wanghanrui commited on
Commit
c3bf9f0
·
1 Parent(s): 99e4976

Add initial model and configuration files

Browse files
added_tokens.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</think>": 151668,
3
+ "</tool_call>": 151658,
4
+ "</tool_response>": 151666,
5
+ "<think>": 151667,
6
+ "<tool_call>": 151657,
7
+ "<tool_response>": 151665,
8
+ "<|box_end|>": 151649,
9
+ "<|box_start|>": 151648,
10
+ "<|endoftext|>": 151643,
11
+ "<|file_sep|>": 151664,
12
+ "<|fim_middle|>": 151660,
13
+ "<|fim_pad|>": 151662,
14
+ "<|fim_prefix|>": 151659,
15
+ "<|fim_suffix|>": 151661,
16
+ "<|im_end|>": 151645,
17
+ "<|im_start|>": 151644,
18
+ "<|image_pad|>": 151655,
19
+ "<|object_ref_end|>": 151647,
20
+ "<|object_ref_start|>": 151646,
21
+ "<|quad_end|>": 151651,
22
+ "<|quad_start|>": 151650,
23
+ "<|repo_name|>": 151663,
24
+ "<|video_pad|>": 151656,
25
+ "<|vision_end|>": 151653,
26
+ "<|vision_pad|>": 151654,
27
+ "<|vision_start|>": 151652
28
+ }
audio_preprocess.py ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import torch
3
+ import warnings
4
+ warnings.filterwarnings('ignore')
5
+ import requests
6
+ from io import BytesIO
7
+ from transformers.pipelines.audio_utils import ffmpeg_read
8
+ import mutagen
9
+ from torchaudio import functional as taF
10
+ import numpy as np
11
+
12
+ feature_extractor_sampling_rate = 16000
13
+ clip_length = 30*feature_extractor_sampling_rate
14
+ clip_drop = feature_extractor_sampling_rate//2
15
+ AUDIO_EXTENSIONS = ('.wav', '.mp3', '.flac', '.opus', '.ogg')
16
+
17
+
18
+ def load_audio_single(audio_file, seg=None):
19
+ assert isinstance(audio_file, str), "audio_file should be a string"
20
+ if audio_file.endswith(AUDIO_EXTENSIONS):
21
+ inputs=audio_file
22
+ in_sampling_rate=mutagen.File(inputs).info.sample_rate
23
+ if inputs.startswith("http://") or inputs.startswith("https://"):
24
+ # We need to actually check for a real protocol, otherwise it's impossible to use a local file
25
+ inputs = requests.get(inputs).content
26
+ else:
27
+ with open(inputs, "rb") as f:
28
+ inputs = f.read()
29
+ if isinstance(inputs, bytes):
30
+ inputs = ffmpeg_read(inputs, in_sampling_rate)
31
+ if seg is not None:
32
+ inputs = inputs[int(seg[0] * in_sampling_rate):int(seg[1] * in_sampling_rate)]
33
+ if in_sampling_rate != feature_extractor_sampling_rate:
34
+ inputs = taF.resample(
35
+ torch.from_numpy(inputs.copy()), in_sampling_rate, feature_extractor_sampling_rate
36
+ ).numpy()
37
+ if len(inputs) <= clip_length:
38
+ return [inputs]
39
+ else:
40
+ audios = []
41
+ for i in range(0, len(inputs), clip_length):
42
+ chunk = inputs[i : i + clip_length]
43
+ chunk_index = len(chunk)
44
+ if chunk_index > clip_drop:
45
+ audios.append(chunk)
46
+ return audios
47
+ if audio_file.endswith('.npy'):
48
+ return [np.load(audio_file)]
49
+
50
+
51
+ def load_audios(audio_preprocess, audio_files, segs=None, audio_folder=None):
52
+ if audio_files is None:
53
+ return None, None
54
+ if isinstance(audio_files, str):
55
+ audio_files = [audio_files]
56
+ if segs:
57
+ if segs and isinstance(segs[0], float):
58
+ segs = [segs]
59
+ else:
60
+ segs = [None for _ in range(len(audio_files))]
61
+ if audio_folder:
62
+ audio_files = [os.path.join(audio_folder, afile) for afile in audio_files]
63
+
64
+ def get_single_audio(audio_file, seg):
65
+ try:
66
+ if seg:
67
+ audio = load_audio_single(audio_file, seg)
68
+ else:
69
+ audio = load_audio_single(audio_file)
70
+
71
+ audio = [audio_preprocess(aud) for aud in audio]
72
+
73
+ except Exception as e:
74
+ print(f"Error loading {audio_file} seg {seg}: {e}")
75
+ audio = None
76
+
77
+ return audio
78
+
79
+ audio_size= []
80
+ audio_list = []
81
+ for ii in range(len(audio_files)):
82
+ audio_file = audio_files[ii]
83
+ seg = segs[ii]
84
+ single_audio_list = get_single_audio(audio_file,seg)
85
+ audio_size.append(len(single_audio_list))
86
+ audio_list.extend(single_audio_list)
87
+
88
+ return audio_list, audio_size
89
+
90
+ class AudioPreprocess:
91
+ def __init__(self, image_processor, data_args={}):
92
+ self.image_aspect_ratio = getattr(data_args, 'image_aspect_ratio', None)
93
+ self.image_processor = image_processor
94
+ # self.image_grid_pinpoints = getattr(data_args, 'image_grid_pinpoints', None)
95
+
96
+ def __call__(self, image):
97
+ assert self.image_aspect_ratio == "audio", "image_aspect_ratio should be 'audio' for audio preprocessing"
98
+ return self.image_processor(image, sampling_rate=feature_extractor_sampling_rate, return_tensors="pt").input_features
99
+
config.json ADDED
@@ -0,0 +1,117 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "TinyLlavaForConditionalGeneration"
4
+ ],
5
+ "cache_dir": null,
6
+ "connector_type": "blp_4i_2x",
7
+ "hidden_size": 4096,
8
+ "ignore_index": -100,
9
+ "image_aspect_ratio": "audio",
10
+ "image_token_index": -200,
11
+ "llm_model_name_or_path": "Qwen/Qwen3-8B-Base",
12
+ "model_type": "tinyllava",
13
+ "auto_map": {
14
+ "AutoConfig": "configuration.TinyLlavaConfig",
15
+ "AutoModelForCausalLM": "modeling_mufun.TinyLlavaForConditionalGeneration"
16
+ },
17
+ "num_queries": 128,
18
+ "num_resampler_layers": 3,
19
+ "pad_token": "<|endoftext|>",
20
+ "resampler_hidden_size": 768,
21
+ "text_config": {
22
+ "_attn_implementation_autoset": true,
23
+ "_name_or_path": "Qwen/Qwen3-8B-Base",
24
+ "architectures": [
25
+ "Qwen3ForCausalLM"
26
+ ],
27
+ "attention_bias": false,
28
+ "attention_dropout": 0.0,
29
+ "bos_token_id": 151643,
30
+ "eos_token_id": 151643,
31
+ "head_dim": 128,
32
+ "hidden_act": "silu",
33
+ "hidden_size": 4096,
34
+ "initializer_range": 0.02,
35
+ "intermediate_size": 12288,
36
+ "max_position_embeddings": 32768,
37
+ "max_window_layers": 36,
38
+ "model_type": "qwen3",
39
+ "num_attention_heads": 32,
40
+ "num_hidden_layers": 36,
41
+ "num_key_value_heads": 8,
42
+ "rms_norm_eps": 1e-06,
43
+ "rope_scaling": null,
44
+ "rope_theta": 1000000,
45
+ "sliding_window": null,
46
+ "torch_dtype": "bfloat16",
47
+ "use_cache": false,
48
+ "use_sliding_window": false,
49
+ "vocab_size": 151936
50
+ },
51
+ "tokenizer_model_max_length": 32768,
52
+ "tokenizer_name_or_path": "Qwen/Qwen3-8B-Base",
53
+ "tokenizer_padding_side": "right",
54
+ "tokenizer_use_fast": false,
55
+ "torch_dtype": "bfloat16",
56
+ "transformers_version": "4.51.3",
57
+ "tune_type_connector": "full",
58
+ "tune_type_llm": "full",
59
+ "tune_type_vision_tower": "full",
60
+ "tune_vision_tower_from_layer": 0,
61
+ "use_cache": false,
62
+ "vision_config": {
63
+ "_name_or_path": "openai/whisper-large-v3",
64
+ "activation_dropout": 0.0,
65
+ "activation_function": "gelu",
66
+ "apply_spec_augment": false,
67
+ "architectures": [
68
+ "WhisperForConditionalGeneration"
69
+ ],
70
+ "attention_dropout": 0.0,
71
+ "begin_suppress_tokens": [
72
+ 220,
73
+ 50257
74
+ ],
75
+ "bos_token_id": 50257,
76
+ "classifier_proj_size": 256,
77
+ "d_model": 1280,
78
+ "decoder_attention_heads": 20,
79
+ "decoder_ffn_dim": 5120,
80
+ "decoder_layerdrop": 0.0,
81
+ "decoder_layers": 32,
82
+ "decoder_start_token_id": 50258,
83
+ "dropout": 0.0,
84
+ "encoder_attention_heads": 20,
85
+ "encoder_ffn_dim": 5120,
86
+ "encoder_layerdrop": 0.0,
87
+ "encoder_layers": 32,
88
+ "eos_token_id": 50257,
89
+ "init_std": 0.02,
90
+ "mask_feature_length": 10,
91
+ "mask_feature_min_masks": 0,
92
+ "mask_feature_prob": 0.0,
93
+ "mask_time_length": 10,
94
+ "mask_time_min_masks": 2,
95
+ "mask_time_prob": 0.05,
96
+ "max_length": 448,
97
+ "max_source_positions": 1500,
98
+ "max_target_positions": 448,
99
+ "median_filter_width": 7,
100
+ "model_name_or_path": "openai/whisper-large-v3",
101
+ "model_name_or_path2": "",
102
+ "model_type": "whisper",
103
+ "num_hidden_layers": 32,
104
+ "num_mel_bins": 128,
105
+ "scale_embedding": false,
106
+ "torch_dtype": "float16",
107
+ "use_cache": true,
108
+ "use_weighted_layer_sum": false,
109
+ "vocab_size": 51866
110
+ },
111
+ "vision_feature_layer": -2,
112
+ "vision_feature_select_strategy": "patch",
113
+ "vision_hidden_size": 1280,
114
+ "vision_model_name_or_path": "openai/whisper-large-v3",
115
+ "vision_model_name_or_path2": "",
116
+ "vocab_size": 151936
117
+ }
configuration.py ADDED
@@ -0,0 +1,135 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import PretrainedConfig, LlavaConfig
2
+ from transformers import CONFIG_MAPPING
3
+ from transformers import AutoConfig
4
+ # from .utils.constants import IGNORE_INDEX, IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN
5
+ IGNORE_INDEX = -100
6
+ IMAGE_TOKEN_INDEX = -200
7
+ DEFAULT_IMAGE_TOKEN = "<audio>"
8
+ class TinyLlavaConfig(PretrainedConfig):
9
+
10
+ model_type = "tinyllava"
11
+ def __init__(
12
+ self,
13
+ llm_model_name_or_path = '',
14
+ tokenizer_name_or_path = None,
15
+ vision_model_name_or_path = '',
16
+ vision_model_name_or_path2 = '',
17
+ connector_type = None,
18
+ text_config=None,
19
+ hidden_size=2048,
20
+ vocab_size=32000,
21
+ ignore_index=-100,
22
+ image_token_index=32000,
23
+ pad_token = None,
24
+ pad_token_id = None,
25
+ tokenizer_padding_side = 'right',
26
+ tokenizer_model_max_length = 2048,
27
+ vision_config = None,
28
+ vision_hidden_size = None,
29
+ vision_feature_layer = -2,
30
+ vision_feature_select_strategy = 'patch',
31
+ image_aspect_ratio = 'square',
32
+ resampler_hidden_size = None,
33
+ num_queries = None,
34
+ num_resampler_layers = None,
35
+ use_cache = False,
36
+ cache_dir = None,
37
+ tokenizer_use_fast = False,
38
+ tune_type_llm = 'frozen',
39
+ tune_type_connector = 'frozen',
40
+ tune_type_vision_tower = 'frozen',
41
+ tune_vision_tower_from_layer = -1,
42
+
43
+ **kwargs
44
+
45
+ ):
46
+ self.llm_model_name_or_path = llm_model_name_or_path
47
+ self.tokenizer_name_or_path = tokenizer_name_or_path or self.llm_model_name_or_path
48
+ self.vision_model_name_or_path = vision_model_name_or_path
49
+ self.vision_model_name_or_path2 = vision_model_name_or_path2
50
+ self.connector_type = connector_type
51
+ self.tune_type_llm = tune_type_llm
52
+ self.tune_type_connector = tune_type_connector
53
+ self.tune_type_vision_tower = tune_type_vision_tower
54
+ self.tune_vision_tower_from_layer = tune_vision_tower_from_layer
55
+
56
+ self.ignore_index = IGNORE_INDEX
57
+ self.image_token_index = IMAGE_TOKEN_INDEX
58
+ self.pad_token = pad_token
59
+ self.pad_token_id = pad_token_id
60
+ self.tokenizer_padding_side = tokenizer_padding_side
61
+ self.tokenizer_model_max_length = tokenizer_model_max_length
62
+ self.vision_feature_layer = vision_feature_layer
63
+ self.vision_feature_select_strategy = vision_feature_select_strategy
64
+ self.image_aspect_ratio = image_aspect_ratio
65
+ self.resampler_hidden_size = resampler_hidden_size
66
+ self.num_queries = num_queries
67
+ self.num_resampler_layers = num_resampler_layers
68
+ self.use_cache = use_cache
69
+ self.cache_dir = cache_dir
70
+ self.tokenizer_use_fast = tokenizer_use_fast
71
+ self._load_text_config(text_config)
72
+ self._load_vision_config(vision_config)
73
+
74
+ super().__init__(**kwargs)
75
+
76
+ def load_from_config(self, config):
77
+ self.llm_model_name_or_path = getattr(config, 'model_name_or_path', '')
78
+ self.tokenizer_name_or_path = getattr(config, 'tokenizer_name_or_path', None) or self.llm_model_name_or_path
79
+ self.vision_model_name_or_path = getattr(config, 'vision_tower', '')
80
+ self.vision_model_name_or_path2 = getattr(config, 'vision_tower2', '')
81
+ self.connector_type = getattr(config, 'connector_type', None)
82
+ self.vision_feature_layer = getattr(config, 'mm_vision_select_layer', -2)
83
+ self.vision_feature_select_strategy = getattr(config, 'mm_vision_select_feature', "patch")
84
+ self.image_aspect_ratio = getattr(config, 'image_aspect_ratio', "pad")
85
+ self.resampler_hidden_size = getattr(config, 'resampler_hidden_size', None)
86
+ self.num_queries = getattr(config, 'num_queries', None)
87
+ self.num_resampler_layers = getattr(config, 'num_resampler_layers', None)
88
+
89
+ self.cache_dir = getattr(config, 'cache_dir', None)
90
+ self.tokenizer_use_fast = getattr(config, 'tokenizer_use_fast', False)
91
+ self.tokenizer_model_max_length = getattr(config, 'model_max_length', 2048)
92
+ self.tokenizer_padding_side = getattr(config, 'tokenizer_padding_side', 'right')
93
+
94
+ self._load_text_config()
95
+ self._load_vision_config()
96
+
97
+
98
+ def _load_text_config(self, text_config=None):
99
+ if self.llm_model_name_or_path is None or self.llm_model_name_or_path == '':
100
+ self.text_config = CONFIG_MAPPING['llama']()
101
+
102
+ else:
103
+ self.text_config = AutoConfig.from_pretrained(self.llm_model_name_or_path, trust_remote_code=True)
104
+ if text_config is not None:
105
+ self.text_config = self.text_config.from_dict(text_config)
106
+
107
+ self.hidden_size = getattr(self.text_config, 'hidden_size', getattr(self.text_config, 'model_dim', None))
108
+ self.vocab_size = getattr(self.text_config, 'vocab_size', None)
109
+
110
+
111
+
112
+ def _load_vision_config(self, vision_config=None):
113
+ if self.vision_model_name_or_path is None or self.vision_model_name_or_path == '':
114
+ self.vision_config = CONFIG_MAPPING['clip_vision_model'](
115
+ intermediate_size=4096,
116
+ hidden_size=1024,
117
+ patch_size=14,
118
+ image_size=336,
119
+ num_hidden_layers=24,
120
+ num_attention_heads=16,
121
+ vocab_size=32000,
122
+ projection_dim=768,
123
+ )
124
+
125
+ else:
126
+ self.vision_config = AutoConfig.from_pretrained(self.vision_model_name_or_path.split(':')[-1])
127
+ self.vision_config = getattr(self.vision_config, 'vision_config', self.vision_config)
128
+ if vision_config is not None:
129
+ self.vision_config = self.vision_config.from_dict(vision_config)
130
+
131
+ self.vision_config.model_name_or_path = self.vision_model_name_or_path.split(':')[-1]
132
+ self.vision_config.model_name_or_path2 = self.vision_model_name_or_path2.split(':')[-1]
133
+ self.vision_hidden_size = getattr(self.vision_config, 'hidden_size', None)
134
+
135
+
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 151643,
4
+ "eos_token_id": 151643,
5
+ "transformers_version": "4.51.3",
6
+ "use_cache": false
7
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
message.py ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ class Message:
2
+ def __init__(self, msg=None):
3
+ self._messages = msg if msg else []
4
+ self._images = []
5
+ self.skip_next = False
6
+
7
+ def add_message(self, question, answer=None):
8
+ quension_msg_dict = {'from': 'human'}
9
+ quension_msg_dict['value'] = question
10
+ answer_msg_dict = {'from': 'gpt'}
11
+ answer_msg_dict['value'] = answer
12
+ self._messages.append(quension_msg_dict)
13
+ self._messages.append(answer_msg_dict)
14
+
15
+ def add_image(self, image, index=0):
16
+ self._images.append((image, index))
17
+
18
+ @property
19
+ def images(self):
20
+ return self._images
21
+
22
+ @property
23
+ def messages(self):
24
+ return self._messages
25
+
26
+ def copy(self):
27
+ return Message(self._messages)
28
+
29
+
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f2ab701869bc10e99d8092d92b5ed00b430f50eb880f75f02f2e8819e7d5fde6
3
+ size 4902259304
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:847d26dfc9307152ef2abf3af86d182b4708bf36632b9637c003edd88c122ec1
3
+ size 4915962496
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ae48064c3e2d20ec52a3717bf1cbfd196dcd7f2a12e082d7c14460f83f9a9224
3
+ size 4983070600
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:312aba608080c39eec448d2ef20337349424a59236f16c2cd39cd34a58eb16b9
3
+ size 3043005336
model.safetensors.index.json ADDED
@@ -0,0 +1,897 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 17844180992
4
+ },
5
+ "weight_map": {
6
+ "connector._connector.linear1.bias": "model-00004-of-00004.safetensors",
7
+ "connector._connector.linear1.weight": "model-00004-of-00004.safetensors",
8
+ "connector._connector.linear2.bias": "model-00004-of-00004.safetensors",
9
+ "connector._connector.linear2.weight": "model-00004-of-00004.safetensors",
10
+ "language_model.lm_head.weight": "model-00004-of-00004.safetensors",
11
+ "language_model.model.embed_tokens.weight": "model-00001-of-00004.safetensors",
12
+ "language_model.model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
13
+ "language_model.model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
14
+ "language_model.model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
15
+ "language_model.model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
16
+ "language_model.model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
17
+ "language_model.model.layers.0.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
18
+ "language_model.model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
19
+ "language_model.model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
20
+ "language_model.model.layers.0.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
21
+ "language_model.model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
22
+ "language_model.model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
23
+ "language_model.model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
24
+ "language_model.model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
25
+ "language_model.model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
26
+ "language_model.model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
27
+ "language_model.model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
28
+ "language_model.model.layers.1.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
29
+ "language_model.model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
