_model: Qwen2.5-14B-della-V2
parameters:
  normalize: true
  int8_mask: true
dtype: bfloat16
out_dtype: bfloat16
tokenizer_source: base  
name: Qwen2.5-14B-V2-cogito
```
```yaml
models:
  - model: cogito-v1-preview-qwen-14B
merge_method: arcee_fusion
base_model: Qwen2.5-14B-della-V6
parameters:
  normalize: true
  int8_mask: true
dtype: bfloat16
out_dtype: bfloat16
tokenizer_source: base  
name: Qwen2.5-14B-V6-cogito
```
```yaml
models:
  - model: cogito-v1-preview-qwen-14B
merge_method: arcee_fusion
base_model: Qwen2.5-14B-della-Nova
parameters:
  normalize: true
  int8_mask: true
dtype: bfloat16
out_dtype: bfloat16
tokenizer_source: base  
name: Qwen2.5-14B-Nova-cogito
```
```yaml
models:
  - model: cogito-v1-preview-qwen-14B
merge_method: arcee_fusion
base_model: Qwen2.5-14B-della-EVA
parameters:
  normalize: true
  int8_mask: true
dtype: bfloat16
out_dtype: bfloat16
tokenizer_source: base  
name: Qwen2.5-14B-EVA-cogito
```
## Second stage:

### Step 1:
*Create three instruction models with a bias towards reasoning.*
```yaml
merge_method: model_stock  
base_model: Qwen2.5-14B-Base-cogito  
models:  
  - model: Qwen2.5-14B-V2-cogito  
  - model: Qwen2.5-Coder-14B-della  
  - model: agentica-org/DeepCoder-14B-Preview  
  - model: PKU-DS-LAB/FairyR1-14B-Preview  
dtype: bfloat16  
tokenizer_source: base  
int8_mask: true  
normalize: true  
name: Qwen2.5-14B-cogito-mst-Coder
```
```yaml
merge_method: model_stock  
base_model: Qwen2.5-14B-Base-cogito  
models:  
  - model: Qwen2.5-14B-V2-cogito  
  - model: Qwen2.5-14B-V6-cogito  
  - model: FractalAIResearch/Fathom-R1-14B  
  - model: qihoo360/Light-R1-14B-DS  
dtype: bfloat16  
tokenizer_source: base  
int8_mask: true  
normalize: true  
name: Qwen2.5-14B-cogito-mst-V6
```
```yaml
merge_method: model_stock  
base_model: Qwen2.5-14B-Base-cogito  
models:  
  - model: Qwen2.5-14B-V2-cogito  
  - model: Qwen2.5-14B-Nova-cogito  
  - model: FractalAIResearch/Fathom-R1-14B  
  - model: qihoo360/Light-R1-14B-DS  
dtype: bfloat16  
tokenizer_source: base  
int8_mask: true  
normalize: true  
name: Qwen2.5-14B-cogito-mst-Nova
```
### Step 2:
*Create a pure instruction model to restore the generality of the final model.*
```yaml
merge_method: model_stock  
base_model: Qwen2.5-14B-Base-cogito  
models:  
  - model: Qwen2.5-14B-V2-cogito  
  - model: Qwen2.5-14B-V6-cogito  
  - model: Qwen2.5-14B-Nova-cogito
  - model: Qwen2.5-14B-EVA-cogito
dtype: bfloat16  
tokenizer_source: base  
int8_mask: true  
normalize: true  
name: Qwen2.5-14B-cogito-mst-it
```
## Third stage:

### Step 1:
*Create a base model with a context of 1 million tokens.*
```yaml
merge_method: sce  
models:
  # Pivot model
  - model: Qwen/Qwen2.5-14B-Instruct-1M
  # Target models  
  - model: Qwen/Qwen2.5-14B  
base_model: Qwen/Qwen2.5-14B-Instruct-1M  
parameters:  
  select_topk: 1  
dtype: bfloat16  
tokenizer_source: base  
normalize: true  
int8_mask: true  
name: Qwen2.5-14B-1M
```
```yaml
models:  
  - model: Qwen/Qwen2.5-14B-Instruct  
    parameters:  
      density: 1  
      weight: 1  
      lambda: 0.9
  - model: Qwen/Qwen2.5-14B-Instruct-1M  
    parameters:  
      density: 1  
      weight: 1  
      lambda: 0.9  
merge_method: della  
base_model: Qwen2.5-14B-1M  
parameters:  
  density: 1  
  weight: 1  
  lambda: 0.9  
  normalize: true  
  int8_mask: true  
dtype: bfloat16  
tokenizer_source: base  
name: Qwen2.5-14B-della-Base-1M
```
### Step 2:
*Use the **arcee_fusion** merging method to incorporate **cogito-v1-preview-qwen-14B** into a base model with a context of 1 million tokens.*
```yaml
models:
  - model: cogito-v1-preview-qwen-14B
merge_method: arcee_fusion
base_model: Qwen2.5-14B-della-Base-1M
parameters:
  normalize: true
  int8_mask: true
dtype: bfloat16
out_dtype: bfloat16
tokenizer_source: base  
name: Qwen2.5-14B-cogito-Base-1M
```
## Final stage:

```yaml
merge_method: model_stock  
base_model: Qwen2.5-14B-cogito-Base-1M  
models:  
  - model: Qwen2.5-14B-cogito-mst-Coder  
  - model: Qwen2.5-14B-cogito-mst-V6  
  - model: Qwen2.5-14B-cogito-mst-Nova  
  - model: Qwen2.5-14B-cogito-mst-it  
dtype: bfloat16  
tokenizer_source: base  
int8_mask: true  
normalize: true  
name: ZYH-LLM-Qwen2.5-14B-V5
```