--- base_model: utter-project/mHuBERT-147 license: cc-by-nc-sa-4.0 language: - uk tags: - automatic-speech-recognition datasets: - espnet/yodas2 metrics: - wer model-index: - name: w2v-bert-2.0-uk-v2.1 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_10_0 type: common_voice_10_0 config: uk split: test args: uk metrics: - name: WER type: wer value: 37.07 - name: CER type: cer value: 6.87 --- # HuBERT for Ukrainian ## Community - Discord: https://bit.ly/discord-uds - Speech Recognition: https://t.me/speech_recognition_uk - Speech Synthesis: https://t.me/speech_synthesis_uk See other Ukrainian models: https://github.com/egorsmkv/speech-recognition-uk ## Install ```text uv venv --python 3.12 source .venv/bin/activate uv pip install -r requirements.txt uv pip install -r requirements-dev.txt ``` ## Evaluation results Metrics (float16) using `evaluate` library: - WER: 0.3707 metric, 37.07% - CER: 0.0687 metric, 6.87% - Accuracy on words: 62.93% - Accuracy on chars: 93.13% - Inference time: 43.0227 seconds - Audio duration: 16665.5212 seconds - RTF: 0.0026 ## Cite this work ``` @misc {smoliakov_2025, author = { {Smoliakov} }, title = { hubert-uk (Revision 4aae976) }, year = 2025, url = { https://huggingface.co/Yehor/hubert-uk }, doi = { 10.57967/hf/4557 }, publisher = { Hugging Face } } ```