30
+ "language_model.model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
31
+ "language_model.model.layers.1.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
32
+ "language_model.model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
33
+ "language_model.model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
34
+ "language_model.model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
35
+ "language_model.model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
36
+ "language_model.model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
37
+ "language_model.model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
38
+ "language_model.model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
39
+ "language_model.model.layers.10.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
40
+ "language_model.model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
41
+ "language_model.model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
42
+ "language_model.model.layers.10.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
43
+ "language_model.model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
44
+ "language_model.model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
45
+ "language_model.model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
46
+ "language_model.model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
47
+ "language_model.model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
48
+ "language_model.model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
49
+ "language_model.model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
50
+ "language_model.model.layers.11.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
51
+ "language_model.model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
52
+ "language_model.model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
53
+ "language_model.model.layers.11.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
54
+ "language_model.model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
55
+ "language_model.model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
56
+ "language_model.model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
57
+ "language_model.model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
58
+ "language_model.model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
59
+ "language_model.model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
60
+ "language_model.model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
61
+ "language_model.model.layers.12.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
62
+ "language_model.model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
63
+ "language_model.model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
64
+ "language_model.model.layers.12.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
65
+ "language_model.model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
66
+ "language_model.model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
67
+ "language_model.model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
68
+ "language_model.model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
69
+ "language_model.model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
70
+ "language_model.model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
71
+ "language_model.model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
72
+ "language_model.model.layers.13.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
73
+ "language_model.model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
74
+ "language_model.model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
75
+ "language_model.model.layers.13.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
76
+ "language_model.model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
77
+ "language_model.model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
78
+ "language_model.model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
79
+ "language_model.model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
80
+ "language_model.model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
81
+ "language_model.model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
82
+ "language_model.model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
83
+ "language_model.model.layers.14.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
84
+ "language_model.model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
85
+ "language_model.model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
86
+ "language_model.model.layers.14.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
87
+ "language_model.model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
88
+ "language_model.model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
89
+ "language_model.model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
90
+ "language_model.model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
91
+ "language_model.model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
92
+ "language_model.model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
93
+ "language_model.model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
94
+ "language_model.model.layers.15.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
95
+ "language_model.model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
96
+ "language_model.model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
97
+ "language_model.model.layers.15.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
98
+ "language_model.model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
99
+ "language_model.model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
100
+ "language_model.model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
101
+ "language_model.model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
102
+ "language_model.model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
103
+ "language_model.model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
104
+ "language_model.model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
105
+ "language_model.model.layers.16.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
106
+ "language_model.model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
107
+ "language_model.model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
108
+ "language_model.model.layers.16.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
109
+ "language_model.model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
110
+ "language_model.model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
111
+ "language_model.model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
112
+ "language_model.model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
113
+ "language_model.model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
114
+ "language_model.model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
115
+ "language_model.model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
116
+ "language_model.model.layers.17.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
117
+ "language_model.model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
118
+ "language_model.model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
119
+ "language_model.model.layers.17.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
120
+ "language_model.model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
121
+ "language_model.model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
122
+ "language_model.model.layers.18.input_layernorm.weight": "model-00002-of-00004.safetensors",
123
+ "language_model.model.layers.18.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
124
+ "language_model.model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
125
+ "language_model.model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
126
+ "language_model.model.layers.18.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
127
+ "language_model.model.layers.18.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
128
+ "language_model.model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
129
+ "language_model.model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
130
+ "language_model.model.layers.18.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
131
+ "language_model.model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
132
+ "language_model.model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
133
+ "language_model.model.layers.19.input_layernorm.weight": "model-00002-of-00004.safetensors",
134
+ "language_model.model.layers.19.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
135
+ "language_model.model.layers.19.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
136
+ "language_model.model.layers.19.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
137
+ "language_model.model.layers.19.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
138
+ "language_model.model.layers.19.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
139
+ "language_model.model.layers.19.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
140
+ "language_model.model.layers.19.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
141
+ "language_model.model.layers.19.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
142
+ "language_model.model.layers.19.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
143
+ "language_model.model.layers.19.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
144
+ "language_model.model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
145
+ "language_model.model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
146
+ "language_model.model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
147
+ "language_model.model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
148
+ "language_model.model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
149
+ "language_model.model.layers.2.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
150
+ "language_model.model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
151
+ "language_model.model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
152
+ "language_model.model.layers.2.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
153
+ "language_model.model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
154
+ "language_model.model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
155
+ "language_model.model.layers.20.input_layernorm.weight": "model-00002-of-00004.safetensors",
156
+ "language_model.model.layers.20.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
157
+ "language_model.model.layers.20.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
158
+ "language_model.model.layers.20.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
159
+ "language_model.model.layers.20.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
160
+ "language_model.model.layers.20.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
161
+ "language_model.model.layers.20.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
162
+ "language_model.model.layers.20.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
163
+ "language_model.model.layers.20.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
164
+ "language_model.model.layers.20.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
165
+ "language_model.model.layers.20.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
166
+ "language_model.model.layers.21.input_layernorm.weight": "model-00002-of-00004.safetensors",
167
+ "language_model.model.layers.21.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
168
+ "language_model.model.layers.21.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
169
+ "language_model.model.layers.21.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
170
+ "language_model.model.layers.21.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
171
+ "language_model.model.layers.21.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
172
+ "language_model.model.layers.21.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
173
+ "language_model.model.layers.21.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
174
+ "language_model.model.layers.21.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
175
+ "language_model.model.layers.21.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
176
+ "language_model.model.layers.21.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
177
+ "language_model.model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
178
+ "language_model.model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
179
+ "language_model.model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
180
+ "language_model.model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
181
+ "language_model.model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
182
+ "language_model.model.layers.22.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
183
+ "language_model.model.layers.22.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
184
+ "language_model.model.layers.22.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
185
+ "language_model.model.layers.22.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
186
+ "language_model.model.layers.22.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
187
+ "language_model.model.layers.22.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
188
+ "language_model.model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
189
+ "language_model.model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
190
+ "language_model.model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
191
+ "language_model.model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
192
+ "language_model.model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
193
+ "language_model.model.layers.23.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
194
+ "language_model.model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
195
+ "language_model.model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
196
+ "language_model.model.layers.23.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
197
+ "language_model.model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
198
+ "language_model.model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
199
+ "language_model.model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
200
+ "language_model.model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
201
+ "language_model.model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
202
+ "language_model.model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
203
+ "language_model.model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
204
+ "language_model.model.layers.24.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
205
+ "language_model.model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
206
+ "language_model.model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
207
+ "language_model.model.layers.24.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
208
+ "language_model.model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
209
+ "language_model.model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
210
+ "language_model.model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
211
+ "language_model.model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
212
+ "language_model.model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
213
+ "language_model.model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
214
+ "language_model.model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
215
+ "language_model.model.layers.25.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
216
+ "language_model.model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
217
+ "language_model.model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
218
+ "language_model.model.layers.25.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
219
+ "language_model.model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
220
+ "language_model.model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
221
+ "language_model.model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
222
+ "language_model.model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
223
+ "language_model.model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
224
+ "language_model.model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
225
+ "language_model.model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
226
+ "language_model.model.layers.26.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
227
+ "language_model.model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
228
+ "language_model.model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
229
+ "language_model.model.layers.26.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
230
+ "language_model.model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
231
+ "language_model.model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
232
+ "language_model.model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
233
+ "language_model.model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
234
+ "language_model.model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
235
+ "language_model.model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
236
+ "language_model.model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
237
