Delete README.md
Browse files
README.md
DELETED
@@ -1,35 +0,0 @@
|
|
1 |
-
|
2 |
-
from transformers import VisionEncoderDecoderModel, ViTFeatureExtractor, AutoTokenizer
|
3 |
-
|
4 |
-
model = VisionEncoderDecoderModel.from_pretrained("/Zayn/vit2distilgpt2")
|
5 |
-
feature_extractor = ViTFeatureExtractor.from_pretrained("/Zayn/vit2distilgpt2")
|
6 |
-
tokenizer = AutoTokenizer.from_pretrained("/Zayn/vit2distilgpt2")
|
7 |
-
|
8 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
9 |
-
model.to(device)
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
max_length = 16
|
14 |
-
num_beams = 4
|
15 |
-
gen_kwargs = {"max_length": max_length, "num_beams": num_beams}
|
16 |
-
def predict_step(image_paths):
|
17 |
-
images = []
|
18 |
-
for image_path in image_paths:
|
19 |
-
i_image = Image.open(image_path)
|
20 |
-
if i_image.mode != "RGB":
|
21 |
-
i_image = i_image.convert(mode="RGB")
|
22 |
-
|
23 |
-
images.append(i_image)
|
24 |
-
|
25 |
-
pixel_values = feature_extractor(images=images, return_tensors="pt").pixel_values
|
26 |
-
pixel_values = pixel_values.to(device)
|
27 |
-
|
28 |
-
output_ids = model.generate(pixel_values, **gen_kwargs)
|
29 |
-
|
30 |
-
preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
|
31 |
-
preds = [pred.strip() for pred in preds]
|
32 |
-
return preds
|
33 |
-
|
34 |
-
|
35 |
-
predict_step(['doctor.e16ba4e4.jpg'])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|