File size: 6,196 Bytes
c4eca08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c36f328
 
 
 
 
c4eca08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9eedad1
c4eca08
 
 
 
 
20c8781
c4eca08
 
 
20c8781
 
c36f328
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4eca08
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
---
license: apache-2.0
library_name: peft
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
base_model: distilbert-base-uncased
model-index:
- name: distilbert-base-uncased-tokenclassification_lora
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilbert-base-uncased-tokenclassification_lora

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2286
- Precision: 0.6655
- Recall: 0.4474
- F1: 0.5351
- Accuracy: 0.9493

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log        | 1.0   | 213   | 0.4882          | 0.0       | 0.0    | 0.0    | 0.9205   |
| No log        | 2.0   | 426   | 0.4615          | 0.0       | 0.0    | 0.0    | 0.9205   |
| 0.9185        | 3.0   | 639   | 0.4220          | 0.0       | 0.0    | 0.0    | 0.9205   |
| 0.9185        | 4.0   | 852   | 0.3565          | 0.0       | 0.0    | 0.0    | 0.9205   |
| 0.25          | 5.0   | 1065  | 0.3219          | 0.25      | 0.0012 | 0.0024 | 0.9207   |
| 0.25          | 6.0   | 1278  | 0.3121          | 0.4737    | 0.0323 | 0.0605 | 0.9231   |
| 0.25          | 7.0   | 1491  | 0.3071          | 0.4783    | 0.0658 | 0.1157 | 0.9256   |
| 0.1979        | 8.0   | 1704  | 0.3015          | 0.4695    | 0.1196 | 0.1907 | 0.9290   |
| 0.1979        | 9.0   | 1917  | 0.2841          | 0.4871    | 0.2033 | 0.2869 | 0.9342   |
| 0.1775        | 10.0  | 2130  | 0.2823          | 0.4932    | 0.2177 | 0.3021 | 0.9349   |
| 0.1775        | 11.0  | 2343  | 0.2729          | 0.5090    | 0.2703 | 0.3531 | 0.9374   |
| 0.1691        | 12.0  | 2556  | 0.2731          | 0.5273    | 0.2775 | 0.3636 | 0.9382   |
| 0.1691        | 13.0  | 2769  | 0.2644          | 0.5660    | 0.3182 | 0.4074 | 0.9402   |
| 0.1691        | 14.0  | 2982  | 0.2648          | 0.6107    | 0.3134 | 0.4142 | 0.9402   |
| 0.1546        | 15.0  | 3195  | 0.2611          | 0.6388    | 0.3469 | 0.4496 | 0.9419   |
| 0.1546        | 16.0  | 3408  | 0.2570          | 0.6409    | 0.3565 | 0.4581 | 0.9431   |
| 0.1461        | 17.0  | 3621  | 0.2515          | 0.6541    | 0.3732 | 0.4752 | 0.9444   |
| 0.1461        | 18.0  | 3834  | 0.2461          | 0.6415    | 0.3959 | 0.4896 | 0.9456   |
| 0.1382        | 19.0  | 4047  | 0.2434          | 0.6452    | 0.4067 | 0.4989 | 0.9463   |
| 0.1382        | 20.0  | 4260  | 0.2464          | 0.6673    | 0.3983 | 0.4989 | 0.9457   |
| 0.1382        | 21.0  | 4473  | 0.2429          | 0.6767    | 0.4031 | 0.5052 | 0.9460   |
| 0.1324        | 22.0  | 4686  | 0.2411          | 0.684     | 0.4091 | 0.5120 | 0.9462   |
| 0.1324        | 23.0  | 4899  | 0.2336          | 0.6654    | 0.4306 | 0.5229 | 0.9475   |
| 0.129         | 24.0  | 5112  | 0.2411          | 0.6737    | 0.4175 | 0.5155 | 0.9469   |
| 0.129         | 25.0  | 5325  | 0.2385          | 0.6901    | 0.4234 | 0.5248 | 0.9473   |
| 0.1235        | 26.0  | 5538  | 0.2328          | 0.6843    | 0.4330 | 0.5304 | 0.9482   |
| 0.1235        | 27.0  | 5751  | 0.2343          | 0.6877    | 0.4294 | 0.5287 | 0.9481   |
| 0.1235        | 28.0  | 5964  | 0.2300          | 0.6649    | 0.4462 | 0.5340 | 0.9488   |
| 0.1195        | 29.0  | 6177  | 0.2323          | 0.6790    | 0.4378 | 0.5324 | 0.9483   |
| 0.1195        | 30.0  | 6390  | 0.2351          | 0.6869    | 0.4330 | 0.5312 | 0.9482   |
| 0.1179        | 31.0  | 6603  | 0.2329          | 0.6811    | 0.4342 | 0.5303 | 0.9482   |
| 0.1179        | 32.0  | 6816  | 0.2326          | 0.6779    | 0.4330 | 0.5285 | 0.9482   |
| 0.1156        | 33.0  | 7029  | 0.2326          | 0.6807    | 0.4258 | 0.5239 | 0.9481   |
| 0.1156        | 34.0  | 7242  | 0.2328          | 0.6870    | 0.4306 | 0.5294 | 0.9481   |
| 0.1156        | 35.0  | 7455  | 0.2327          | 0.6716    | 0.4354 | 0.5283 | 0.9484   |
| 0.114         | 36.0  | 7668  | 0.2290          | 0.6614    | 0.4486 | 0.5346 | 0.9492   |
| 0.114         | 37.0  | 7881  | 0.2275          | 0.6597    | 0.4522 | 0.5366 | 0.9495   |
| 0.1121        | 38.0  | 8094  | 0.2285          | 0.6643    | 0.4498 | 0.5364 | 0.9493   |
| 0.1121        | 39.0  | 8307  | 0.2275          | 0.6626    | 0.4533 | 0.5384 | 0.9495   |
| 0.1113        | 40.0  | 8520  | 0.2323          | 0.6784    | 0.4390 | 0.5330 | 0.9488   |
| 0.1113        | 41.0  | 8733  | 0.2289          | 0.6715    | 0.4450 | 0.5353 | 0.9491   |
| 0.1113        | 42.0  | 8946  | 0.2281          | 0.6696    | 0.4510 | 0.5390 | 0.9494   |
| 0.1111        | 43.0  | 9159  | 0.2284          | 0.6625    | 0.4486 | 0.5350 | 0.9493   |
| 0.1111        | 44.0  | 9372  | 0.2270          | 0.6591    | 0.4510 | 0.5355 | 0.9495   |
| 0.1077        | 45.0  | 9585  | 0.2291          | 0.6667    | 0.4474 | 0.5354 | 0.9493   |
| 0.1077        | 46.0  | 9798  | 0.2289          | 0.6691    | 0.4450 | 0.5345 | 0.9492   |
| 0.1089        | 47.0  | 10011 | 0.2272          | 0.6591    | 0.4510 | 0.5355 | 0.9495   |
| 0.1089        | 48.0  | 10224 | 0.2283          | 0.6661    | 0.4486 | 0.5361 | 0.9493   |
| 0.1089        | 49.0  | 10437 | 0.2286          | 0.6655    | 0.4474 | 0.5351 | 0.9493   |
| 0.1097        | 50.0  | 10650 | 0.2286          | 0.6655    | 0.4474 | 0.5351 | 0.9493   |


### Framework versions

- PEFT 0.7.1
- Transformers 4.36.2
- Pytorch 2.0.0+cu117
- Datasets 2.16.1
- Tokenizers 0.15.0