+ "language_model.model.layers.27.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
238
+ "language_model.model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
239
+ "language_model.model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
240
+ "language_model.model.layers.27.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
241
+ "language_model.model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
242
+ "language_model.model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
243
+ "language_model.model.layers.28.input_layernorm.weight": "model-00003-of-00004.safetensors",
244
+ "language_model.model.layers.28.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
245
+ "language_model.model.layers.28.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
246
+ "language_model.model.layers.28.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
247
+ "language_model.model.layers.28.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
248
+ "language_model.model.layers.28.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
249
+ "language_model.model.layers.28.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
250
+ "language_model.model.layers.28.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
251
+ "language_model.model.layers.28.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
252
+ "language_model.model.layers.28.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
253
+ "language_model.model.layers.28.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
254
+ "language_model.model.layers.29.input_layernorm.weight": "model-00003-of-00004.safetensors",
255
+ "language_model.model.layers.29.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
256
+ "language_model.model.layers.29.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
257
+ "language_model.model.layers.29.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
258
+ "language_model.model.layers.29.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
259
+ "language_model.model.layers.29.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
260
+ "language_model.model.layers.29.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
261
+ "language_model.model.layers.29.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
262
+ "language_model.model.layers.29.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
263
+ "language_model.model.layers.29.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
264
+ "language_model.model.layers.29.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
265
+ "language_model.model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
266
+ "language_model.model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
267
+ "language_model.model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
268
+ "language_model.model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
269
+ "language_model.model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
270
+ "language_model.model.layers.3.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
271
+ "language_model.model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
272
+ "language_model.model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
273
+ "language_model.model.layers.3.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
274
+ "language_model.model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
275
+ "language_model.model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
276
+ "language_model.model.layers.30.input_layernorm.weight": "model-00003-of-00004.safetensors",
277
+ "language_model.model.layers.30.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
278
+ "language_model.model.layers.30.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
279
+ "language_model.model.layers.30.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
280
+ "language_model.model.layers.30.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
281
+ "language_model.model.layers.30.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
282
+ "language_model.model.layers.30.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
283
+ "language_model.model.layers.30.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
284
+ "language_model.model.layers.30.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
285
+ "language_model.model.layers.30.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
286
+ "language_model.model.layers.30.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
287
+ "language_model.model.layers.31.input_layernorm.weight": "model-00003-of-00004.safetensors",
288
+ "language_model.model.layers.31.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
289
+ "language_model.model.layers.31.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
290
+ "language_model.model.layers.31.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
291
+ "language_model.model.layers.31.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
292
+ "language_model.model.layers.31.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
293
+ "language_model.model.layers.31.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
294
+ "language_model.model.layers.31.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
295
+ "language_model.model.layers.31.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
296
+ "language_model.model.layers.31.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
297
+ "language_model.model.layers.31.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
298
+ "language_model.model.layers.32.input_layernorm.weight": "model-00003-of-00004.safetensors",
299
+ "language_model.model.layers.32.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
300
+ "language_model.model.layers.32.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
301
+ "language_model.model.layers.32.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
302
+ "language_model.model.layers.32.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
303
+ "language_model.model.layers.32.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
304
+ "language_model.model.layers.32.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
305
+ "language_model.model.layers.32.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
306
+ "language_model.model.layers.32.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
307
+ "language_model.model.layers.32.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
308
+ "language_model.model.layers.32.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
309
+ "language_model.model.layers.33.input_layernorm.weight": "model-00003-of-00004.safetensors",
310
+ "language_model.model.layers.33.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
311
+ "language_model.model.layers.33.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
312
+ "language_model.model.layers.33.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
313
+ "language_model.model.layers.33.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
314
+ "language_model.model.layers.33.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
315
+ "language_model.model.layers.33.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
316
+ "language_model.model.layers.33.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
317
+ "language_model.model.layers.33.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
318
+ "language_model.model.layers.33.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
319
+ "language_model.model.layers.33.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
320
+ "language_model.model.layers.34.input_layernorm.weight": "model-00003-of-00004.safetensors",
321
+ "language_model.model.layers.34.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
322
+ "language_model.model.layers.34.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
323
+ "language_model.model.layers.34.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
324
+ "language_model.model.layers.34.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
325
+ "language_model.model.layers.34.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
326
+ "language_model.model.layers.34.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
327
+ "language_model.model.layers.34.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
328
+ "language_model.model.layers.34.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
329
+ "language_model.model.layers.34.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
330
+ "language_model.model.layers.34.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
331
+ "language_model.model.layers.35.input_layernorm.weight": "model-00004-of-00004.safetensors",
332
+ "language_model.model.layers.35.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
333
+ "language_model.model.layers.35.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
334
+ "language_model.model.layers.35.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
335
+ "language_model.model.layers.35.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
336
+ "language_model.model.layers.35.self_attn.k_norm.weight": "model-00004-of-00004.safetensors",
337
+ "language_model.model.layers.35.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
338
+ "language_model.model.layers.35.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
339
+ "language_model.model.layers.35.self_attn.q_norm.weight": "model-00004-of-00004.safetensors",
340
+ "language_model.model.layers.35.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
341
+ "language_model.model.layers.35.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
342
+ "language_model.model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
343
+ "language_model.model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
344
+ "language_model.model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
345
+ "language_model.model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
346
+ "language_model.model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
347
+ "language_model.model.layers.4.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
348
+ "language_model.model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
349
+ "language_model.model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
350
+ "language_model.model.layers.4.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
351
+ "language_model.model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
352
+ "language_model.model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
353
+ "language_model.model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
354
+ "language_model.model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
355
+ "language_model.model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
356
+ "language_model.model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
357
+ "language_model.model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
358
+ "language_model.model.layers.5.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
359
+ "language_model.model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
360
+ "language_model.model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
361
+ "language_model.model.layers.5.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
362
+ "language_model.model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
363
+ "language_model.model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
364
+ "language_model.model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
365
+ "language_model.model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
366
+ "language_model.model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
367
+ "language_model.model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
368
+ "language_model.model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
369
+ "language_model.model.layers.6.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
370
+ "language_model.model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
371
+ "language_model.model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
372
+ "language_model.model.layers.6.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
373
+ "language_model.model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
374
+ "language_model.model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
375
+ "language_model.model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
376
+ "language_model.model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
377
+ "language_model.model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
378
+ "language_model.model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
379
+ "language_model.model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
380
+ "language_model.model.layers.7.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
381
+ "language_model.model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
382
+ "language_model.model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
383
+ "language_model.model.layers.7.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
384
+ "language_model.model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
385
+ "language_model.model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
386
+ "language_model.model.layers.8.input_layernorm.weight": "model-00001-of-00004.safetensors",
387
+ "language_model.model.layers.8.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
388
+ "language_model.model.layers.8.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
389
+ "language_model.model.layers.8.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
390
+ "language_model.model.layers.8.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
391
+ "language_model.model.layers.8.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
392
+ "language_model.model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
393
+ "language_model.model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
394
+ "language_model.model.layers.8.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
395
+ "language_model.model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
396
+ "language_model.model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
397
+ "language_model.model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
398
+ "language_model.model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
399
+ "language_model.model.layers.9.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
400
+ "language_model.model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
401
+ "language_model.model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
402
+ "language_model.model.layers.9.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
403
+ "language_model.model.layers.9.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
404
+ "language_model.model.layers.9.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
405
+ "language_model.model.layers.9.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
406
+ "language_model.model.layers.9.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
407
+ "language_model.model.layers.9.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
408
+ "language_model.model.norm.weight": "model-00004-of-00004.safetensors",
409
+ "vision_tower._vision_tower.conv1.bias": "model-00004-of-00004.safetensors",
410
+ "vision_tower._vision_tower.conv1.weight": "model-00004-of-00004.safetensors",
411
+ "vision_tower._vision_tower.conv2.bias": "model-00004-of-00004.safetensors",
412
+ "vision_tower._vision_tower.conv2.weight": "model-00004-of-00004.safetensors",
413
+ "vision_tower._vision_tower.embed_positions.weight": "model-00004-of-00004.safetensors",
414
+ "vision_tower._vision_tower.layer_norm.bias": "model-00004-of-00004.safetensors",
415
+ "vision_tower._vision_tower.layer_norm.weight": "model-00004-of-00004.safetensors",
416
+ "vision_tower._vision_tower.layers.0.fc1.bias": "model-00004-of-00004.safetensors",
417
+ "vision_tower._vision_tower.layers.0.fc1.weight": "model-00004-of-00004.safetensors",
418
+ "vision_tower._vision_tower.layers.0.fc2.bias": "model-00004-of-00004.safetensors",
419
+ "vision_tower._vision_tower.layers.0.fc2.weight": "model-00004-of-00004.safetensors",
420
+ "vision_tower._vision_tower.layers.0.final_layer_norm.bias": "model-00004-of-00004.safetensors",
421
+ "vision_tower._vision_tower.layers.0.final_layer_norm.weight": "model-00004-of-00004.safetensors",
422
+ "vision_tower._vision_tower.layers.0.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
423
+ "vision_tower._vision_tower.layers.0.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
424
+ "vision_tower._vision_tower.layers.0.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
425
+ "vision_tower._vision_tower.layers.0.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
426
+ "vision_tower._vision_tower.layers.0.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
427
+ "vision_tower._vision_tower.layers.0.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
428
+ "vision_tower._vision_tower.layers.0.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
429
+ "vision_tower._vision_tower.layers.0.self_attn_layer_norm.bias": "model-00004-of-00004.safetensors",
430
+ "vision_tower._vision_tower.layers.0.self_attn_layer_norm.weight": "model-00004-of-00004.safetensors",
431
+ "vision_tower._vision_tower.layers.1.fc1.bias": "model-00004-of-00004.safetensors",
432
+ "vision_tower._vision_tower.layers.1.fc1.weight": "model-00004-of-00004.safetensors",
433
+ "vision_tower._vision_tower.layers.1.fc2.bias": "model-00004-of-00004.safetensors",
434
+ "vision_tower._vision_tower.layers.1.fc2.weight": "model-00004-of-00004.safetensors",
435
+ "vision_tower._vision_tower.layers.1.final_layer_norm.bias": "model-00004-of-00004.safetensors",
436
+ "vision_tower._vision_tower.layers.1.final_layer_norm.weight": "model-00004-of-00004.safetensors",
437
+ "vision_tower._vision_tower.layers.1.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
438
+ "vision_tower._vision_tower.layers.1.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
439
+ "vision_tower._vision_tower.layers.1.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
440
+ "vision_tower._vision_tower.layers.1.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
441
+ "vision_tower._vision_tower.layers.1.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
442
+ "vision_tower._vision_tower.layers.1.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
443
+ "vision_tower._vision_tower.layers.1.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
444
+ "vision_tower._vision_tower.layers.1.self_attn_layer_norm.bias": "model-00004-of-00004.safetensors",
445
+ "vision_tower._vision_tower.layers.1.self_attn_layer_norm.weight": "model-00004-of-00004.safetensors",
446
+ "vision_tower._vision_tower.layers.10.fc1.bias": "model-00004-of-00004.safetensors",
447
+ "vision_tower._vision_tower.layers.10.fc1.weight": "model-00004-of-00004.safetensors",
448
+ "vision_tower._vision_tower.layers.10.fc2.bias": "model-00004-of-00004.safetensors",
449
+ "vision_tower._vision_tower.layers.10.fc2.weight": "model-00004-of-00004.safetensors",
450
+ "vision_tower._vision_tower.layers.10.final_layer_norm.bias": "model-00004-of-00004.safetensors",
451
+ "vision_tower._vision_tower.layers.10.final_layer_norm.weight": "model-00004-of-00004.safetensors",
452
+ "vision_tower._vision_tower.layers.10.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
453
+ "vision_tower._vision_tower.layers.10.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
454
+ "vision_tower._vision_tower.layers.10.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
455
+ "vision_tower._vision_tower.layers.10.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
456
+ "vision_tower._vision_tower.layers.10.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
457
+ "vision_tower._vision_tower.layers.10.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
458
+ "vision_tower._vision_tower.layers.10.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
459
+ "vision_tower._vision_tower.layers.10.self_attn_layer_norm.bias": "model-00004-of-00004.safetensors",
460
+ "vision_tower._vision_tower.layers.10.self_attn_layer_norm.weight": "model-00004-of-00004.safetensors",
461
+ "vision_tower._vision_tower.layers.11.fc1.bias": "model-00004-of-00004.safetensors",
462
+ "vision_tower._vision_tower.layers.11.fc1.weight": "model-00004-of-00004.safetensors",
463
+ "vision_tower._vision_tower.layers.11.fc2.bias": "model-00004-of-00004.safetensors",
464
+ "vision_tower._vision_tower.layers.11.fc2.weight": "model-00004-of-00004.safetensors",
465
+ "vision_tower._vision_tower.layers.11.final_layer_norm.bias": "model-00004-of-00004.safetensors",
466
+ "vision_tower._vision_tower.layers.11.final_layer_norm.weight": "model-00004-of-00004.safetensors",
467
+ "vision_tower._vision_tower.layers.11.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
468
+ "vision_tower._vision_tower.layers.11.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
469
+ "vision_tower._vision_tower.layers.11.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
470
+ "vision_tower._vision_tower.layers.11.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
471
+ "vision_tower._vision_tower.layers.11.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
472
+ "vision_tower._vision_tower.layers.11.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
473
+ "vision_tower._vision_tower.layers.11.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
474
+ "vision_tower._vision_tower.layers.11.self_attn_layer_norm.bias": "model-00004-of-00004.safetensors",
475
+ "vision_tower._vision_tower.layers.11.self_attn_layer_norm.weight": "model-00004-of-00004.safetensors",
476
+ "vision_tower._vision_tower.layers.12.fc1.bias": "model-00004-of-00004.safetensors",
477
+ "vision_tower._vision_tower.layers.12.fc1.weight": "model-00004-of-00004.safetensors",
478
+ "vision_tower._vision_tower.layers.12.fc2.bias": "model-00004-of-00004.safetensors",
479
+ "vision_tower._vision_tower.layers.12.fc2.weight": "model-00004-of-00004.safetensors",
480
+ "vision_tower._vision_tower.layers.12.final_layer_norm.bias": "model-00004-of-00004.safetensors",
481
+ "vision_tower._vision_tower.layers.12.final_layer_norm.weight": "model-00004-of-00004.safetensors",
482
+ "vision_tower._vision_tower.layers.12.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
483
+ "vision_tower._vision_tower.layers.12.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
484
+ "vision_tower._vision_tower.layers.12.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
485
+ "vision_tower._vision_tower.layers.12.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
486
+ "vision_tower._vision_tower.layers.12.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
487
+ "vision_tower._vision_tower.layers.12.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
488
+ "vision_tower._vision_tower.layers.12.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
489
+ "vision_tower._vision_tower.layers.12.self_attn_layer_norm.bias": "model-00004-of-00004.safetensors",
490
+ "vision_tower._vision_tower.layers.12.self_attn_layer_norm.weight": "model-00004-of-00004.safetensors",
491
+ "vision_tower._vision_tower.layers.13.fc1.bias": "model-00004-of-00004.safetensors",
492
+ "vision_tower._vision_tower.layers.13.fc1.weight": "model-00004-of-00004.safetensors",
493
+ "vision_tower._vision_tower.layers.13.fc2.bias": "model-00004-of-00004.safetensors",
494
+ "vision_tower._vision_tower.layers.13.fc2.weight": "model-00004-of-00004.safetensors",
495
+ "vision_tower._vision_tower.layers.13.final_layer_norm.bias": "model-00004-of-00004.safetensors",
496
+ "vision_tower._vision_tower.layers.13.final_layer_norm.weight": "model-00004-of-00004.safetensors",
497
+ "vision_tower._vision_tower.layers.13.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
498
+ "vision_tower._vision_tower.layers.13.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
499
+ "vision_tower._vision_tower.layers.13.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
500
+ "vision_tower._vision_tower.layers.13.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
501
+ "vision_tower._vision_tower.layers.13.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
502
+ "vision_tower._vision_tower.layers.13.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
503
+ "vision_tower._vision_tower.layers.13.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
504
+ "vision_tower._vision_tower.layers.13.self_attn_layer_norm.bias": "model-00004-of-00004.safetensors",
505
+ "vision_tower._vision_tower.layers.13.self_attn_layer_norm.weight": "model-00004-of-00004.safetensors",
506
+ "vision_tower._vision_tower.layers.14.fc1.bias": "model-00004-of-00004.safetensors",
507
+ "vision_tower._vision_tower.layers.14.fc1.weight": "model-00004-of-00004.safetensors",
508
+ "vision_tower._vision_tower.layers.14.fc2.bias": "model-00004-of-00004.safetensors",
509
+ "vision_tower._vision_tower.layers.14.fc2.weight": "model-00004-of-00004.safetensors",
510
+ "vision_tower._vision_tower.layers.14.final_layer_norm.bias": "model-00004-of-00004.safetensors",
511
+ "vision_tower._vision_tower.layers.14.final_layer_norm.weight": "model-00004-of-00004.safetensors",
512
+ "vision_tower._vision_tower.layers.14.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
513
+ "vision_tower._vision_tower.layers.14.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
514
+ "vision_tower._vision_tower.layers.14.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
515
+ "vision_tower._vision_tower.layers.14.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
516
+ "vision_tower._vision_tower.layers.14.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
517
+ "vision_tower._vision_tower.layers.14.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
518
+ "vision_tower._vision_tower.layers.14.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
519
+ "vision_tower._vision_tower.layers.14.self_attn_layer_norm.bias": "model-00004-of-00004.safetensors",
520
+ "vision_tower._vision_tower.layers.14.self_attn_layer_norm.weight": "model-00004-of-00004.safetensors",
521
+ "vision_tower._vision_tower.layers.15.fc1.bias": "model-00004-of-00004.safetensors",
522
+ "vision_tower._vision_tower.layers.15.fc1.weight": "model-00004-of-00004.safetensors",
523
+ "vision_tower._vision_tower.layers.15.fc2.bias": "model-00004-of-00004.safetensors",
524
+ "vision_tower._vision_tower.layers.15.fc2.weight": "model-00004-of-00004.safetensors",
525
+ "vision_tower._vision_tower.layers.15.final_layer_norm.bias": "model-00004-of-00004.safetensors",
526
+ "vision_tower._vision_tower.layers.15.final_layer_norm.weight": "model-00004-of-00004.safetensors",
527
+ "vision_tower._vision_tower.layers.15.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
528
+ "vision_tower._vision_tower.layers.15.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
529
+ "vision_tower._vision_tower.layers.15.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
530
+ "vision_tower._vision_tower.layers.15.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
531
+ "vision_tower._vision_tower.layers.15.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
532
+ "vision_tower._vision_tower.layers.15.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
533
+ "vision_tower._vision_tower.layers.15.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
534
+ "vision_tower._vision_tower.layers.15.self_attn_layer_norm.bias": "model-00004-of-00004.safetensors",
535
+ "vision_tower._vision_tower.layers.15.self_attn_layer_norm.weight": "model-00004-of-00004.safetensors",
536
+ "vision_tower._vision_tower.layers.16.fc1.bias": "model-00004-of-00004.safetensors",
537
+ "vision_tower._vision_tower.layers.16.fc1.weight": "model-00004-of-00004.safetensors",
538
+ "vision_tower._vision_tower.layers.16.fc2.bias": "model-00004-of-00004.safetensors",
539
+ "vision_tower._vision_tower.layers.16.fc2.weight": "model-00004-of-00004.safetensors",
540
+ "vision_tower._vision_tower.layers.16.final_layer_norm.bias": "model-00004-of-00004.safetensors",
541
+ "vision_tower._vision_tower.layers.16.final_layer_norm.weight": "model-00004-of-00004.safetensors",
542
+ "vision_tower._vision_tower.layers.16.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
543
+ "vision_tower._vision_tower.layers.16.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
544
+ "vision_tower._vision_tower.layers.16.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
545
+ "vision_tower._vision_tower.layers.16.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
546
+ "vision_tower._vision_tower.layers.16.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
547
+ "vision_tower._vision_tower.layers.16.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
548
+ "vision_tower._vision_tower.layers.16.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
549
+ "vision_tower._vision_tower.layers.16.self_attn_layer_norm.bias": "model-00004-of-00004.safetensors",
550
+ "vision_tower._vision_tower.layers.16.self_attn_layer_norm.weight": "model-00004-of-00004.safetensors",
551
+ "vision_tower._vision_tower.layers.17.fc1.bias": "model-00004-of-00004.safetensors",
552
+ "vision_tower._vision_tower.layers.17.fc1.weight": "model-00004-of-00004.safetensors",
553
+ "vision_tower._vision_tower.layers.17.fc2.bias": "model-00004-of-00004.safetensors",
554
+ "vision_tower._vision_tower.layers.17.fc2.weight": "model-00004-of-00004.safetensors",
555
+ "vision_tower._vision_tower.layers.17.final_layer_norm.bias": "model-00004-of-00004.safetensors",
556
+ "vision_tower._vision_tower.layers.17.final_layer_norm.weight": "model-00004-of-00004.safetensors",
557
+ "vision_tower._vision_tower.layers.17.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
558
+ "vision_tower._vision_tower.layers.17.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
559
+ "vision_tower._vision_tower.layers.17.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
560
+ "vision_tower._vision_tower.layers.17.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
561
+ "vision_tower._vision_tower.layers.17.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
562
+ "vision_tower._vision_tower.layers.17.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
563
+ "vision_tower._vision_tower.layers.17.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
564
+ "vision_tower._vision_tower.layers.17.self_attn_layer_norm.bias": "model-00004-of-00004.safetensors",
565
+ "vision_tower._vision_tower.layers.17.self_attn_layer_norm.weight": "model-00004-of-00004.safetensors",
566
+ "vision_tower._vision_tower.layers.18.fc1.bias": "model-00004-of-00004.safetensors",
567
+ "vision_tower._vision_tower.layers.18.fc1.weight": "model-00004-of-00004.safetensors",
568
+ "vision_tower._vision_tower.layers.18.fc2.bias": "model-00004-of-00004.safetensors",
569
+ "vision_tower._vision_tower.layers.18.fc2.weight": "model-00004-of-00004.safetensors",
570
+ "vision_tower._vision_tower.layers.18.final_layer_norm.bias": "model-00004-of-00004.safetensors",
571
+ "vision_tower._vision_tower.layers.18.final_layer_norm.weight": "model-00004-of-00004.safetensors",
572
+ "vision_tower._vision_tower.layers.18.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
573
+ "vision_tower._vision_tower.layers.18.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
574
+ "vision_tower._vision_tower.layers.18.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
575
+ "vision_tower._vision_tower.layers.18.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
576
+ "vision_tower._vision_tower.layers.18.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
577
+ "vision_tower._vision_tower.layers.18.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
578
+ "vision_tower._vision_tower.layers.18.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
579
+ "vision_tower._vision_tower.layers.18.self_attn_layer_norm.bias": "model-00004-of-00004.safetensors",
580
+ "vision_tower._vision_tower.layers.18.self_attn_layer_norm.weight": "model-00004-of-00004.safetensors",
581
+ "vision_tower._vision_tower.layers.19.fc1.bias": "model-00004-of-00004.safetensors",
582
+ "vision_tower._vision_tower.layers.19.fc1.weight": "model-00004-of-00004.safetensors",
583
+ "vision_tower._vision_tower.layers.19.fc2.bias": "model-00004-of-00004.safetensors",
584
+ "vision_tower._vision_tower.layers.19.fc2.weight": "model-00004-of-00004.safetensors",
585
+ "vision_tower._vision_tower.layers.19.final_layer_norm.bias": "model-00004-of-00004.safetensors",
586
+ "vision_tower._vision_tower.layers.19.final_layer_norm.weight": "model-00004-of-00004.safetensors",
587
+ "vision_tower._vision_tower.layers.19.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
588
+ "vision_tower._vision_tower.layers.19.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
589
+ "vision_tower._vision_tower.layers.19.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
590
+ "vision_tower._vision_tower.layers.19.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
591
+ "vision_tower._vision_tower.layers.19.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
592
+ "vision_tower._vision_tower.layers.19.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
593
+ "vision_tower._vision_tower.layers.19.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
594
+ "vision_tower._vision_tower.layers.19.self_attn_layer_norm.bias": "model-00004-of-00004.safetensors",
595
+ "vision_tower._vision_tower.layers.19.self_attn_layer_norm.weight": "model-00004-of-00004.safetensors",
596
+ "vision_tower._vision_tower.layers.2.fc1.bias": "model-00004-of-00004.safetensors",
597
+ "vision_tower._vision_tower.layers.2.fc1.weight": "model-00004-of-00004.safetensors",
598
+ "vision_tower._vision_tower.layers.2.fc2.bias": "model-00004-of-00004.safetensors",
599
+ "vision_tower._vision_tower.layers.2.fc2.weight": "model-00004-of-00004.safetensors",
600
+ "vision_tower._vision_tower.layers.2.final_layer_norm.bias": "model-00004-of-00004.safetensors",
601
+ "vision_tower._vision_tower.layers.2.final_layer_norm.weight": "model-00004-of-00004.safetensors",
602
+ "vision_tower._vision_tower.layers.2.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
603
+ "vision_tower._vision_tower.layers.2.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
604
+ "vision_tower._vision_tower.layers.2.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
605
+ "vision_tower._vision_tower.layers.2.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
606
+ "vision_tower._vision_tower.layers.2.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
607
+ "vision_tower._vision_tower.layers.2.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
608
+ "vision_tower._vision_tower.layers.2.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
609
+ "vision_tower._vision_tower.layers.2.self_attn_layer_norm.bias": "model-00004-of-00004.safetensors",
610
+ "vision_tower._vision_tower.layers.2.self_attn_layer_norm.weight": "model-00004-of-00004.safetensors",
611
+ "vision_tower._vision_tower.layers.20.fc1.bias": "model-00004-of-00004.safetensors",
612
+ "vision_tower._vision_tower.layers.20.fc1.weight": "model-00004-of-00004.safetensors",
613
+ "vision_tower._vision_tower.layers.20.fc2.bias": "model-00004-of-00004.safetensors",
614
+ "vision_tower._vision_tower.layers.20.fc2.weight": "model-00004-of-00004.safetensors",
615
+ "vision_tower._vision_tower.layers.20.final_layer_norm.bias": "model-00004-of-00004.safetensors",
616
+ "vision_tower._vision_tower.layers.20.final_layer_norm.weight": "model-00004-of-00004.safetensors",
617
+ "vision_tower._vision_tower.layers.20.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
618
+ "vision_tower._vision_tower.layers.20.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
619
+ "vision_tower._vision_tower.layers.20.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
620
+ "vision_tower._vision_tower.layers.20.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
621
+ "vision_tower._vision_tower.layers.20.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
622
+ "vision_tower._vision_tower.layers.20.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
623
+ "vision_tower._vision_tower.layers.20.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
624
+ "vision_tower._vision_tower.layers.20.self_attn_layer_norm.bias": "model-00004-of-00004.safetensors",
625
+ "vision_tower._vision_tower.layers.20.self_attn_layer_norm.weight": "model-00004-of-00004.safetensors",
626
+ "vision_tower._vision_tower.layers.21.fc1.bias": "model-00004-of-00004.safetensors",
627
+ "vision_tower._vision_tower.layers.21.fc1.weight": "model-00004-of-00004.safetensors",
628
+ "vision_tower._vision_tower.layers.21.fc2.bias": "model-00004-of-00004.safetensors",
629
+ "vision_tower._vision_tower.layers.21.fc2.weight": "model-00004-of-00004.safetensors",
630
+ "vision_tower._vision_tower.layers.21.final_layer_norm.bias": "model-00004-of-00004.safetensors",
631
+ "vision_tower._vision_tower.layers.21.final_layer_norm.weight": "model-00004-of-00004.safetensors",
632
+ "vision_tower._vision_tower.layers.21.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
633
+ "vision_tower._vision_tower.layers.21.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
634
+ "vision_tower._vision_tower.layers.21.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
635
+ "vision_tower._vision_tower.layers.21.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
636
+ "vision_tower._vision_tower.layers.21.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
637
+ "vision_tower._vision_tower.layers.21.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
638
+ "vision_tower._vision_tower.layers.21.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
639
+ "vision_tower._vision_tower.layers.21.self_attn_layer_norm.bias": "model-00004-of-00004.safetensors",
640
+ "vision_tower._vision_tower.layers.21.self_attn_layer_norm.weight": "model-00004-of-00004.safetensors",
641
+ "vision_tower._vision_tower.layers.22.fc1.bias": "model-00004-of-00004.safetensors",
642
+ "vision_tower._vision_tower.layers.22.fc1.weight": "model-00004-of-00004.safetensors",
643
+ "vision_tower._vision_tower.layers.22.fc2.bias": "model-00004-of-00004.safetensors",
644
+ "vision_tower._vision_tower.layers.22.fc2.weight": "model-00004-of-00004.safetensors",
645
+ "vision_tower._vision_tower.layers.22.final_layer_norm.bias": "model-00004-of-00004.safetensors",
646
+ "vision_tower._vision_tower.layers.22.final_layer_norm.weight": "model-00004-of-00004.safetensors",
647
+ "vision_tower._vision_tower.layers.22.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
648
+ "vision_tower._vision_tower.layers.22.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
649
+ "vision_tower._vision_tower.layers.22.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
650
+ "vision_tower._vision_tower.layers.22.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
651
+ "vision_tower._vision_tower.layers.22.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
652
+ "vision_tower._vision_tower.layers.22.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
653
+ "vision_tower._vision_tower.layers.22.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
654
+ "vision_tower._vision_tower.layers.22.self_attn_layer_norm.bias": "model-00004-of-00004.safetensors",
655
+ "vision_tower._vision_tower.layers.22.self_attn_layer_norm.weight": "model-00004-of-00004.safetensors",
656
+ "vision_tower._vision_tower.layers.23.fc1.bias": "model-00004-of-00004.safetensors",
657
+ "vision_tower._vision_tower.layers.23.fc1.weight": "model-00004-of-00004.safetensors",
658
+ "vision_tower._vision_tower.layers.23.fc2.bias": "model-00004-of-00004.safetensors",
659
+ "vision_tower._vision_tower.layers.23.fc2.weight": "model-00004-of-00004.safetensors",
660
+ "vision_tower._vision_tower.layers.23.final_layer_norm.bias": "model-00004-of-00004.safetensors",
661
+ "vision_tower._vision_tower.layers.23.final_layer_norm.weight": "model-00004-of-00004.safetensors",
662
+ "vision_tower._vision_tower.layers.23.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
663
+ "vision_tower._vision_tower.layers.23.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
664
+ "vision_tower._vision_tower.layers.23.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
665
+ "vision_tower._vision_tower.layers.23.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
666
+ "vision_tower._vision_tower.layers.23.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
667
+ "vision_tower._vision_tower.layers.23.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
668
+ "vision_tower._vision_tower.layers.23.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
669
+ "vision_tower._vision_tower.layers.23.self_attn_layer_norm.bias": "model-00004-of-00004.safetensors",
670
+ "vision_tower._vision_tower.layers.23.self_attn_layer_norm.weight": "model-00004-of-00004.safetensors",
671
+ "vision_tower._vision_tower.layers.24.fc1.bias": "model-00004-of-00004.safetensors",
672
+ "vision_tower._vision_tower.layers.24.fc1.weight": "model-00004-of-00004.safetensors",
673
+ "vision_tower._vision_tower.layers.24.fc2.bias": "model-00004-of-00004.safetensors",
674
+ "vision_tower._vision_tower.layers.24.fc2.weight": "model-00004-of-00004.safetensors",
675
+ "vision_tower._vision_tower.layers.24.final_layer_norm.bias": "model-00004-of-00004.safetensors",
676
+ "vision_tower._vision_tower.layers.24.final_layer_norm.weight": "model-00004-of-00004.safetensors",
677
+ "vision_tower._vision_tower.layers.24.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
678
+ "vision_tower._vision_tower.layers.24.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
679
+ "vision_tower._vision_tower.layers.24.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
680
+ "vision_tower._vision_tower.layers.24.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
681
+ "vision_tower._vision_tower.layers.24.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
682
+ "vision_tower._vision_tower.layers.24.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
683
+ "vision_tower._vision_tower.layers.24.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
684
+ "vision_tower._vision_tower.layers.24.self_attn_layer_norm.bias": "model-00004-of-00004.safetensors",
685
+ "vision_tower._vision_tower.layers.24.self_attn_layer_norm.weight": "model-00004-of-00004.safetensors",
686
+ "vision_tower._vision_tower.layers.25.fc1.bias": "model-00004-of-00004.safetensors",
687
+ "vision_tower._vision_tower.layers.25.fc1.weight": "model-00004-of-00004.safetensors",
688
+ "vision_tower._vision_tower.layers.25.fc2.bias": "model-00004-of-00004.safetensors",
689
+ "vision_tower._vision_tower.layers.25.fc2.weight": "model-00004-of-00004.safetensors",
690
+ "vision_tower._vision_tower.layers.25.final_layer_norm.bias": "model-00004-of-00004.safetensors",
691
+ "vision_tower._vision_tower.layers.25.final_layer_norm.weight": "model-00004-of-00004.safetensors",
692
+ "vision_tower._vision_tower.layers.25.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
693
+ "vision_tower._vision_tower.layers.25.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
694
+ "vision_tower._vision_tower.layers.25.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
695
+ "vision_tower._vision_tower.layers.25.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
696
+ "vision_tower._vision_tower.layers.25.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
697
+ "vision_tower._vision_tower.layers.25.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
698
+ "vision_tower._vision_tower.layers.25.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
699
+ "vision_tower._vision_tower.layers.25.self_attn_layer_norm.bias": "model-00004-of-00004.safetensors",
700
+ "vision_tower._vision_tower.layers.25.self_attn_layer_norm.weight": "model-00004-of-00004.safetensors",
701
+ "vision_tower._vision_tower.layers.26.fc1.bias": "model-00004-of-00004.safetensors",
702
+ "vision_tower._vision_tower.layers.26.fc1.weight": "model-00004-of-00004.safetensors",
703
+ "vision_tower._vision_tower.layers.26.fc2.bias": "model-00004-of-00004.safetensors",
704
+ "vision_tower._vision_tower.layers.26.fc2.weight": "model-00004-of-00004.safetensors",
705
+ "vision_tower._vision_tower.layers.26.final_layer_norm.bias": "model-00004-of-00004.safetensors",
706
+ "vision_tower._vision_tower.layers.26.final_layer_norm.weight": "model-00004-of-00004.safetensors",
707
+ "vision_tower._vision_tower.layers.26.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
708
+ "vision_tower._vision_tower.layers.26.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
709
+ "vision_tower._vision_tower.layers.26.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
710
+ "vision_tower._vision_tower.layers.26.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
711
+ "vision_tower._vision_tower.layers.26.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
712
+ "vision_tower._vision_tower.layers.26.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
713
+ "vision_tower._vision_tower.layers.26.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
714
+ "vision_tower._vision_tower.layers.26.self_attn_layer_norm.bias": "model-00004-of-00004.safetensors",
715
+ "vision_tower._vision_tower.layers.26.self_attn_layer_norm.weight": "model-00004-of-00004.safetensors",
716
+ "vision_tower._vision_tower.layers.27.fc1.bias": "model-00004-of-00004.safetensors",
717
+ "vision_tower._vision_tower.layers.27.fc1.weight": "model-00004-of-00004.safetensors",
718
+ "vision_tower._vision_tower.layers.27.fc2.bias": "model-00004-of-00004.safetensors",
719
+ "vision_tower._vision_tower.layers.27.fc2.weight": "model-00004-of-00004.safetensors",
720
+ "vision_tower._vision_tower.layers.27.final_layer_norm.bias": "model-00004-of-00004.safetensors",
721
+ "vision_tower._vision_tower.layers.27.final_layer_norm.weight": "model-00004-of-00004.safetensors",
722
+ "vision_tower._vision_tower.layers.27.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
723
+ "vision_tower._vision_tower.layers.27.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
724
+ "vision_tower._vision_tower.layers.27.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
725
+ "vision_tower._vision_tower.layers.27.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
726
+ "vision_tower._vision_tower.layers.27.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
727
+ "vision_tower._vision_tower.layers.27.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
728
+ "vision_tower._vision_tower.layers.27.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
729
+ "vision_tower._vision_tower.layers.27.self_attn_layer_norm.bias": "model-00004-of-00004.safetensors",
730
+ "vision_tower._vision_tower.layers.27.self_attn_layer_norm.weight": "model-00004-of-00004.safetensors",
731
+ "vision_tower._vision_tower.layers.28.fc1.bias": "model-00004-of-00004.safetensors",
732
+ "vision_tower._vision_tower.layers.28.fc1.weight": "model-00004-of-00004.safetensors",
733
+ "vision_tower._vision_tower.layers.28.fc2.bias": "model-00004-of-00004.safetensors",
734
+ "vision_tower._vision_tower.layers.28.fc2.weight": "model-00004-of-00004.safetensors",
735
+ "vision_tower._vision_tower.layers.28.final_layer_norm.bias": "model-00004-of-00004.safetensors",
736
+ "vision_tower._vision_tower.layers.28.final_layer_norm.weight": "model-00004-of-00004.safetensors",
737
+ "vision_tower._vision_tower.layers.28.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
738
+ "vision_tower._vision_tower.layers.28.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
739
+ "vision_tower._vision_tower.layers.28.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
740
+ "vision_tower._vision_tower.layers.28.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
741
+ "vision_tower._vision_tower.layers.28.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
742
+ "vision_tower._vision_tower.layers.28.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
743
+ "vision_tower._vision_tower.layers.28.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
744
+ "vision_tower._vision_tower.layers.28.self_attn_layer_norm.bias": "model-00004-of-00004.safetensors",
745
+ "vision_tower._vision_tower.layers.28.self_attn_layer_norm.weight": "model-00004-of-00004.safetensors",
746
+ "vision_tower._vision_tower.layers.29.fc1.bias": "model-00004-of-00004.safetensors",
747
+ "vision_tower._vision_tower.layers.29.fc1.weight": "model-00004-of-00004.safetensors",
748
+ "vision_tower._vision_tower.layers.29.fc2.bias": "model-00004-of-00004.safetensors",
749
+ "vision_tower._vision_tower.layers.29.fc2.weight": "model-00004-of-00004.safetensors",
750
+ "vision_tower._vision_tower.layers.29.final_layer_norm.bias": "model-00004-of-00004.safetensors",
751
+ "vision_tower._vision_tower.layers.29.final_layer_norm.weight": "model-00004-of-00004.safetensors",
752
+ "vision_tower._vision_tower.layers.29.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
753
+ "vision_tower._vision_tower.layers.29.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
754
+ "vision_tower._vision_tower.layers.29.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
755
+ "vision_tower._vision_tower.layers.29.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
756
+ "vision_tower._vision_tower.layers.29.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
757
+ "vision_tower._vision_tower.layers.29.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
758
+ "vision_tower._vision_tower.layers.29.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
759
+ "vision_tower._vision_tower.layers.29.self_attn_layer_norm.bias": "model-00004-of-00004.safetensors",
760
+ "vision_tower._vision_tower.layers.29.self_attn_layer_norm.weight": "model-00004-of-00004.safetensors",
761
+ "vision_tower._vision_tower.layers.3.fc1.bias": "model-00004-of-00004.safetensors",
762
+ "vision_tower._vision_tower.layers.3.fc1.weight": "model-00004-of-00004.safetensors",
763
+ "vision_tower._vision_tower.layers.3.fc2.bias": "model-00004-of-00004.safetensors",
764
+ "vision_tower._vision_tower.layers.3.fc2.weight": "model-00004-of-00004.safetensors",
765
+ "vision_tower._vision_tower.layers.3.final_layer_norm.bias": "model-00004-of-00004.safetensors",
766
+ "vision_tower._vision_tower.layers.3.final_layer_norm.weight": "model-00004-of-00004.safetensors",
767
+ "vision_tower._vision_tower.layers.3.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
768
+ "vision_tower._vision_tower.layers.3.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
769
+ "vision_tower._vision_tower.layers.3.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
770
+ "vision_tower._vision_tower.layers.3.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
771
+ "vision_tower._vision_tower.layers.3.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
772
+ "vision_tower._vision_tower.layers.3.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
773
+ "vision_tower._vision_tower.layers.3.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
774
+ "vision_tower._vision_tower.layers.3.self_attn_layer_norm.bias": "model-00004-of-00004.safetensors",
775
+ "vision_tower._vision_tower.layers.3.self_attn_layer_norm.weight": "model-00004-of-00004.safetensors",
776
+ "vision_tower._vision_tower.layers.30.fc1.bias": "model-00004-of-00004.safetensors",
777
+ "vision_tower._vision_tower.layers.30.fc1.weight": "model-00004-of-00004.safetensors",
778
+ "vision_tower._vision_tower.layers.30.fc2.bias": "model-00004-of-00004.safetensors",
779
+ "vision_tower._vision_tower.layers.30.fc2.weight": "model-00004-of-00004.safetensors",
780
+ "vision_tower._vision_tower.layers.30.final_layer_norm.bias": "model-00004-of-00004.safetensors",
781
+ "vision_tower._vision_tower.layers.30.final_layer_norm.weight": "model-00004-of-00004.safetensors",
782
+ "vision_tower._vision_tower.layers.30.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
783
+ "vision_tower._vision_tower.layers.30.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
784
+ "vision_tower._vision_tower.layers.30.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
785
+ "vision_tower._vision_tower.layers.30.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
786
+ "vision_tower._vision_tower.layers.30.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
787
+ "vision_tower._vision_tower.layers.30.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
788
+ "vision_tower._vision_tower.layers.30.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
789
+ "vision_tower._vision_tower.layers.30.self_attn_layer_norm.bias": "model-00004-of-00004.safetensors",
790
+ "vision_tower._vision_tower.layers.30.self_attn_layer_norm.weight": "model-00004-of-00004.safetensors",
791
+ "vision_tower._vision_tower.layers.31.fc1.bias": "model-00004-of-00004.safetensors",
792
+ "vision_tower._vision_tower.layers.31.fc1.weight": "model-00004-of-00004.safetensors",
793
+ "vision_tower._vision_tower.layers.31.fc2.bias": "model-00004-of-00004.safetensors",
794
+ "vision_tower._vision_tower.layers.31.fc2.weight": "model-00004-of-00004.safetensors",
795
+ "vision_tower._vision_tower.layers.31.final_layer_norm.bias": "model-00004-of-00004.safetensors",
796
+ "vision_tower._vision_tower.layers.31.final_layer_norm.weight": "model-00004-of-00004.safetensors",
797
+ "vision_tower._vision_tower.layers.31.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
798
+ "vision_tower._vision_tower.layers.31.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
799
+ "vision_tower._vision_tower.layers.31.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
800
+ "vision_tower._vision_tower.layers.31.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
801
+ "vision_tower._vision_tower.layers.31.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
802
+ "vision_tower._vision_tower.layers.31.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
803
+ "vision_tower._vision_tower.layers.31.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
804
+ "vision_tower._vision_tower.layers.31.self_attn_layer_norm.bias": "model-00004-of-00004.safetensors",
805
+ "vision_tower._vision_tower.layers.31.self_attn_layer_norm.weight": "model-00004-of-00004.safetensors",
806
+ "vision_tower._vision_tower.layers.4.fc1.bias": "model-00004-of-00004.safetensors",
807
+ "vision_tower._vision_tower.layers.4.fc1.weight": "model-00004-of-00004.safetensors",
808
+ "vision_tower._vision_tower.layers.4.fc2.bias": "model-00004-of-00004.safetensors",
809
+ "vision_tower._vision_tower.layers.4.fc2.weight": "model-00004-of-00004.safetensors",
810
+ "vision_tower._vision_tower.layers.4.final_layer_norm.bias": "model-00004-of-00004.safetensors",
811
+ "vision_tower._vision_tower.layers.4.final_layer_norm.weight": "model-00004-of-00004.safetensors",
812
+ "vision_tower._vision_tower.layers.4.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
813
+ "vision_tower._vision_tower.layers.4.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
814
+ "vision_tower._vision_tower.layers.4.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
815
+ "vision_tower._vision_tower.layers.4.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
816
+ "vision_tower._vision_tower.layers.4.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
817
+ "vision_tower._vision_tower.layers.4.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
818
+ "vision_tower._vision_tower.layers.4.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
819
+ "vision_tower._vision_tower.layers.4.self_attn_layer_norm.bias": "model-00004-of-00004.safetensors",
820
+ "vision_tower._vision_tower.layers.4.self_attn_layer_norm.weight": "model-00004-of-00004.safetensors",
821
+ "vision_tower._vision_tower.layers.5.fc1.bias": "model-00004-of-00004.safetensors",
822
+ "vision_tower._vision_tower.layers.5.fc1.weight": "model-00004-of-00004.safetensors",
823
+ "vision_tower._vision_tower.layers.5.fc2.bias": "model-00004-of-00004.safetensors",
824
+ "vision_tower._vision_tower.layers.5.fc2.weight": "model-00004-of-00004.safetensors",
825
+ "vision_tower._vision_tower.layers.5.final_layer_norm.bias": "model-00004-of-00004.safetensors",
826
+ "vision_tower._vision_tower.layers.5.final_layer_norm.weight": "model-00004-of-00004.safetensors",
827
+ "vision_tower._vision_tower.layers.5.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
828
+ "vision_tower._vision_tower.layers.5.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
829
+ "vision_tower._vision_tower.layers.5.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
830
+ "vision_tower._vision_tower.layers.5.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
831
+ "vision_tower._vision_tower.layers.5.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
832
+ "vision_tower._vision_tower.layers.5.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
833
+ "vision_tower._vision_tower.layers.5.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
834
+ "vision_tower._vision_tower.layers.5.self_attn_layer_norm.bias": "model-00004-of-00004.safetensors",
835
+ "vision_tower._vision_tower.layers.5.self_attn_layer_norm.weight": "model-00004-of-00004.safetensors",
836
+ "vision_tower._vision_tower.layers.6.fc1.bias": "model-00004-of-00004.safetensors",
837
+ "vision_tower._vision_tower.layers.6.fc1.weight": "model-00004-of-00004.safetensors",
838
+ "vision_tower._vision_tower.layers.6.fc2.bias": "model-00004-of-00004.safetensors",
839
+ "vision_tower._vision_tower.layers.6.fc2.weight": "model-00004-of-00004.safetensors",
840
+ "vision_tower._vision_tower.layers.6.final_layer_norm.bias": "model-00004-of-00004.safetensors",
841
+ "vision_tower._vision_tower.layers.6.final_layer_norm.weight": "model-00004-of-00004.safetensors",
842
+ "vision_tower._vision_tower.layers.6.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
843
+ "vision_tower._vision_tower.layers.6.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
844
+ "vision_tower._vision_tower.layers.6.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
845
+ "vision_tower._vision_tower.layers.6.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
846
+ "vision_tower._vision_tower.layers.6.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
847
+ "vision_tower._vision_tower.layers.6.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
848
+ "vision_tower._vision_tower.layers.6.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
849
+ "vision_tower._vision_tower.layers.6.self_attn_layer_norm.bias": "model-00004-of-00004.safetensors",
850
+ "vision_tower._vision_tower.layers.6.self_attn_layer_norm.weight": "model-00004-of-00004.safetensors",
851
+ "vision_tower._vision_tower.layers.7.fc1.bias": "model-00004-of-00004.safetensors",
852
+ "vision_tower._vision_tower.layers.7.fc1.weight": "model-00004-of-00004.safetensors",
853
+ "vision_tower._vision_tower.layers.7.fc2.bias": "model-00004-of-00004.safetensors",
854
+ "vision_tower._vision_tower.layers.7.fc2.weight": "model-00004-of-00004.safetensors",
855
+ "vision_tower._vision_tower.layers.7.final_layer_norm.bias": "model-00004-of-00004.safetensors",
856
+ "vision_tower._vision_tower.layers.7.final_layer_norm.weight": "model-00004-of-00004.safetensors",
857
+ "vision_tower._vision_tower.layers.7.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
858
+ "vision_tower._vision_tower.layers.7.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
859
+ "vision_tower._vision_tower.layers.7.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
860
+ "vision_tower._vision_tower.layers.7.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
861
+ "vision_tower._vision_tower.layers.7.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
862
+ "vision_tower._vision_tower.layers.7.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
863
+ "vision_tower._vision_tower.layers.7.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
864
+ "vision_tower._vision_tower.layers.7.self_attn_layer_norm.bias": "model-00004-of-00004.safetensors",
865
+ "vision_tower._vision_tower.layers.7.self_attn_layer_norm.weight": "model-00004-of-00004.safetensors",
866
+ "vision_tower._vision_tower.layers.8.fc1.bias": "model-00004-of-00004.safetensors",
867
+ "vision_tower._vision_tower.layers.8.fc1.weight": "model-00004-of-00004.safetensors",
868
+ "vision_tower._vision_tower.layers.8.fc2.bias": "model-00004-of-00004.safetensors",
869
+ "vision_tower._vision_tower.layers.8.fc2.weight": "model-00004-of-00004.safetensors",
870
+ "vision_tower._vision_tower.layers.8.final_layer_norm.bias": "model-00004-of-00004.safetensors",
871
+ "vision_tower._vision_tower.layers.8.final_layer_norm.weight": "model-00004-of-00004.safetensors",
872
+ "vision_tower._vision_tower.layers.8.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
873
+ "vision_tower._vision_tower.layers.8.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
874
+ "vision_tower._vision_tower.layers.8.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
875
+ "vision_tower._vision_tower.layers.8.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
876
+ "vision_tower._vision_tower.layers.8.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
877
+ "vision_tower._vision_tower.layers.8.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
878
+ "vision_tower._vision_tower.layers.8.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
879
+ "vision_tower._vision_tower.layers.8.self_attn_layer_norm.bias": "model-00004-of-00004.safetensors",
880
+ "vision_tower._vision_tower.layers.8.self_attn_layer_norm.weight": "model-00004-of-00004.safetensors",
881
+ "vision_tower._vision_tower.layers.9.fc1.bias": "model-00004-of-00004.safetensors",
882
+ "vision_tower._vision_tower.layers.9.fc1.weight": "model-00004-of-00004.safetensors",
883
+ "vision_tower._vision_tower.layers.9.fc2.bias": "model-00004-of-00004.safetensors",
884
+ "vision_tower._vision_tower.layers.9.fc2.weight": "model-00004-of-00004.safetensors",
885
+ "vision_tower._vision_tower.layers.9.final_layer_norm.bias": "model-00004-of-00004.safetensors",
886
+ "vision_tower._vision_tower.layers.9.final_layer_norm.weight": "model-00004-of-00004.safetensors",
887
+ "vision_tower._vision_tower.layers.9.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
888
+ "vision_tower._vision_tower.layers.9.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
889
+ "vision_tower._vision_tower.layers.9.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
890
+ "vision_tower._vision_tower.layers.9.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
891
+ "vision_tower._vision_tower.layers.9.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
892
+ "vision_tower._vision_tower.layers.9.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
893
+ "vision_tower._vision_tower.layers.9.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
894
+ "vision_tower._vision_tower.layers.9.self_attn_layer_norm.bias": "model-00004-of-00004.safetensors",
895
+ "vision_tower._vision_tower.layers.9.self_attn_layer_norm.weight": "model-00004-of-00004.safetensors"
896
+ }
897
+ }
modeling_mufun.py ADDED
@@ -0,0 +1,601 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import List, Optional, Tuple, Union
2
+ import re
3
+ import os
4
+ import torch
5
+ from torch import nn
6
+ from transformers import PreTrainedModel
7
+ from transformers.generation.utils import GenerationMixin
8
+ from transformers.modeling_outputs import CausalLMOutputWithPast
9
+ from transformers.generation.utils import GenerateOutput
10
+ from transformers import AutoConfig, AutoModelForCausalLM, Qwen3ForCausalLM, WhisperForConditionalGeneration, StoppingCriteria, AutoProcessor
11
+
12
+ from .audio_preprocess import AudioPreprocess, load_audios
13
+ from .text_preprocess import TextPreprocess
14
+ from .message import Message
15
+
16
+ from .configuration import TinyLlavaConfig, IGNORE_INDEX, IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN
17
+ CONTROLLER_HEART_BEAT_EXPIRATION = 30
18
+ WORKER_HEART_BEAT_INTERVAL = 15
19
+ LOGDIR = "."
20
+
21
+
22
+ class KeywordsStoppingCriteria(StoppingCriteria):
23
+ def __init__(self, keywords, tokenizer, input_ids):
24
+ self.keywords = keywords
25
+ self.keyword_ids = []
26
+ self.max_keyword_len = 0
27
+ for keyword in keywords:
28
+ cur_keyword_ids = tokenizer(keyword).input_ids
29
+ if len(cur_keyword_ids) > 1 and cur_keyword_ids[0] == tokenizer.bos_token_id:
30
+ cur_keyword_ids = cur_keyword_ids[1:]
31
+ if len(cur_keyword_ids) > self.max_keyword_len:
32
+ self.max_keyword_len = len(cur_keyword_ids)
33
+ self.keyword_ids.append(torch.tensor(cur_keyword_ids))
34
+ self.tokenizer = tokenizer
35
+ self.start_len = input_ids.shape[1]
36
+
37
+ def call_for_batch(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
38
+ offset = min(output_ids.shape[1] - self.start_len, self.max_keyword_len)
39
+ self.keyword_ids = [keyword_id.to(output_ids.device) for keyword_id in self.keyword_ids]
40
+ for keyword_id in self.keyword_ids:
41
+ if (output_ids[0, -keyword_id.shape[0]:] == keyword_id).all():
42
+ return True
43
+ outputs = self.tokenizer.batch_decode(output_ids[:, -offset:], skip_special_tokens=True)[0]
44
+ for keyword in self.keywords:
45
+ if keyword in outputs:
46
+ return True
47
+ return False
48
+
49
+ def __call__(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
50
+ outputs = []
51
+ for i in range(output_ids.shape[0]):
52
+ outputs.append(self.call_for_batch(output_ids[i].unsqueeze(0), scores))
53
+ return all(outputs)
54
+
55
+
56
+ ACT_TYPE = {
57
+ 'relu': nn.ReLU,
58
+ 'gelu': nn.GELU
59
+ }
60
+
61
+ class CNet(nn.Module):
62
+ def __init__(self, config):
63
+ super().__init__()
64
+ def extract_numbers(s):
65
+ match = re.findall(r'(\d+)[ix]', s)
66
+ if len(match) == 2:
67
+ return tuple(map(int, match))
68
+ return None
69
+ ix, hx = extract_numbers(config.connector_type)
70
+ act_type = 'gelu'
71
+ self.act=ACT_TYPE[act_type]()
72
+
73
+ vdim = config.vision_hidden_size*ix
74
+ ldim = config.hidden_size
75
+
76
+ self.linear1 = nn.Linear(vdim, hx*vdim)
77
+ self.linear2 = nn.Linear(hx*vdim, ldim)
78
+
79
+
80
+ def forward(self, x):
81
+ x = self.act(self.linear1(x))
82
+ return self.linear2(x)
83
+
84
+ class Connector(nn.Module):
85
+ def __init__(self, config=None):
86
+ super().__init__()
87
+ self._connector = None
88
+
89
+ def load_model(self, **kwargs):
90
+ pretrained_connector_path = kwargs.get('pretrained_connector_path', None)
91
+ if pretrained_connector_path is not None:
92
+ pretrained_connector_path = os.path.join(pretrained_connector_path, 'pytorch_model.bin')
93
+ connector_weights = torch.load(pretrained_connector_path, map_location='cpu')
94
+ def get_w(weights, keyword):
95
+ return {k.split(keyword + '.')[1]: v for k, v in weights.items() if keyword in k}
96
+ self._connector.load_state_dict(get_w(connector_weights, '_connector'))
97
+ print(f'Loading connector from {pretrained_connector_path}...')
98
+
99
+ for p in self._connector.parameters():
100
+ p.requires_grad = False
101
+
102
+ def forward(self, x):
103
+ return self._connector(x)
104
+
105
+ class MLPConnector(Connector):
106
+ def __init__(self, config):
107
+ super().__init__()
108
+ self._connector = CNet(config)
109
+
110
+
111
+ def get_value_from_kwargs(kwargs, name):
112
+ if name in kwargs:
113
+ return kwargs.pop(name)
114
+ else:
115
+ return None
116
+
117
+
118
+ class AudioTower(nn.Module):
119
+ def __init__(self, cfg):
120
+ super().__init__()
121
+ self._vision_tower = None
122
+ self._image_processor = None
123
+ self.config = cfg
124
+
125
+ def load_model(self, vision_tower_name, **kwargs):
126
+ self._load_model(vision_tower_name, **kwargs)
127
+ self._vision_tower.requires_grad_(False)
128
+
129
+ def _load_model(self, vision_tower_name, **kwargs):
130
+ pretrained_vision_tower_path = get_value_from_kwargs(kwargs, 'pretrained_vision_tower_path')
131
+ if isinstance(self._vision_tower, PreTrainedModel): # hf model
132
+ if pretrained_vision_tower_path is not None:
133
+ vision_tower_name = pretrained_vision_tower_path
134
+ self._vision_tower = self._vision_tower.from_pretrained(vision_tower_name, **kwargs)
135
+ else: # nn.Module
136
+ if pretrained_vision_tower_path is not None:
137
+ vision_tower_weights = torch.load(os.path.join(pretrained_vision_tower_path, 'pytorch_model.bin'), map_location='cpu')
138
+ def get_w(weights, keyword):
139
+ return {k.split(keyword + '.')[1]: v for k, v in weights.items() if keyword in k}
140
+ self._vision_tower.load_state_dict(vision_tower_weights)
141
+
142
+ print("Loading vision tower from ", vision_tower_name)
143
+
144
+ def forward(self, x, **kwargs):
145
+ image_features = self._vision_tower(x, output_hidden_states=True)
146
+ image_features = image_features.hidden_states[kwargs.get('vision_feature_layer', -2)]
147
+
148
+ if kwargs.get('vision_feature_select_strategy', 'patch') == 'patch':
149
+ image_features = image_features[:, 1:]
150
+ elif kwargs.get('vision_feature_select_strategy', 'patch') == 'cls_patch':
151
+ image_features = image_features
152
+ else:
153
+ raise ValueError(f"Unexpected select feature: {kwargs.get('vision_feature_select_strategy')}")
154
+
155
+ return image_features
156
+
157
+ @property
158
+ def vision_tower(self):
159
+ return self._vision_tower
160
+
161
+ @vision_tower.setter
162
+ def vision_tower(self, vision_tower):
163
+ self._vision_tower = vision_tower
164
+
165
+ class WpmAudioTower(AudioTower):
166
+ def __init__(self, cfg):
167
+ super().__init__(cfg)
168
+
169
+ self._vision_tower = WhisperForConditionalGeneration.from_pretrained("openai/whisper-large-v3").get_encoder()
170
+ self._image_processor = AutoProcessor.from_pretrained("openai/whisper-large-v3")
171
+ self.pool_stride = 5
172
+ self.avg_pooler = nn.AvgPool1d(self.pool_stride, stride=self.pool_stride)
173
+ self.features_layers = [0, 7, 15, 32]
174
+
175
+ def _load_model(self, vision_tower_name, **kwargs):
176
+ pretrained_vision_tower_path = kwargs.pop('pretrained_vision_tower_path', None)
177
+ if pretrained_vision_tower_path is None:
178
+
179
+ print("Loading vision tower1 from ", vision_tower_name)
180
+ else: # nn.Module
181
+ if pretrained_vision_tower_path is not None:
182
+ vision_tower_weights = torch.load(os.path.join(pretrained_vision_tower_path, 'pytorch_model.bin'), map_location='cpu')
183
+ def get_w(weights, keyword):
184
+ return {k.split(keyword + '.')[1]: v for k, v in weights.items() if keyword in k}
185
+ self._vision_tower.load_state_dict(vision_tower_weights)
186
+ print("Loading vision tower from ", pretrained_vision_tower_path)
187
+
188
+ def forward(self, x, **kwargs):
189
+ if len(x.shape)==4:
190
+ x=torch.squeeze(x, 1)
191
+ image_features = self._vision_tower(x, output_hidden_states=True).hidden_states
192
+ hidden_states = torch.cat([image_features[il] for il in self.features_layers], dim=-1)
193
+
194
+ hidden_states = hidden_states.permute(0, 2, 1)
195
+ hidden_states = self.avg_pooler(hidden_states)
196
+ hidden_states = hidden_states.permute(0, 2, 1)
197
+
198
+ return hidden_states
199
+
200
+
201
+
202
+ class TinyLlavaPreTrainedModel(PreTrainedModel):
203
+ config_class = TinyLlavaConfig
204
+ base_model_prefix = "model"
205
+ supports_gradient_checkpointing = True
206
+ _no_split_modules = ["LlavaVisionAttention"]
207
+ _skip_keys_device_placement = "past_key_values"
208
+ _supports_flash_attn_2 = True
209
+
210
+ def _init_weights(self, module):
211
+ std = (
212
+ self.config.initializer_range
213
+ if hasattr(self.config, "initializer_range")
214
+ else self.config.text_config.initializer_range
215
+ )
216
+
217
+ if hasattr(module, "class_embedding"):
218
+ module.class_embedding.data.normal_(mean=0.0, std=std)
219
+
220
+ if isinstance(module, (nn.Linear, nn.Conv2d)):
221
+ module.weight.data.normal_(mean=0.0, std=std)
222
+ if module.bias is not None:
223
+ module.bias.data.zero_()
224
+ elif isinstance(module, nn.Embedding):
225
+ module.weight.data.normal_(mean=0.0, std=std)
226
+ if module.padding_idx is not None:
227
+ module.weight.data[module.padding_idx].zero_()
228
+
229
+ @property
230
+ def _supports_sdpa(self):
231
+ return self.language_model._supports_sdpa
232
+
233
+
234
+ class TinyLlavaForConditionalGeneration(TinyLlavaPreTrainedModel, GenerationMixin):
235
+ def __init__(self, config: TinyLlavaConfig):
236
+
237
+ super().__init__(config)
238
+
239
+ # apply_liger_kernel_to_qwen3()
240
+ self.language_model = Qwen3ForCausalLM(config.text_config)
241
+ self.vision_tower = WpmAudioTower(config.vision_config)
242
+ self.connector = MLPConnector(config)
243
+
244
+ self.post_init()
245
+
246
+
247
+ def get_input_embeddings(self):
248
+ return self.language_model.get_input_embeddings()
249
+
250
+ def set_input_embeddings(self, value):
251
+ self.language_model.set_input_embeddings(value)
252
+
253
+ def get_output_embeddings(self):
254
+ return self.language_model.get_output_embeddings()
255
+
256
+ def set_output_embeddings(self, new_embeddings):
257
+ self.language_model.set_output_embeddings(new_embeddings)
258
+
259
+ def set_decoder(self, decoder):
260
+ self.language_model.set_decoder(decoder)
261
+
262
+ def get_decoder(self):
263
+ return self.language_model.get_decoder()
264
+
265
+ def tie_weights(self):
266
+ return self.language_model.tie_weights()
267
+
268
+ def resize_token_embeddings(self, new_num_tokens: Optional[int] = None, pad_to_multiple_of=None) -> nn.Embedding:
269
+ model_embeds = self.language_model.resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
270
+ # update vocab size
271
+ self.config.text_config.vocab_size = model_embeds.num_embeddings
272
+ self.config.vocab_size = model_embeds.num_embeddings
273
+ self.vocab_size = model_embeds.num_embeddings
274
+ return model_embeds
275
+
276
+
277
+ def forward(
278
+ self,
279
+ input_ids: torch.LongTensor = None,
280
+ attention_mask: Optional[torch.Tensor] = None,
281
+ position_ids: Optional[torch.LongTensor] = None,
282
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
283
+ inputs_embeds: Optional[torch.FloatTensor] = None,
284
+ labels: Optional[torch.LongTensor] = None,
285
+ use_cache: Optional[bool] = None,
286
+ output_attentions: Optional[bool] = None,
287
+ output_hidden_states: Optional[bool] = None,
288
+ images: Optional[torch.FloatTensor] = None,
289
+ image_sizes: Optional[List[List[int]]] = None,
290
+ return_dict: Optional[bool] = None,
291
+ logits_to_keep = None
292
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
293
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
294
+ if inputs_embeds is None:
295
+ (
296
+ input_ids,
297
+ position_ids,
298
+ attention_mask,
299
+ past_key_values,
300
+ inputs_embeds,
301
+ labels
302
+ ) = self.prepare_inputs_labels_for_multimodal(
303
+ input_ids,
304
+ position_ids,
305
+ attention_mask,
306
+ past_key_values,
307
+ labels,
308
+ images,
309
+ image_sizes
310
+ )
311
+
312
+ return self.language_model.forward(
313
+ input_ids=input_ids,
314
+ attention_mask=attention_mask,
315
+ position_ids=position_ids,
316
+ past_key_values=past_key_values,
317
+ inputs_embeds=inputs_embeds,
318
+ labels=labels,
319
+ use_cache=use_cache,
320
+ output_attentions=output_attentions,
321
+ output_hidden_states=output_hidden_states,
322
+ return_dict=return_dict
323
+ )
324
+
325
+ @torch.no_grad()
326
+ def generate(
327
+ self,
328
+ inputs: Optional[torch.Tensor] = None,
329
+ images: Optional[torch.Tensor] = None,
330
+ image_sizes: Optional[torch.Tensor] = None,
331
+ **kwargs,
332
+ ) -> Union[GenerateOutput, torch.LongTensor]:
333
+ position_ids = kwargs.pop("position_ids", None)
334
+ attention_mask = kwargs.pop("attention_mask", None)
335
+ if "inputs_embeds" in kwargs:
336
+ raise NotImplementedError("`inputs_embeds` is not supported")
337
+ if isinstance(images, list) and (images != []):
338
+ images = torch.cat(images, dim=0)
339
+ if images is not None:
340
+ (
341
+ inputs,
342
+ position_ids,
343
+ attention_mask,
344
+ _,
345
+ inputs_embeds,
346
+ _
347
+ ) = self.prepare_inputs_labels_for_multimodal(
348
+ inputs,
349
+ position_ids,
350
+ attention_mask,
351
+ None,
352
+ None,
353
+ images,
354
+ image_sizes=image_sizes
355
+ )
356
+ else:
357
+ inputs_embeds = self.language_model.get_input_embeddings()(inputs)
358
+
359
+ return self.language_model.generate(
360
+ position_ids=position_ids,
361
+ attention_mask=attention_mask,
362
+ inputs_embeds=inputs_embeds,
363
+ **kwargs
364
+ )
365
+
366
+ def encode_images(self, images):
367
+ kwargs = {}
368
+ kwargs['vision_feature_layer'] = self.config.vision_feature_layer
369
+ kwargs['vision_feature_select_strategy'] = self.config.vision_feature_select_strategy
370
+ images = images.to(device=self.device, dtype=self.dtype)
371
+ if images.shape[-1] != 3000:
372
+ splits = torch.split(images, 3000, dim=-1)
373
+ image_features = torch.cat([self.connector(self.vision_tower(x, **kwargs)) for x in splits], dim=-1)
374
+ else:
375
+ image_features = self.vision_tower(images, **kwargs)
376
+ image_features = self.connector(image_features)
377
+
378
+ return image_features
379
+
380
+ def prepare_inputs_for_generation(self, input_ids, past_key_values=None,
381
+ inputs_embeds=None, **kwargs):
382
+ images = kwargs.pop("images", None)
383
+ image_sizes = kwargs.pop("image_sizes", None)
384
+ inputs = self.language_model.prepare_inputs_for_generation(
385
+ input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs
386
+ )
387
+ if images is not None:
388
+ inputs['images'] = images
389
+ if image_sizes is not None:
390
+ inputs['image_sizes'] = image_sizes
391
+ return inputs
392
+
393
+ def prepare_inputs_labels_for_multimodal(
394
+ self, input_ids, position_ids, attention_mask, past_key_values, labels,
395
+ images, image_sizes=None
396
+ ):
397
+ vision_tower = self.vision_tower
398
+ if vision_tower is None or images is None or input_ids.shape[1] == 1:
399
+ return input_ids, position_ids, attention_mask, past_key_values, None, labels
400
+
401
+
402
+ image_features = self.encode_images(images)
403
+ # TODO: image start / end is not implemented here to support pretraining.
404
+ if getattr(self.config, 'tune_mm_mlp_adapter', False):
405
+ raise NotImplementedError
406
+
407
+ # Let's just add dummy tensors if they do not exist,
408
+ # it is a headache to deal with None all the time.
409
+ # But it is not ideal, and if you have a better idea,
410
+ # please open an issue / submit a PR, thanks.
411
+ _labels = labels
412
+ _position_ids = position_ids
413
+ _attention_mask = attention_mask
414
+ if attention_mask is None:
415
+ attention_mask = torch.ones_like(input_ids, dtype=torch.bool)
416
+ else:
417
+ attention_mask = attention_mask.bool()
418
+ if position_ids is None:
419
+ position_ids = torch.arange(0, input_ids.shape[1], dtype=torch.long, device=input_ids.device)
420
+ if labels is None:
421
+ labels = torch.full_like(input_ids, IGNORE_INDEX)
422
+
423
+ # remove the padding using attention_mask -- FIXME
424
+ _input_ids = input_ids
425
+ input_ids = [cur_input_ids[cur_attention_mask] for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)]
426
+ labels = [cur_labels[cur_attention_mask] for cur_labels, cur_attention_mask in zip(labels, attention_mask)]
427
+
428
+ new_input_embeds = []
429
+ new_labels = []
430
+ cur_image_idx = 0
431
+ for batch_idx, cur_input_ids in enumerate(input_ids):
432
+ num_images = (cur_input_ids == IMAGE_TOKEN_INDEX).sum()
433
+ cur_image_size = image_sizes[batch_idx] if image_sizes is not None else None
434
+ if num_images == 0:
435
+ # cur_image_features = image_features[cur_image_idx]
436
+ cur_input_embeds_1 = self.language_model.get_input_embeddings()(cur_input_ids)
437
+ # cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0]], dim=0)
438
+ new_input_embeds.append(cur_input_embeds_1)
439
+ new_labels.append(labels[batch_idx])
440
+ # cur_image_idx += 1
441
+ continue
442
+
443
+ image_token_indices = [-1] + torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist() + [cur_input_ids.shape[0]]
444
+ cur_input_ids_noim = []
445
+ cur_labels = labels[batch_idx]
446
+ cur_labels_noim = []
447
+ for i in range(len(image_token_indices) - 1):
448
+ cur_input_ids_noim.append(cur_input_ids[image_token_indices[i]+1:image_token_indices[i+1]])
449
+ cur_labels_noim.append(cur_labels[image_token_indices[i]+1:image_token_indices[i+1]])
450
+ split_sizes = [x.shape[0] for x in cur_labels_noim]
451
+ cur_input_embeds = self.language_model.get_input_embeddings()(torch.cat(cur_input_ids_noim))
452
+ cur_input_embeds_no_im = torch.split(cur_input_embeds, split_sizes, dim=0)
453
+ cur_new_input_embeds = []
454
+ cur_new_labels = []
455
+
456
+ for i in range(num_images + 1):
457
+ cur_new_input_embeds.append(cur_input_embeds_no_im[i])
458
+ cur_new_labels.append(cur_labels_noim[i])
459
+ if i < num_images:
460
+ img_size = cur_image_size[i]
461
+ cur_image_features = image_features[cur_image_idx:cur_image_idx + img_size]
462
+ cur_image_features = [img.squeeze(0) for img in cur_image_features]
463
+ cur_image_features = torch.cat(cur_image_features, dim=0)
464
+ cur_image_idx += img_size
465
+ cur_new_input_embeds.append(cur_image_features)
466
+ cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=cur_labels.device, dtype=cur_labels.dtype))
467
+
468
+ cur_new_input_embeds = [x.to(self.device) for x in cur_new_input_embeds]
469
+
470
+ cur_new_input_embeds = torch.cat(cur_new_input_embeds)
471
+ cur_new_labels = torch.cat(cur_new_labels)
472
+
473
+ new_input_embeds.append(cur_new_input_embeds)
474
+ new_labels.append(cur_new_labels)
475
+
476
+ # Truncate sequences to max length as image embeddings can make the sequence longer
477
+ tokenizer_model_max_length = getattr(self.config, 'tokenizer_model_max_length', None)
478
+ if tokenizer_model_max_length is not None:
479
+ new_input_embeds = [x[:tokenizer_model_max_length] for x in new_input_embeds]
480
+ new_labels = [x[:tokenizer_model_max_length] for x in new_labels]
481
+
482
+ # Combine them
483
+ max_len = max(x.shape[0] for x in new_input_embeds)
484
+ # print(f"max_len: {max_len}")
485
+ batch_size = len(new_input_embeds)
486
+
487
+ new_input_embeds_padded = []
488
+ new_labels_padded = torch.full((batch_size, max_len), IGNORE_INDEX, dtype=new_labels[0].dtype, device=new_labels[0].device)
489
+ attention_mask = torch.zeros((batch_size, max_len), dtype=attention_mask.dtype, device=attention_mask.device)
490
+ position_ids = torch.zeros((batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device)
491
+
492
+ for i, (cur_new_embed, cur_new_labels) in enumerate(zip(new_input_embeds, new_labels)):
493
+ cur_len = cur_new_embed.shape[0]
494
+ if getattr(self.config, 'tokenizer_padding_side', 'right') == "left":
495
+ new_input_embeds_padded.append(torch.cat((
496
+ torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device),
497
+ cur_new_embed
498
+ ), dim=0))
499
+ if cur_len > 0:
500
+ new_labels_padded[i, -cur_len:] = cur_new_labels
501
+ attention_mask[i, -cur_len:] = True
502
+ position_ids[i, -cur_len:] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)
503
+ else:
504
+ new_input_embeds_padded.append(torch.cat((
505
+ cur_new_embed,
506
+ torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)
507
+ ), dim=0))
508
+ if cur_len > 0:
509
+ new_labels_padded[i, :cur_len] = cur_new_labels
510
+ attention_mask[i, :cur_len] = True
511
+ position_ids[i, :cur_len] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)
512
+
513
+ new_input_embeds = torch.stack(new_input_embeds_padded, dim=0)
514
+
515
+ if _labels is None:
516
+ new_labels = None
517
+ else:
518
+ new_labels = new_labels_padded
519
+
520
+ if _attention_mask is None:
521
+ attention_mask = None
522
+ else:
523
+ attention_mask = attention_mask.to(dtype=_attention_mask.dtype)
524
+
525
+ if _position_ids is None:
526
+ position_ids = None
527
+ return None, position_ids, attention_mask, past_key_values, new_input_embeds, new_labels
528
+
529
+
530
+
531
+
532
+ def load_llm(self, **kwargs):
533
+ language_model_name = get_value_from_kwargs(kwargs, 'model_name_or_path')
534
+ pretrained_llm_path = get_value_from_kwargs(kwargs, 'pretrained_llm_path')
535
+ if pretrained_llm_path is not None:
536
+ language_model_name = pretrained_llm_path
537
+ if language_model_name is not None:
538
+ self.language_model = self.language_model.from_pretrained(
539
+ language_model_name, **kwargs
540
+ )
541
+ print('loading language model from ', language_model_name)
542
+ self.language_model.requires_grad_(False)
543
+
544
+ self.config.text_config.torch_dtype = kwargs.get('torch_dtype', None)
545
+ self.config.pad_token = getattr(self.tokenizer, 'pad_token', None)
546
+ self.config.pad_token_id = getattr(self.tokenizer, 'pad_token_id', None)
547
+ #self.config.tokenizer_padding_side = getattr(self.tokenizer, 'padding_side', None)
548
+ #self.config.tokenizer_model_max_length = getattr(self.tokenizer, 'model_max_length', None)
549
+
550
+ def load_vision_tower(self, **kwargs):
551
+ vision_tower_name = get_value_from_kwargs(kwargs, 'model_name_or_path')
552
+ self.vision_tower.load_model(vision_tower_name, **kwargs)
553
+
554
+ def load_connector(self, **kwargs):
555
+ self.connector.load_model(**kwargs)
556
+
557
+ def chat(
558
+ self,
559
+ tokenizer,
560
+ prompt,
561
+ audio_files,
562
+ segs = None,
563
+ max_new_tokens = 512,
564
+ temperature= 0.5,
565
+ top_k = 50,
566
+ top_p = 1.0,
567
+ ):
568
+ text_processor =TextPreprocess(tokenizer, 'qwen2_instruct')
569
+ audio_processor = AudioPreprocess(self.vision_tower._image_processor, self.config)
570
+ msg = Message()
571
+ audio_tensor, audio_size = load_audios(audio_processor, audio_files, segs)
572
+ if (audio_tensor) and ('<audio>' not in prompt):
573
+ prompt = '<audio>\n' + prompt
574
+ msg.add_message(prompt)
575
+ result = text_processor(msg.messages, mode='eval')
576
+ input_ids = result['input_ids'].unsqueeze(0).to(self.device)
577
+ stop_str = text_processor.template.separator.apply()[1]
578
+ keywords = [stop_str]
579
+ stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
580
+ with torch.inference_mode():
581
+ output_ids = self.generate(
582
+ input_ids,
583
+ images=audio_tensor,
584
+ do_sample=True if temperature > 0 else False,
585
+ temperature=temperature,
586
+ top_k=top_k,
587
+ top_p=top_p,
588
+ max_new_tokens=max_new_tokens,
589
+ use_cache=True,
590
+ pad_token_id = tokenizer.eos_token_id,
591
+ image_sizes=[audio_size] if audio_tensor is not None else None,
592
+ stopping_criteria=[stopping_criteria]
593
+ )
594
+ gen_text = tokenizer.decode(output_ids[0])
595
+ if gen_text.endswith(stop_str):
596
+ gen_text = gen_text[:-len(stop_str)]
597
+ return gen_text
598
+
599
+
600
+ AutoConfig.register("tinyllava", TinyLlavaConfig)
601
+ AutoModelForCausalLM.register(TinyLlavaConfig, TinyLlavaForConditionalGeneration)
special_tokens_map.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ },
31
+ "unk_token": "<|endoftext|>"
32
+ }
text_preprocess.py ADDED
@@ -0,0 +1,243 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from dataclasses import dataclass, field
2
+ from typing import TYPE_CHECKING, Dict, List, Optional, Sequence, Tuple, Union
3
+ import copy
4
+ from typing import Any
5
+
6
+
7
+ # IGNORE_INDEX = -100
8
+ # IMAGE_TOKEN_INDEX = -200
9
+ # DEFAULT_IMAGE_TOKEN = "<audio>"
10
+ from .configuration import IGNORE_INDEX, IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN
11
+
12
+ from transformers import PreTrainedTokenizer
13
+ import torch
14
+ from abc import ABC, abstractmethod
15
+ # from dataclasses import dataclass
16
+ # from typing import Dict, Union, List
17
+
18
+
19
+ SLOT = Union[str, List[str], Dict[str, str]]
20
+
21
+ @dataclass
22
+ class Formatter(ABC):
23
+ slot: SLOT = ""
24
+
25
+ @abstractmethod
26
+ def apply(self, **kwargs) -> SLOT: ...
27
+
28
+
29
+
30
+ @dataclass
31
+ class EmptyFormatter(Formatter):
32
+ def apply(self, **kwargs) -> SLOT:
33
+ return self.slot
34
+
35
+
36
+ @dataclass
37
+ class StringFormatter(Formatter):
38
+ def apply(self, **kwargs) -> SLOT:
39
+ msg = ""
40
+ for name, value in kwargs.items():
41
+ if value is None:
42
+ msg = self.slot.split(':')[0] + ":"
43
+ return msg
44
+ if not isinstance(value, str):
45
+ raise RuntimeError("Expected a string, got {}".format(value))
46
+ msg = self.slot.replace("{{" + name + "}}", value, 1)
47
+ return msg
48
+
49
+
50
+
51
+ @dataclass
52
+ class Template:
53
+ format_image_token: "Formatter"
54
+ format_user: "Formatter"
55
+ format_assistant: "Formatter"
56
+ system: "Formatter"
57
+ separator: "Formatter"
58
+
59
+ def encode(self, messages, tokenizer, mode='train'):
60
+ """
61
+ 1. get list form messages(conversations:[{from:human, value:message}, {from:gpt, value:message}])
62
+ ===> human_list, value_list
63
+ 2. prompt two list
64
+ 3. tokenize prompt
65
+ 4. make target
66
+ """
67
+ question_list, answer_list = self.get_list_from_message(messages)
68
+ if mode == 'rl':
69
+ gt = answer_list[-1]
70
+ answer_list[-1] = '' # last answer is empty in RL mode
71
+ prompt = self.prompt(question_list, answer_list)
72
+ if mode == 'rl' and prompt.endswith(self.separator.apply()[1]):
73
+ prompt = prompt[:-len(self.separator.apply()[1])]
74
+ input_ids = self.tokenizer_image_token(prompt, tokenizer, return_tensors='pt')
75
+ if mode == 'train':
76
+ labels = self.make_labels(input_ids, prompt, tokenizer)
77
+ return dict(
78
+ input_ids=input_ids,
79
+ labels=labels
80
+ )
81
+ elif mode == 'rl':
82
+ return dict(
83
+ input_ids=input_ids,
84
+ prompt=prompt,
85
+ gt=gt
86
+ )
87
+ else:
88
+ return dict(input_ids=input_ids, prompt=prompt)
89
+
90
+
91
+ def get_list_from_message(self, messages):
92
+ return self._get_list_from_message(messages)
93
+
94
+ def _get_list_from_message(self, messages):
95
+ """
96
+ messages ====> [{from:human, value:message}, {from:gpt, value:message}]
97
+ """
98
+ question_list = []
99
+ answer_list = []
100
+ first_is_not_question = 0
101
+ for i, message in enumerate(messages):
102
+ if i == 0 and message['from'] != 'human':
103
+ first_is_not_question = 1
104
+ continue
105
+ if i % 2 == first_is_not_question:
106
+ question_list.append(message['value'])
107
+ else:
108
+ answer_list.append(message['value'])
109
+
110
+ assert len(question_list) == len(answer_list) , \
111
+ f"qa is not match : length_q:{len(question_list)} vs length_a:{len(answer_list)}"
112
+ return question_list, answer_list
113
+
114
+
115
+ def prompt(
116
+ self,
117
+ question_list, answer_list
118
+ ):
119
+ if type(question_list) is str:
120
+ question_list = [question_list]
121
+ if type(answer_list) is str:
122
+ answer_list = [answer_list]
123
+ msg = self._prompt(question_list, answer_list)
124
+ return msg
125
+
126
+ def _prompt(
127
+ self,
128
+ question_list, answer_list,
129
+ ):
130
+ msg = ""
131
+ for i, (question, answer) in enumerate(zip(question_list, answer_list)):
132
+ if i == 0:
133
+ msg += self.system.apply()
134
+ # if DEFAULT_IMAGE_TOKEN in question:
135
+ # question = question.replace(DEFAULT_IMAGE_TOKEN, '').strip()
136
+ # question = self.format_image_token.apply(content=question).strip()
137
+ msg += self.format_user.apply(content=question)
138
+ msg += self.format_assistant.apply(content=answer)
139
+ return msg
140
+
141
+ def make_labels(self, input_ids, prompt, tokenizer):
142
+ labels = copy.deepcopy(input_ids)
143
+ sep, eos_token = self.separator.apply()
144
+ total_len = int(labels.ne(tokenizer.pad_token_id).sum())
145
+ if tokenizer.pad_token_id == tokenizer.eos_token_id:
146
+ total_len += prompt.count(eos_token)
147
+ rounds = prompt.split(eos_token)
148
+ eos_token_length = len(tokenizer.encode(eos_token))
149
+ labels, cur_len = self._make_masks(labels, tokenizer, sep, eos_token_length, rounds)
150
+ if cur_len < tokenizer.model_max_length:
151
+ # import time
152
+ if (cur_len != total_len) and ( (cur_len+1) != total_len):
153
+ print(
154
+ f"WARNING: tokenization mismatch: {cur_len} vs. {total_len}."
155
+ f" (ignored)"
156
+ )
157
+ print("number of rounds: ", len(rounds) - 1)
158
+ print("rounds: ", rounds[:-1])
159
+ print("prompt: ", prompt)
160
+ print(labels)
161
+ print(input_ids)
162
+ # time.sleep(5)
163
+ # labels[:] = IGNORE_INDEX
164
+ return labels
165
+
166
+
167
+
168
+ def _make_masks(self, labels, tokenizer, sep, eos_token_length, rounds):
169
+ cur_len = 0
170
+ for rou in rounds:
171
+ if rou == "":
172
+ break
173
+ parts = rou.split(sep)
174
+ if len(parts) != 2:
175
+ break
176
+ parts[0] += sep
177
+ round_len = len(self.tokenizer_image_token(rou, tokenizer)) + eos_token_length
178
+ instruction_len = len(self.tokenizer_image_token(parts[0], tokenizer)) - 1
179
+ labels[cur_len : cur_len + instruction_len] = IGNORE_INDEX
180
+ cur_len += round_len
181
+ labels[cur_len:] = IGNORE_INDEX
182
+ return labels, cur_len
183
+
184
+ @classmethod
185
+ def tokenizer_image_token(cls, prompt, tokenizer, image_token_index=IMAGE_TOKEN_INDEX, return_tensors=None):
186
+ def _insert_separator(X, sep):
187
+ return [ele for sublist in zip(X, [sep]*len(X)) for ele in sublist][:-1]
188
+ prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split('<audio>')]
189
+
190
+ input_ids = []
191
+ offset = 0
192
+ if len(prompt_chunks) > 0 and len(prompt_chunks[0]) > 0 and prompt_chunks[0][0] == tokenizer.bos_token_id:
193
+ offset = 1
194
+ input_ids.append(prompt_chunks[0][0])
195
+
196
+ for x in _insert_separator(prompt_chunks, [image_token_index] * (offset + 1)):
197
+ input_ids.extend(x[offset:])
198
+
199
+ if return_tensors is not None:
200
+ if return_tensors == 'pt':
201
+ return torch.tensor(input_ids, dtype=torch.long)
202
+ raise ValueError(f'Unsupported tensor type: {return_tensors}')
203
+ return input_ids
204
+
205
+
206
+ TEMPlATE_FACTORY: Dict[str, Template] = {}
207
+
208
+ def TemplateFactory(version):
209
+ template = TEMPlATE_FACTORY.get(version, None)
210
+ assert template, f"{version} is not implmentation"
211
+ return template
212
+
213
+
214
+ def register_template(name):
215
+ def register_template_cls(cls):
216
+ if name in TEMPlATE_FACTORY:
217
+ return TEMPlATE_FACTORY[name]
218
+
219
+ TEMPlATE_FACTORY[name] = cls
220
+ return cls
221
+
222
+ return register_template_cls
223
+
224
+
225
+ system = "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions."
226
+
227
+ @register_template('qwen2_instruct')
228
+ @dataclass
229
+ class Qwen2InstructTemplate(Template):
230
+ format_image_token: "Formatter" = field(default_factory=lambda: StringFormatter(slot="<audio>\n{{content}}"))
231
+ format_user: "Formatter" = field(default_factory=lambda: StringFormatter(slot="USER" + ": " + "{{content}}" + " "))
232
+ format_assistant: "Formatter" = field(default_factory=lambda: StringFormatter(slot="ASSISTANT" + ": " + "{{content}}" + "<|im_end|>"))
233
+ system: "Formatter" = field(default_factory=lambda: EmptyFormatter(slot=system+" "))
234
+ separator: "Formatter" = field(default_factory=lambda: EmptyFormatter(slot=[' ASSISTANT: ', '<|im_end|>']))
235
+
236
+
237
+ class TextPreprocess:
238
+ def __init__(self, tokenizer, version):
239
+ self.tokenizer = tokenizer
240
+ self.template = TemplateFactory(version)()
241
+
242
+ def __call__(self, messages, mode='eval'):
243
+ return self.template.encode(messages, self.tokenizer, mode)
tokenizer_config.json ADDED
@@ -0,0 +1,241 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ },
181
+ "151665": {
182
+ "content": "<tool_response>",
183
+ "lstrip": false,
184
+ "normalized": false,
185
+ "rstrip": false,
186
+ "single_word": false,
187
+ "special": false
188
+ },
189
+ "151666": {
190
+ "content": "</tool_response>",
191
+ "lstrip": false,
192
+ "normalized": false,
193
+ "rstrip": false,
194
+ "single_word": false,
195
+ "special": false
196
+ },
197
+ "151667": {
198
+ "content": "<think>",
199
+ "lstrip": false,
200
+ "normalized": false,
201
+ "rstrip": false,
202
+ "single_word": false,
203
+ "special": false
204
+ },
205
+ "151668": {
206
+ "content": "</think>",
207
+ "lstrip": false,
208
+ "normalized": false,
209
+ "rstrip": false,
210
+ "single_word": false,
211
+ "special": false
212
+ }
213
+ },
214
+ "additional_special_tokens": [
215
+ "<|im_start|>",
216
+ "<|im_end|>",
217
+ "<|object_ref_start|>",
218
+ "<|object_ref_end|>",
219
+ "<|box_start|>",
220
+ "<|box_end|>",
221
+ "<|quad_start|>",
222
+ "<|quad_end|>",
223
+ "<|vision_start|>",
224
+ "<|vision_end|>",
225
+ "<|vision_pad|>",
226
+ "<|image_pad|>",
227
+ "<|video_pad|>"
228
+ ],
229
+ "bos_token": null,
230
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0].role == 'system' %}\n {{- messages[0].content + '\\n\\n' }}\n {%- endif %}\n {{- \"# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0].role == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0].content + '<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- set ns = namespace(multi_step_tool=true, last_query_index=messages|length - 1) %}\n{%- for message in messages[::-1] %}\n {%- set index = (messages|length - 1) - loop.index0 %}\n {%- if ns.multi_step_tool and message.role == \"user\" and not(message.content.startswith('<tool_response>') and message.content.endswith('</tool_response>')) %}\n {%- set ns.multi_step_tool = false %}\n {%- set ns.last_query_index = index %}\n {%- endif %}\n{%- endfor %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {%- set content = message.content %}\n {%- set reasoning_content = '' %}\n {%- if message.reasoning_content is defined and message.reasoning_content is not none %}\n {%- set reasoning_content = message.reasoning_content %}\n {%- else %}\n {%- if '</think>' in message.content %}\n {%- set content = message.content.split('</think>')[-1].lstrip('\\n') %}\n {%- set reasoning_content = message.content.split('</think>')[0].rstrip('\\n').split('<think>')[-1].lstrip('\\n') %}\n {%- endif %}\n {%- endif %}\n {%- if loop.index0 > ns.last_query_index %}\n {%- if loop.last or (not loop.last and reasoning_content) %}\n {{- '<|im_start|>' + message.role + '\\n<think>\\n' + reasoning_content.strip('\\n') + '\\n</think>\\n\\n' + content.lstrip('\\n') }}\n {%- else %}\n {{- '<|im_start|>' + message.role + '\\n' + content }}\n {%- endif %}\n {%- else %}\n {{- '<|im_start|>' + message.role + '\\n' + content }}\n {%- endif %}\n {%- if message.tool_calls %}\n {%- for tool_call in message.tool_calls %}\n {%- if (loop.first and content) or (not loop.first) %}\n {{- '\\n' }}\n {%- endif %}\n {%- if tool_call.function %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {%- if tool_call.arguments is string %}\n {{- tool_call.arguments }}\n {%- else %}\n {{- tool_call.arguments | tojson }}\n {%- endif %}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {%- endif %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if loop.first or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n {%- if enable_thinking is defined and enable_thinking is false %}\n {{- '<think>\\n\\n</think>\\n\\n' }}\n {%- endif %}\n{%- endif %}",
231
+ "clean_up_tokenization_spaces": false,
232
+ "eos_token": "<|im_end|>",
233
+ "errors": "replace",
234
+ "extra_special_tokens": {},
235
+ "model_max_length": 32768,
236
+ "pad_token": "<|endoftext|>",
237
+ "padding_side": "right",
238
+ "split_special_tokens": false,
239
+ "tokenizer_class": "Qwen2Tokenizer",
240
+ "unk_token": "<|endoftext|>"
241
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff