|  | import inspect | 
					
						
						|  | import math | 
					
						
						|  | from inspect import isfunction | 
					
						
						|  | from typing import Any, Callable, List, Optional, Union | 
					
						
						|  |  | 
					
						
						|  | import numpy as np | 
					
						
						|  | import torch | 
					
						
						|  | import torch.nn as nn | 
					
						
						|  | import torch.nn.functional as F | 
					
						
						|  |  | 
					
						
						|  | import xformers | 
					
						
						|  | import xformers.ops | 
					
						
						|  | from diffusers import AutoencoderKL, DiffusionPipeline | 
					
						
						|  | from diffusers.configuration_utils import ConfigMixin, FrozenDict | 
					
						
						|  | from diffusers.models.modeling_utils import ModelMixin | 
					
						
						|  | from diffusers.schedulers import DDIMScheduler | 
					
						
						|  | from diffusers.utils import (deprecate, is_accelerate_available, | 
					
						
						|  | is_accelerate_version, logging) | 
					
						
						|  | from diffusers.utils.torch_utils import randn_tensor | 
					
						
						|  | from einops import rearrange, repeat | 
					
						
						|  | from kiui.cam import orbit_camera | 
					
						
						|  | from transformers import (CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, | 
					
						
						|  | CLIPVisionModel) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def get_camera( | 
					
						
						|  | num_frames, | 
					
						
						|  | elevation=15, | 
					
						
						|  | azimuth_start=0, | 
					
						
						|  | azimuth_span=360, | 
					
						
						|  | blender_coord=True, | 
					
						
						|  | extra_view=False, | 
					
						
						|  | ): | 
					
						
						|  | angle_gap = azimuth_span / num_frames | 
					
						
						|  | cameras = [] | 
					
						
						|  | for azimuth in np.arange(azimuth_start, azimuth_span + azimuth_start, angle_gap): | 
					
						
						|  |  | 
					
						
						|  | pose = orbit_camera( | 
					
						
						|  | -elevation, azimuth, radius=1 | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if blender_coord: | 
					
						
						|  | pose[2] *= -1 | 
					
						
						|  | pose[[1, 2]] = pose[[2, 1]] | 
					
						
						|  |  | 
					
						
						|  | cameras.append(pose.flatten()) | 
					
						
						|  |  | 
					
						
						|  | if extra_view: | 
					
						
						|  | cameras.append(np.zeros_like(cameras[0])) | 
					
						
						|  |  | 
					
						
						|  | return torch.from_numpy(np.stack(cameras, axis=0)).float() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False): | 
					
						
						|  | """ | 
					
						
						|  | Create sinusoidal timestep embeddings. | 
					
						
						|  | :param timesteps: a 1-D Tensor of N indices, one per batch element. | 
					
						
						|  | These may be fractional. | 
					
						
						|  | :param dim: the dimension of the output. | 
					
						
						|  | :param max_period: controls the minimum frequency of the embeddings. | 
					
						
						|  | :return: an [N x dim] Tensor of positional embeddings. | 
					
						
						|  | """ | 
					
						
						|  | if not repeat_only: | 
					
						
						|  | half = dim // 2 | 
					
						
						|  | freqs = torch.exp( | 
					
						
						|  | -math.log(max_period) | 
					
						
						|  | * torch.arange(start=0, end=half, dtype=torch.float32) | 
					
						
						|  | / half | 
					
						
						|  | ).to(device=timesteps.device) | 
					
						
						|  | args = timesteps[:, None] * freqs[None] | 
					
						
						|  | embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) | 
					
						
						|  | if dim % 2: | 
					
						
						|  | embedding = torch.cat( | 
					
						
						|  | [embedding, torch.zeros_like(embedding[:, :1])], dim=-1 | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | embedding = repeat(timesteps, "b -> b d", d=dim) | 
					
						
						|  |  | 
					
						
						|  | return embedding | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def zero_module(module): | 
					
						
						|  | """ | 
					
						
						|  | Zero out the parameters of a module and return it. | 
					
						
						|  | """ | 
					
						
						|  | for p in module.parameters(): | 
					
						
						|  | p.detach().zero_() | 
					
						
						|  | return module | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def conv_nd(dims, *args, **kwargs): | 
					
						
						|  | """ | 
					
						
						|  | Create a 1D, 2D, or 3D convolution module. | 
					
						
						|  | """ | 
					
						
						|  | if dims == 1: | 
					
						
						|  | return nn.Conv1d(*args, **kwargs) | 
					
						
						|  | elif dims == 2: | 
					
						
						|  | return nn.Conv2d(*args, **kwargs) | 
					
						
						|  | elif dims == 3: | 
					
						
						|  | return nn.Conv3d(*args, **kwargs) | 
					
						
						|  | raise ValueError(f"unsupported dimensions: {dims}") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def avg_pool_nd(dims, *args, **kwargs): | 
					
						
						|  | """ | 
					
						
						|  | Create a 1D, 2D, or 3D average pooling module. | 
					
						
						|  | """ | 
					
						
						|  | if dims == 1: | 
					
						
						|  | return nn.AvgPool1d(*args, **kwargs) | 
					
						
						|  | elif dims == 2: | 
					
						
						|  | return nn.AvgPool2d(*args, **kwargs) | 
					
						
						|  | elif dims == 3: | 
					
						
						|  | return nn.AvgPool3d(*args, **kwargs) | 
					
						
						|  | raise ValueError(f"unsupported dimensions: {dims}") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def default(val, d): | 
					
						
						|  | if val is not None: | 
					
						
						|  | return val | 
					
						
						|  | return d() if isfunction(d) else d | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class GEGLU(nn.Module): | 
					
						
						|  | def __init__(self, dim_in, dim_out): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.proj = nn.Linear(dim_in, dim_out * 2) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x): | 
					
						
						|  | x, gate = self.proj(x).chunk(2, dim=-1) | 
					
						
						|  | return x * F.gelu(gate) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class FeedForward(nn.Module): | 
					
						
						|  | def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.0): | 
					
						
						|  | super().__init__() | 
					
						
						|  | inner_dim = int(dim * mult) | 
					
						
						|  | dim_out = default(dim_out, dim) | 
					
						
						|  | project_in = ( | 
					
						
						|  | nn.Sequential(nn.Linear(dim, inner_dim), nn.GELU()) | 
					
						
						|  | if not glu | 
					
						
						|  | else GEGLU(dim, inner_dim) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.net = nn.Sequential( | 
					
						
						|  | project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x): | 
					
						
						|  | return self.net(x) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class MemoryEfficientCrossAttention(nn.Module): | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | query_dim, | 
					
						
						|  | context_dim=None, | 
					
						
						|  | heads=8, | 
					
						
						|  | dim_head=64, | 
					
						
						|  | dropout=0.0, | 
					
						
						|  | ip_dim=0, | 
					
						
						|  | ip_weight=1, | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  |  | 
					
						
						|  | inner_dim = dim_head * heads | 
					
						
						|  | context_dim = default(context_dim, query_dim) | 
					
						
						|  |  | 
					
						
						|  | self.heads = heads | 
					
						
						|  | self.dim_head = dim_head | 
					
						
						|  |  | 
					
						
						|  | self.ip_dim = ip_dim | 
					
						
						|  | self.ip_weight = ip_weight | 
					
						
						|  |  | 
					
						
						|  | if self.ip_dim > 0: | 
					
						
						|  | self.to_k_ip = nn.Linear(context_dim, inner_dim, bias=False) | 
					
						
						|  | self.to_v_ip = nn.Linear(context_dim, inner_dim, bias=False) | 
					
						
						|  |  | 
					
						
						|  | self.to_q = nn.Linear(query_dim, inner_dim, bias=False) | 
					
						
						|  | self.to_k = nn.Linear(context_dim, inner_dim, bias=False) | 
					
						
						|  | self.to_v = nn.Linear(context_dim, inner_dim, bias=False) | 
					
						
						|  |  | 
					
						
						|  | self.to_out = nn.Sequential( | 
					
						
						|  | nn.Linear(inner_dim, query_dim), nn.Dropout(dropout) | 
					
						
						|  | ) | 
					
						
						|  | self.attention_op: Optional[Any] = None | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x, context=None): | 
					
						
						|  | q = self.to_q(x) | 
					
						
						|  | context = default(context, x) | 
					
						
						|  |  | 
					
						
						|  | if self.ip_dim > 0: | 
					
						
						|  |  | 
					
						
						|  | token_len = context.shape[1] | 
					
						
						|  | context_ip = context[:, -self.ip_dim :, :] | 
					
						
						|  | k_ip = self.to_k_ip(context_ip) | 
					
						
						|  | v_ip = self.to_v_ip(context_ip) | 
					
						
						|  | context = context[:, : (token_len - self.ip_dim), :] | 
					
						
						|  |  | 
					
						
						|  | k = self.to_k(context) | 
					
						
						|  | v = self.to_v(context) | 
					
						
						|  |  | 
					
						
						|  | b, _, _ = q.shape | 
					
						
						|  | q, k, v = map( | 
					
						
						|  | lambda t: t.unsqueeze(3) | 
					
						
						|  | .reshape(b, t.shape[1], self.heads, self.dim_head) | 
					
						
						|  | .permute(0, 2, 1, 3) | 
					
						
						|  | .reshape(b * self.heads, t.shape[1], self.dim_head) | 
					
						
						|  | .contiguous(), | 
					
						
						|  | (q, k, v), | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | out = xformers.ops.memory_efficient_attention( | 
					
						
						|  | q, k, v, attn_bias=None, op=self.attention_op | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if self.ip_dim > 0: | 
					
						
						|  | k_ip, v_ip = map( | 
					
						
						|  | lambda t: t.unsqueeze(3) | 
					
						
						|  | .reshape(b, t.shape[1], self.heads, self.dim_head) | 
					
						
						|  | .permute(0, 2, 1, 3) | 
					
						
						|  | .reshape(b * self.heads, t.shape[1], self.dim_head) | 
					
						
						|  | .contiguous(), | 
					
						
						|  | (k_ip, v_ip), | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | out_ip = xformers.ops.memory_efficient_attention( | 
					
						
						|  | q, k_ip, v_ip, attn_bias=None, op=self.attention_op | 
					
						
						|  | ) | 
					
						
						|  | out = out + self.ip_weight * out_ip | 
					
						
						|  |  | 
					
						
						|  | out = ( | 
					
						
						|  | out.unsqueeze(0) | 
					
						
						|  | .reshape(b, self.heads, out.shape[1], self.dim_head) | 
					
						
						|  | .permute(0, 2, 1, 3) | 
					
						
						|  | .reshape(b, out.shape[1], self.heads * self.dim_head) | 
					
						
						|  | ) | 
					
						
						|  | return self.to_out(out) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class BasicTransformerBlock3D(nn.Module): | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | dim, | 
					
						
						|  | n_heads, | 
					
						
						|  | d_head, | 
					
						
						|  | context_dim, | 
					
						
						|  | dropout=0.0, | 
					
						
						|  | gated_ff=True, | 
					
						
						|  | ip_dim=0, | 
					
						
						|  | ip_weight=1, | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  |  | 
					
						
						|  | self.attn1 = MemoryEfficientCrossAttention( | 
					
						
						|  | query_dim=dim, | 
					
						
						|  | context_dim=None, | 
					
						
						|  | heads=n_heads, | 
					
						
						|  | dim_head=d_head, | 
					
						
						|  | dropout=dropout, | 
					
						
						|  | ) | 
					
						
						|  | self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff) | 
					
						
						|  | self.attn2 = MemoryEfficientCrossAttention( | 
					
						
						|  | query_dim=dim, | 
					
						
						|  | context_dim=context_dim, | 
					
						
						|  | heads=n_heads, | 
					
						
						|  | dim_head=d_head, | 
					
						
						|  | dropout=dropout, | 
					
						
						|  |  | 
					
						
						|  | ip_dim=ip_dim, | 
					
						
						|  | ip_weight=ip_weight, | 
					
						
						|  | ) | 
					
						
						|  | self.norm1 = nn.LayerNorm(dim) | 
					
						
						|  | self.norm2 = nn.LayerNorm(dim) | 
					
						
						|  | self.norm3 = nn.LayerNorm(dim) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x, context=None, num_frames=1): | 
					
						
						|  | x = rearrange(x, "(b f) l c -> b (f l) c", f=num_frames).contiguous() | 
					
						
						|  | x = self.attn1(self.norm1(x), context=None) + x | 
					
						
						|  | x = rearrange(x, "b (f l) c -> (b f) l c", f=num_frames).contiguous() | 
					
						
						|  | x = self.attn2(self.norm2(x), context=context) + x | 
					
						
						|  | x = self.ff(self.norm3(x)) + x | 
					
						
						|  | return x | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class SpatialTransformer3D(nn.Module): | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | in_channels, | 
					
						
						|  | n_heads, | 
					
						
						|  | d_head, | 
					
						
						|  | context_dim, | 
					
						
						|  | depth=1, | 
					
						
						|  | dropout=0.0, | 
					
						
						|  | ip_dim=0, | 
					
						
						|  | ip_weight=1, | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  |  | 
					
						
						|  | if not isinstance(context_dim, list): | 
					
						
						|  | context_dim = [context_dim] | 
					
						
						|  |  | 
					
						
						|  | self.in_channels = in_channels | 
					
						
						|  |  | 
					
						
						|  | inner_dim = n_heads * d_head | 
					
						
						|  | self.norm = nn.GroupNorm( | 
					
						
						|  | num_groups=32, num_channels=in_channels, eps=1e-6, affine=True | 
					
						
						|  | ) | 
					
						
						|  | self.proj_in = nn.Linear(in_channels, inner_dim) | 
					
						
						|  |  | 
					
						
						|  | self.transformer_blocks = nn.ModuleList( | 
					
						
						|  | [ | 
					
						
						|  | BasicTransformerBlock3D( | 
					
						
						|  | inner_dim, | 
					
						
						|  | n_heads, | 
					
						
						|  | d_head, | 
					
						
						|  | context_dim=context_dim[d], | 
					
						
						|  | dropout=dropout, | 
					
						
						|  | ip_dim=ip_dim, | 
					
						
						|  | ip_weight=ip_weight, | 
					
						
						|  | ) | 
					
						
						|  | for d in range(depth) | 
					
						
						|  | ] | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.proj_out = zero_module(nn.Linear(in_channels, inner_dim)) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x, context=None, num_frames=1): | 
					
						
						|  |  | 
					
						
						|  | if not isinstance(context, list): | 
					
						
						|  | context = [context] | 
					
						
						|  | b, c, h, w = x.shape | 
					
						
						|  | x_in = x | 
					
						
						|  | x = self.norm(x) | 
					
						
						|  | x = rearrange(x, "b c h w -> b (h w) c").contiguous() | 
					
						
						|  | x = self.proj_in(x) | 
					
						
						|  | for i, block in enumerate(self.transformer_blocks): | 
					
						
						|  | x = block(x, context=context[i], num_frames=num_frames) | 
					
						
						|  | x = self.proj_out(x) | 
					
						
						|  | x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w).contiguous() | 
					
						
						|  |  | 
					
						
						|  | return x + x_in | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class PerceiverAttention(nn.Module): | 
					
						
						|  | def __init__(self, *, dim, dim_head=64, heads=8): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.scale = dim_head**-0.5 | 
					
						
						|  | self.dim_head = dim_head | 
					
						
						|  | self.heads = heads | 
					
						
						|  | inner_dim = dim_head * heads | 
					
						
						|  |  | 
					
						
						|  | self.norm1 = nn.LayerNorm(dim) | 
					
						
						|  | self.norm2 = nn.LayerNorm(dim) | 
					
						
						|  |  | 
					
						
						|  | self.to_q = nn.Linear(dim, inner_dim, bias=False) | 
					
						
						|  | self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False) | 
					
						
						|  | self.to_out = nn.Linear(inner_dim, dim, bias=False) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x, latents): | 
					
						
						|  | """ | 
					
						
						|  | Args: | 
					
						
						|  | x (torch.Tensor): image features | 
					
						
						|  | shape (b, n1, D) | 
					
						
						|  | latent (torch.Tensor): latent features | 
					
						
						|  | shape (b, n2, D) | 
					
						
						|  | """ | 
					
						
						|  | x = self.norm1(x) | 
					
						
						|  | latents = self.norm2(latents) | 
					
						
						|  |  | 
					
						
						|  | b, h, _ = latents.shape | 
					
						
						|  |  | 
					
						
						|  | q = self.to_q(latents) | 
					
						
						|  | kv_input = torch.cat((x, latents), dim=-2) | 
					
						
						|  | k, v = self.to_kv(kv_input).chunk(2, dim=-1) | 
					
						
						|  |  | 
					
						
						|  | q, k, v = map( | 
					
						
						|  | lambda t: t.reshape(b, t.shape[1], self.heads, -1) | 
					
						
						|  | .transpose(1, 2) | 
					
						
						|  | .reshape(b, self.heads, t.shape[1], -1) | 
					
						
						|  | .contiguous(), | 
					
						
						|  | (q, k, v), | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | scale = 1 / math.sqrt(math.sqrt(self.dim_head)) | 
					
						
						|  | weight = (q * scale) @ (k * scale).transpose( | 
					
						
						|  | -2, -1 | 
					
						
						|  | ) | 
					
						
						|  | weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype) | 
					
						
						|  | out = weight @ v | 
					
						
						|  |  | 
					
						
						|  | out = out.permute(0, 2, 1, 3).reshape(b, h, -1) | 
					
						
						|  |  | 
					
						
						|  | return self.to_out(out) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Resampler(nn.Module): | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | dim=1024, | 
					
						
						|  | depth=8, | 
					
						
						|  | dim_head=64, | 
					
						
						|  | heads=16, | 
					
						
						|  | num_queries=8, | 
					
						
						|  | embedding_dim=768, | 
					
						
						|  | output_dim=1024, | 
					
						
						|  | ff_mult=4, | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim**0.5) | 
					
						
						|  | self.proj_in = nn.Linear(embedding_dim, dim) | 
					
						
						|  | self.proj_out = nn.Linear(dim, output_dim) | 
					
						
						|  | self.norm_out = nn.LayerNorm(output_dim) | 
					
						
						|  |  | 
					
						
						|  | self.layers = nn.ModuleList([]) | 
					
						
						|  | for _ in range(depth): | 
					
						
						|  | self.layers.append( | 
					
						
						|  | nn.ModuleList( | 
					
						
						|  | [ | 
					
						
						|  | PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads), | 
					
						
						|  | nn.Sequential( | 
					
						
						|  | nn.LayerNorm(dim), | 
					
						
						|  | nn.Linear(dim, dim * ff_mult, bias=False), | 
					
						
						|  | nn.GELU(), | 
					
						
						|  | nn.Linear(dim * ff_mult, dim, bias=False), | 
					
						
						|  | ), | 
					
						
						|  | ] | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x): | 
					
						
						|  | latents = self.latents.repeat(x.size(0), 1, 1) | 
					
						
						|  | x = self.proj_in(x) | 
					
						
						|  | for attn, ff in self.layers: | 
					
						
						|  | latents = attn(x, latents) + latents | 
					
						
						|  | latents = ff(latents) + latents | 
					
						
						|  |  | 
					
						
						|  | latents = self.proj_out(latents) | 
					
						
						|  | return self.norm_out(latents) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class CondSequential(nn.Sequential): | 
					
						
						|  | """ | 
					
						
						|  | A sequential module that passes timestep embeddings to the children that | 
					
						
						|  | support it as an extra input. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x, emb, context=None, num_frames=1): | 
					
						
						|  | for layer in self: | 
					
						
						|  | if isinstance(layer, ResBlock): | 
					
						
						|  | x = layer(x, emb) | 
					
						
						|  | elif isinstance(layer, SpatialTransformer3D): | 
					
						
						|  | x = layer(x, context, num_frames=num_frames) | 
					
						
						|  | else: | 
					
						
						|  | x = layer(x) | 
					
						
						|  | return x | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Upsample(nn.Module): | 
					
						
						|  | """ | 
					
						
						|  | An upsampling layer with an optional convolution. | 
					
						
						|  | :param channels: channels in the inputs and outputs. | 
					
						
						|  | :param use_conv: a bool determining if a convolution is applied. | 
					
						
						|  | :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then | 
					
						
						|  | upsampling occurs in the inner-two dimensions. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.channels = channels | 
					
						
						|  | self.out_channels = out_channels or channels | 
					
						
						|  | self.use_conv = use_conv | 
					
						
						|  | self.dims = dims | 
					
						
						|  | if use_conv: | 
					
						
						|  | self.conv = conv_nd( | 
					
						
						|  | dims, self.channels, self.out_channels, 3, padding=padding | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x): | 
					
						
						|  | assert x.shape[1] == self.channels | 
					
						
						|  | if self.dims == 3: | 
					
						
						|  | x = F.interpolate( | 
					
						
						|  | x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest" | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | x = F.interpolate(x, scale_factor=2, mode="nearest") | 
					
						
						|  | if self.use_conv: | 
					
						
						|  | x = self.conv(x) | 
					
						
						|  | return x | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Downsample(nn.Module): | 
					
						
						|  | """ | 
					
						
						|  | A downsampling layer with an optional convolution. | 
					
						
						|  | :param channels: channels in the inputs and outputs. | 
					
						
						|  | :param use_conv: a bool determining if a convolution is applied. | 
					
						
						|  | :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then | 
					
						
						|  | downsampling occurs in the inner-two dimensions. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.channels = channels | 
					
						
						|  | self.out_channels = out_channels or channels | 
					
						
						|  | self.use_conv = use_conv | 
					
						
						|  | self.dims = dims | 
					
						
						|  | stride = 2 if dims != 3 else (1, 2, 2) | 
					
						
						|  | if use_conv: | 
					
						
						|  | self.op = conv_nd( | 
					
						
						|  | dims, | 
					
						
						|  | self.channels, | 
					
						
						|  | self.out_channels, | 
					
						
						|  | 3, | 
					
						
						|  | stride=stride, | 
					
						
						|  | padding=padding, | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | assert self.channels == self.out_channels | 
					
						
						|  | self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x): | 
					
						
						|  | assert x.shape[1] == self.channels | 
					
						
						|  | return self.op(x) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class ResBlock(nn.Module): | 
					
						
						|  | """ | 
					
						
						|  | A residual block that can optionally change the number of channels. | 
					
						
						|  | :param channels: the number of input channels. | 
					
						
						|  | :param emb_channels: the number of timestep embedding channels. | 
					
						
						|  | :param dropout: the rate of dropout. | 
					
						
						|  | :param out_channels: if specified, the number of out channels. | 
					
						
						|  | :param use_conv: if True and out_channels is specified, use a spatial | 
					
						
						|  | convolution instead of a smaller 1x1 convolution to change the | 
					
						
						|  | channels in the skip connection. | 
					
						
						|  | :param dims: determines if the signal is 1D, 2D, or 3D. | 
					
						
						|  | :param up: if True, use this block for upsampling. | 
					
						
						|  | :param down: if True, use this block for downsampling. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | channels, | 
					
						
						|  | emb_channels, | 
					
						
						|  | dropout, | 
					
						
						|  | out_channels=None, | 
					
						
						|  | use_conv=False, | 
					
						
						|  | use_scale_shift_norm=False, | 
					
						
						|  | dims=2, | 
					
						
						|  | up=False, | 
					
						
						|  | down=False, | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.channels = channels | 
					
						
						|  | self.emb_channels = emb_channels | 
					
						
						|  | self.dropout = dropout | 
					
						
						|  | self.out_channels = out_channels or channels | 
					
						
						|  | self.use_conv = use_conv | 
					
						
						|  | self.use_scale_shift_norm = use_scale_shift_norm | 
					
						
						|  |  | 
					
						
						|  | self.in_layers = nn.Sequential( | 
					
						
						|  | nn.GroupNorm(32, channels), | 
					
						
						|  | nn.SiLU(), | 
					
						
						|  | conv_nd(dims, channels, self.out_channels, 3, padding=1), | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.updown = up or down | 
					
						
						|  |  | 
					
						
						|  | if up: | 
					
						
						|  | self.h_upd = Upsample(channels, False, dims) | 
					
						
						|  | self.x_upd = Upsample(channels, False, dims) | 
					
						
						|  | elif down: | 
					
						
						|  | self.h_upd = Downsample(channels, False, dims) | 
					
						
						|  | self.x_upd = Downsample(channels, False, dims) | 
					
						
						|  | else: | 
					
						
						|  | self.h_upd = self.x_upd = nn.Identity() | 
					
						
						|  |  | 
					
						
						|  | self.emb_layers = nn.Sequential( | 
					
						
						|  | nn.SiLU(), | 
					
						
						|  | nn.Linear( | 
					
						
						|  | emb_channels, | 
					
						
						|  | 2 * self.out_channels if use_scale_shift_norm else self.out_channels, | 
					
						
						|  | ), | 
					
						
						|  | ) | 
					
						
						|  | self.out_layers = nn.Sequential( | 
					
						
						|  | nn.GroupNorm(32, self.out_channels), | 
					
						
						|  | nn.SiLU(), | 
					
						
						|  | nn.Dropout(p=dropout), | 
					
						
						|  | zero_module( | 
					
						
						|  | conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1) | 
					
						
						|  | ), | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if self.out_channels == channels: | 
					
						
						|  | self.skip_connection = nn.Identity() | 
					
						
						|  | elif use_conv: | 
					
						
						|  | self.skip_connection = conv_nd( | 
					
						
						|  | dims, channels, self.out_channels, 3, padding=1 | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | self.skip_connection = conv_nd(dims, channels, self.out_channels, 1) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x, emb): | 
					
						
						|  | if self.updown: | 
					
						
						|  | in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1] | 
					
						
						|  | h = in_rest(x) | 
					
						
						|  | h = self.h_upd(h) | 
					
						
						|  | x = self.x_upd(x) | 
					
						
						|  | h = in_conv(h) | 
					
						
						|  | else: | 
					
						
						|  | h = self.in_layers(x) | 
					
						
						|  | emb_out = self.emb_layers(emb).type(h.dtype) | 
					
						
						|  | while len(emb_out.shape) < len(h.shape): | 
					
						
						|  | emb_out = emb_out[..., None] | 
					
						
						|  | if self.use_scale_shift_norm: | 
					
						
						|  | out_norm, out_rest = self.out_layers[0], self.out_layers[1:] | 
					
						
						|  | scale, shift = torch.chunk(emb_out, 2, dim=1) | 
					
						
						|  | h = out_norm(h) * (1 + scale) + shift | 
					
						
						|  | h = out_rest(h) | 
					
						
						|  | else: | 
					
						
						|  | h = h + emb_out | 
					
						
						|  | h = self.out_layers(h) | 
					
						
						|  | return self.skip_connection(x) + h | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class MultiViewUNetModel(ModelMixin, ConfigMixin): | 
					
						
						|  | """ | 
					
						
						|  | The full multi-view UNet model with attention, timestep embedding and camera embedding. | 
					
						
						|  | :param in_channels: channels in the input Tensor. | 
					
						
						|  | :param model_channels: base channel count for the model. | 
					
						
						|  | :param out_channels: channels in the output Tensor. | 
					
						
						|  | :param num_res_blocks: number of residual blocks per downsample. | 
					
						
						|  | :param attention_resolutions: a collection of downsample rates at which | 
					
						
						|  | attention will take place. May be a set, list, or tuple. | 
					
						
						|  | For example, if this contains 4, then at 4x downsampling, attention | 
					
						
						|  | will be used. | 
					
						
						|  | :param dropout: the dropout probability. | 
					
						
						|  | :param channel_mult: channel multiplier for each level of the UNet. | 
					
						
						|  | :param conv_resample: if True, use learned convolutions for upsampling and | 
					
						
						|  | downsampling. | 
					
						
						|  | :param dims: determines if the signal is 1D, 2D, or 3D. | 
					
						
						|  | :param num_classes: if specified (as an int), then this model will be | 
					
						
						|  | class-conditional with `num_classes` classes. | 
					
						
						|  | :param num_heads: the number of attention heads in each attention layer. | 
					
						
						|  | :param num_heads_channels: if specified, ignore num_heads and instead use | 
					
						
						|  | a fixed channel width per attention head. | 
					
						
						|  | :param num_heads_upsample: works with num_heads to set a different number | 
					
						
						|  | of heads for upsampling. Deprecated. | 
					
						
						|  | :param use_scale_shift_norm: use a FiLM-like conditioning mechanism. | 
					
						
						|  | :param resblock_updown: use residual blocks for up/downsampling. | 
					
						
						|  | :param use_new_attention_order: use a different attention pattern for potentially | 
					
						
						|  | increased efficiency. | 
					
						
						|  | :param camera_dim: dimensionality of camera input. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | image_size, | 
					
						
						|  | in_channels, | 
					
						
						|  | model_channels, | 
					
						
						|  | out_channels, | 
					
						
						|  | num_res_blocks, | 
					
						
						|  | attention_resolutions, | 
					
						
						|  | dropout=0, | 
					
						
						|  | channel_mult=(1, 2, 4, 8), | 
					
						
						|  | conv_resample=True, | 
					
						
						|  | dims=2, | 
					
						
						|  | num_classes=None, | 
					
						
						|  | num_heads=-1, | 
					
						
						|  | num_head_channels=-1, | 
					
						
						|  | num_heads_upsample=-1, | 
					
						
						|  | use_scale_shift_norm=False, | 
					
						
						|  | resblock_updown=False, | 
					
						
						|  | transformer_depth=1, | 
					
						
						|  | context_dim=None, | 
					
						
						|  | n_embed=None, | 
					
						
						|  | num_attention_blocks=None, | 
					
						
						|  | adm_in_channels=None, | 
					
						
						|  | camera_dim=None, | 
					
						
						|  | ip_dim=0, | 
					
						
						|  | ip_weight=1.0, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  | assert context_dim is not None | 
					
						
						|  |  | 
					
						
						|  | if num_heads_upsample == -1: | 
					
						
						|  | num_heads_upsample = num_heads | 
					
						
						|  |  | 
					
						
						|  | if num_heads == -1: | 
					
						
						|  | assert ( | 
					
						
						|  | num_head_channels != -1 | 
					
						
						|  | ), "Either num_heads or num_head_channels has to be set" | 
					
						
						|  |  | 
					
						
						|  | if num_head_channels == -1: | 
					
						
						|  | assert ( | 
					
						
						|  | num_heads != -1 | 
					
						
						|  | ), "Either num_heads or num_head_channels has to be set" | 
					
						
						|  |  | 
					
						
						|  | self.image_size = image_size | 
					
						
						|  | self.in_channels = in_channels | 
					
						
						|  | self.model_channels = model_channels | 
					
						
						|  | self.out_channels = out_channels | 
					
						
						|  | if isinstance(num_res_blocks, int): | 
					
						
						|  | self.num_res_blocks = len(channel_mult) * [num_res_blocks] | 
					
						
						|  | else: | 
					
						
						|  | if len(num_res_blocks) != len(channel_mult): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "provide num_res_blocks either as an int (globally constant) or " | 
					
						
						|  | "as a list/tuple (per-level) with the same length as channel_mult" | 
					
						
						|  | ) | 
					
						
						|  | self.num_res_blocks = num_res_blocks | 
					
						
						|  |  | 
					
						
						|  | if num_attention_blocks is not None: | 
					
						
						|  | assert len(num_attention_blocks) == len(self.num_res_blocks) | 
					
						
						|  | assert all( | 
					
						
						|  | map( | 
					
						
						|  | lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], | 
					
						
						|  | range(len(num_attention_blocks)), | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  | print( | 
					
						
						|  | f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. " | 
					
						
						|  | f"This option has LESS priority than attention_resolutions {attention_resolutions}, " | 
					
						
						|  | f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, " | 
					
						
						|  | f"attention will still not be set." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.attention_resolutions = attention_resolutions | 
					
						
						|  | self.dropout = dropout | 
					
						
						|  | self.channel_mult = channel_mult | 
					
						
						|  | self.conv_resample = conv_resample | 
					
						
						|  | self.num_classes = num_classes | 
					
						
						|  | self.num_heads = num_heads | 
					
						
						|  | self.num_head_channels = num_head_channels | 
					
						
						|  | self.num_heads_upsample = num_heads_upsample | 
					
						
						|  | self.predict_codebook_ids = n_embed is not None | 
					
						
						|  |  | 
					
						
						|  | self.ip_dim = ip_dim | 
					
						
						|  | self.ip_weight = ip_weight | 
					
						
						|  |  | 
					
						
						|  | if self.ip_dim > 0: | 
					
						
						|  | self.image_embed = Resampler( | 
					
						
						|  | dim=context_dim, | 
					
						
						|  | depth=4, | 
					
						
						|  | dim_head=64, | 
					
						
						|  | heads=12, | 
					
						
						|  | num_queries=ip_dim, | 
					
						
						|  | embedding_dim=1280, | 
					
						
						|  | output_dim=context_dim, | 
					
						
						|  | ff_mult=4, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | time_embed_dim = model_channels * 4 | 
					
						
						|  | self.time_embed = nn.Sequential( | 
					
						
						|  | nn.Linear(model_channels, time_embed_dim), | 
					
						
						|  | nn.SiLU(), | 
					
						
						|  | nn.Linear(time_embed_dim, time_embed_dim), | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if camera_dim is not None: | 
					
						
						|  | time_embed_dim = model_channels * 4 | 
					
						
						|  | self.camera_embed = nn.Sequential( | 
					
						
						|  | nn.Linear(camera_dim, time_embed_dim), | 
					
						
						|  | nn.SiLU(), | 
					
						
						|  | nn.Linear(time_embed_dim, time_embed_dim), | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if self.num_classes is not None: | 
					
						
						|  | if isinstance(self.num_classes, int): | 
					
						
						|  | self.label_emb = nn.Embedding(self.num_classes, time_embed_dim) | 
					
						
						|  | elif self.num_classes == "continuous": | 
					
						
						|  |  | 
					
						
						|  | self.label_emb = nn.Linear(1, time_embed_dim) | 
					
						
						|  | elif self.num_classes == "sequential": | 
					
						
						|  | assert adm_in_channels is not None | 
					
						
						|  | self.label_emb = nn.Sequential( | 
					
						
						|  | nn.Sequential( | 
					
						
						|  | nn.Linear(adm_in_channels, time_embed_dim), | 
					
						
						|  | nn.SiLU(), | 
					
						
						|  | nn.Linear(time_embed_dim, time_embed_dim), | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError() | 
					
						
						|  |  | 
					
						
						|  | self.input_blocks = nn.ModuleList( | 
					
						
						|  | [CondSequential(conv_nd(dims, in_channels, model_channels, 3, padding=1))] | 
					
						
						|  | ) | 
					
						
						|  | self._feature_size = model_channels | 
					
						
						|  | input_block_chans = [model_channels] | 
					
						
						|  | ch = model_channels | 
					
						
						|  | ds = 1 | 
					
						
						|  | for level, mult in enumerate(channel_mult): | 
					
						
						|  | for nr in range(self.num_res_blocks[level]): | 
					
						
						|  | layers: List[Any] = [ | 
					
						
						|  | ResBlock( | 
					
						
						|  | ch, | 
					
						
						|  | time_embed_dim, | 
					
						
						|  | dropout, | 
					
						
						|  | out_channels=mult * model_channels, | 
					
						
						|  | dims=dims, | 
					
						
						|  | use_scale_shift_norm=use_scale_shift_norm, | 
					
						
						|  | ) | 
					
						
						|  | ] | 
					
						
						|  | ch = mult * model_channels | 
					
						
						|  | if ds in attention_resolutions: | 
					
						
						|  | if num_head_channels == -1: | 
					
						
						|  | dim_head = ch // num_heads | 
					
						
						|  | else: | 
					
						
						|  | num_heads = ch // num_head_channels | 
					
						
						|  | dim_head = num_head_channels | 
					
						
						|  |  | 
					
						
						|  | if num_attention_blocks is None or nr < num_attention_blocks[level]: | 
					
						
						|  | layers.append( | 
					
						
						|  | SpatialTransformer3D( | 
					
						
						|  | ch, | 
					
						
						|  | num_heads, | 
					
						
						|  | dim_head, | 
					
						
						|  | context_dim=context_dim, | 
					
						
						|  | depth=transformer_depth, | 
					
						
						|  | ip_dim=self.ip_dim, | 
					
						
						|  | ip_weight=self.ip_weight, | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  | self.input_blocks.append(CondSequential(*layers)) | 
					
						
						|  | self._feature_size += ch | 
					
						
						|  | input_block_chans.append(ch) | 
					
						
						|  | if level != len(channel_mult) - 1: | 
					
						
						|  | out_ch = ch | 
					
						
						|  | self.input_blocks.append( | 
					
						
						|  | CondSequential( | 
					
						
						|  | ResBlock( | 
					
						
						|  | ch, | 
					
						
						|  | time_embed_dim, | 
					
						
						|  | dropout, | 
					
						
						|  | out_channels=out_ch, | 
					
						
						|  | dims=dims, | 
					
						
						|  | use_scale_shift_norm=use_scale_shift_norm, | 
					
						
						|  | down=True, | 
					
						
						|  | ) | 
					
						
						|  | if resblock_updown | 
					
						
						|  | else Downsample( | 
					
						
						|  | ch, conv_resample, dims=dims, out_channels=out_ch | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  | ch = out_ch | 
					
						
						|  | input_block_chans.append(ch) | 
					
						
						|  | ds *= 2 | 
					
						
						|  | self._feature_size += ch | 
					
						
						|  |  | 
					
						
						|  | if num_head_channels == -1: | 
					
						
						|  | dim_head = ch // num_heads | 
					
						
						|  | else: | 
					
						
						|  | num_heads = ch // num_head_channels | 
					
						
						|  | dim_head = num_head_channels | 
					
						
						|  |  | 
					
						
						|  | self.middle_block = CondSequential( | 
					
						
						|  | ResBlock( | 
					
						
						|  | ch, | 
					
						
						|  | time_embed_dim, | 
					
						
						|  | dropout, | 
					
						
						|  | dims=dims, | 
					
						
						|  | use_scale_shift_norm=use_scale_shift_norm, | 
					
						
						|  | ), | 
					
						
						|  | SpatialTransformer3D( | 
					
						
						|  | ch, | 
					
						
						|  | num_heads, | 
					
						
						|  | dim_head, | 
					
						
						|  | context_dim=context_dim, | 
					
						
						|  | depth=transformer_depth, | 
					
						
						|  | ip_dim=self.ip_dim, | 
					
						
						|  | ip_weight=self.ip_weight, | 
					
						
						|  | ), | 
					
						
						|  | ResBlock( | 
					
						
						|  | ch, | 
					
						
						|  | time_embed_dim, | 
					
						
						|  | dropout, | 
					
						
						|  | dims=dims, | 
					
						
						|  | use_scale_shift_norm=use_scale_shift_norm, | 
					
						
						|  | ), | 
					
						
						|  | ) | 
					
						
						|  | self._feature_size += ch | 
					
						
						|  |  | 
					
						
						|  | self.output_blocks = nn.ModuleList([]) | 
					
						
						|  | for level, mult in list(enumerate(channel_mult))[::-1]: | 
					
						
						|  | for i in range(self.num_res_blocks[level] + 1): | 
					
						
						|  | ich = input_block_chans.pop() | 
					
						
						|  | layers = [ | 
					
						
						|  | ResBlock( | 
					
						
						|  | ch + ich, | 
					
						
						|  | time_embed_dim, | 
					
						
						|  | dropout, | 
					
						
						|  | out_channels=model_channels * mult, | 
					
						
						|  | dims=dims, | 
					
						
						|  | use_scale_shift_norm=use_scale_shift_norm, | 
					
						
						|  | ) | 
					
						
						|  | ] | 
					
						
						|  | ch = model_channels * mult | 
					
						
						|  | if ds in attention_resolutions: | 
					
						
						|  | if num_head_channels == -1: | 
					
						
						|  | dim_head = ch // num_heads | 
					
						
						|  | else: | 
					
						
						|  | num_heads = ch // num_head_channels | 
					
						
						|  | dim_head = num_head_channels | 
					
						
						|  |  | 
					
						
						|  | if num_attention_blocks is None or i < num_attention_blocks[level]: | 
					
						
						|  | layers.append( | 
					
						
						|  | SpatialTransformer3D( | 
					
						
						|  | ch, | 
					
						
						|  | num_heads, | 
					
						
						|  | dim_head, | 
					
						
						|  | context_dim=context_dim, | 
					
						
						|  | depth=transformer_depth, | 
					
						
						|  | ip_dim=self.ip_dim, | 
					
						
						|  | ip_weight=self.ip_weight, | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  | if level and i == self.num_res_blocks[level]: | 
					
						
						|  | out_ch = ch | 
					
						
						|  | layers.append( | 
					
						
						|  | ResBlock( | 
					
						
						|  | ch, | 
					
						
						|  | time_embed_dim, | 
					
						
						|  | dropout, | 
					
						
						|  | out_channels=out_ch, | 
					
						
						|  | dims=dims, | 
					
						
						|  | use_scale_shift_norm=use_scale_shift_norm, | 
					
						
						|  | up=True, | 
					
						
						|  | ) | 
					
						
						|  | if resblock_updown | 
					
						
						|  | else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch) | 
					
						
						|  | ) | 
					
						
						|  | ds //= 2 | 
					
						
						|  | self.output_blocks.append(CondSequential(*layers)) | 
					
						
						|  | self._feature_size += ch | 
					
						
						|  |  | 
					
						
						|  | self.out = nn.Sequential( | 
					
						
						|  | nn.GroupNorm(32, ch), | 
					
						
						|  | nn.SiLU(), | 
					
						
						|  | zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)), | 
					
						
						|  | ) | 
					
						
						|  | if self.predict_codebook_ids: | 
					
						
						|  | self.id_predictor = nn.Sequential( | 
					
						
						|  | nn.GroupNorm(32, ch), | 
					
						
						|  | conv_nd(dims, model_channels, n_embed, 1), | 
					
						
						|  |  | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | x, | 
					
						
						|  | timesteps=None, | 
					
						
						|  | context=None, | 
					
						
						|  | y=None, | 
					
						
						|  | camera=None, | 
					
						
						|  | num_frames=1, | 
					
						
						|  | ip=None, | 
					
						
						|  | ip_img=None, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ): | 
					
						
						|  | """ | 
					
						
						|  | Apply the model to an input batch. | 
					
						
						|  | :param x: an [(N x F) x C x ...] Tensor of inputs. F is the number of frames (views). | 
					
						
						|  | :param timesteps: a 1-D batch of timesteps. | 
					
						
						|  | :param context: conditioning plugged in via crossattn | 
					
						
						|  | :param y: an [N] Tensor of labels, if class-conditional. | 
					
						
						|  | :param num_frames: a integer indicating number of frames for tensor reshaping. | 
					
						
						|  | :return: an [(N x F) x C x ...] Tensor of outputs. F is the number of frames (views). | 
					
						
						|  | """ | 
					
						
						|  | assert ( | 
					
						
						|  | x.shape[0] % num_frames == 0 | 
					
						
						|  | ), "input batch size must be dividable by num_frames!" | 
					
						
						|  | assert (y is not None) == ( | 
					
						
						|  | self.num_classes is not None | 
					
						
						|  | ), "must specify y if and only if the model is class-conditional" | 
					
						
						|  |  | 
					
						
						|  | hs = [] | 
					
						
						|  |  | 
					
						
						|  | t_emb = timestep_embedding( | 
					
						
						|  | timesteps, self.model_channels, repeat_only=False | 
					
						
						|  | ).to(x.dtype) | 
					
						
						|  |  | 
					
						
						|  | emb = self.time_embed(t_emb) | 
					
						
						|  |  | 
					
						
						|  | if self.num_classes is not None: | 
					
						
						|  | assert y is not None | 
					
						
						|  | assert y.shape[0] == x.shape[0] | 
					
						
						|  | emb = emb + self.label_emb(y) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if camera is not None: | 
					
						
						|  | emb = emb + self.camera_embed(camera) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if self.ip_dim > 0: | 
					
						
						|  | x[(num_frames - 1) :: num_frames, :, :, :] = ip_img | 
					
						
						|  | ip_emb = self.image_embed(ip) | 
					
						
						|  | context = torch.cat((context, ip_emb), 1) | 
					
						
						|  |  | 
					
						
						|  | h = x | 
					
						
						|  | for module in self.input_blocks: | 
					
						
						|  | h = module(h, emb, context, num_frames=num_frames) | 
					
						
						|  | hs.append(h) | 
					
						
						|  | h = self.middle_block(h, emb, context, num_frames=num_frames) | 
					
						
						|  | for module in self.output_blocks: | 
					
						
						|  | h = torch.cat([h, hs.pop()], dim=1) | 
					
						
						|  | h = module(h, emb, context, num_frames=num_frames) | 
					
						
						|  | h = h.type(x.dtype) | 
					
						
						|  | if self.predict_codebook_ids: | 
					
						
						|  | return self.id_predictor(h) | 
					
						
						|  | else: | 
					
						
						|  | return self.out(h) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logger = logging.get_logger(__name__) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class MVDreamPipeline(DiffusionPipeline): | 
					
						
						|  |  | 
					
						
						|  | _optional_components = ["feature_extractor", "image_encoder"] | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | vae: AutoencoderKL, | 
					
						
						|  | unet: MultiViewUNetModel, | 
					
						
						|  | tokenizer: CLIPTokenizer, | 
					
						
						|  | text_encoder: CLIPTextModel, | 
					
						
						|  | scheduler: DDIMScheduler, | 
					
						
						|  |  | 
					
						
						|  | feature_extractor: CLIPImageProcessor, | 
					
						
						|  | image_encoder: CLIPVisionModel, | 
					
						
						|  | requires_safety_checker: bool = False, | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  |  | 
					
						
						|  | if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1: | 
					
						
						|  | deprecation_message = ( | 
					
						
						|  | f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`" | 
					
						
						|  | f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure " | 
					
						
						|  | "to update the config accordingly as leaving `steps_offset` might led to incorrect results" | 
					
						
						|  | " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," | 
					
						
						|  | " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" | 
					
						
						|  | " file" | 
					
						
						|  | ) | 
					
						
						|  | deprecate( | 
					
						
						|  | "steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False | 
					
						
						|  | ) | 
					
						
						|  | new_config = dict(scheduler.config) | 
					
						
						|  | new_config["steps_offset"] = 1 | 
					
						
						|  | scheduler._internal_dict = FrozenDict(new_config) | 
					
						
						|  |  | 
					
						
						|  | if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True: | 
					
						
						|  | deprecation_message = ( | 
					
						
						|  | f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`." | 
					
						
						|  | " `clip_sample` should be set to False in the configuration file. Please make sure to update the" | 
					
						
						|  | " config accordingly as not setting `clip_sample` in the config might lead to incorrect results in" | 
					
						
						|  | " future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very" | 
					
						
						|  | " nice if you could open a Pull request for the `scheduler/scheduler_config.json` file" | 
					
						
						|  | ) | 
					
						
						|  | deprecate( | 
					
						
						|  | "clip_sample not set", "1.0.0", deprecation_message, standard_warn=False | 
					
						
						|  | ) | 
					
						
						|  | new_config = dict(scheduler.config) | 
					
						
						|  | new_config["clip_sample"] = False | 
					
						
						|  | scheduler._internal_dict = FrozenDict(new_config) | 
					
						
						|  |  | 
					
						
						|  | self.register_modules( | 
					
						
						|  | vae=vae, | 
					
						
						|  | unet=unet, | 
					
						
						|  | scheduler=scheduler, | 
					
						
						|  | tokenizer=tokenizer, | 
					
						
						|  | text_encoder=text_encoder, | 
					
						
						|  | feature_extractor=feature_extractor, | 
					
						
						|  | image_encoder=image_encoder, | 
					
						
						|  | ) | 
					
						
						|  | self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | 
					
						
						|  | self.register_to_config(requires_safety_checker=requires_safety_checker) | 
					
						
						|  |  | 
					
						
						|  | def enable_vae_slicing(self): | 
					
						
						|  | r""" | 
					
						
						|  | Enable sliced VAE decoding. | 
					
						
						|  |  | 
					
						
						|  | When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several | 
					
						
						|  | steps. This is useful to save some memory and allow larger batch sizes. | 
					
						
						|  | """ | 
					
						
						|  | self.vae.enable_slicing() | 
					
						
						|  |  | 
					
						
						|  | def disable_vae_slicing(self): | 
					
						
						|  | r""" | 
					
						
						|  | Disable sliced VAE decoding. If `enable_vae_slicing` was previously invoked, this method will go back to | 
					
						
						|  | computing decoding in one step. | 
					
						
						|  | """ | 
					
						
						|  | self.vae.disable_slicing() | 
					
						
						|  |  | 
					
						
						|  | def enable_vae_tiling(self): | 
					
						
						|  | r""" | 
					
						
						|  | Enable tiled VAE decoding. | 
					
						
						|  |  | 
					
						
						|  | When this option is enabled, the VAE will split the input tensor into tiles to compute decoding and encoding in | 
					
						
						|  | several steps. This is useful to save a large amount of memory and to allow the processing of larger images. | 
					
						
						|  | """ | 
					
						
						|  | self.vae.enable_tiling() | 
					
						
						|  |  | 
					
						
						|  | def disable_vae_tiling(self): | 
					
						
						|  | r""" | 
					
						
						|  | Disable tiled VAE decoding. If `enable_vae_tiling` was previously invoked, this method will go back to | 
					
						
						|  | computing decoding in one step. | 
					
						
						|  | """ | 
					
						
						|  | self.vae.disable_tiling() | 
					
						
						|  |  | 
					
						
						|  | def enable_sequential_cpu_offload(self, gpu_id=0): | 
					
						
						|  | r""" | 
					
						
						|  | Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet, | 
					
						
						|  | text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a | 
					
						
						|  | `torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called. | 
					
						
						|  | Note that offloading happens on a submodule basis. Memory savings are higher than with | 
					
						
						|  | `enable_model_cpu_offload`, but performance is lower. | 
					
						
						|  | """ | 
					
						
						|  | if is_accelerate_available() and is_accelerate_version(">=", "0.14.0"): | 
					
						
						|  | from accelerate import cpu_offload | 
					
						
						|  | else: | 
					
						
						|  | raise ImportError( | 
					
						
						|  | "`enable_sequential_cpu_offload` requires `accelerate v0.14.0` or higher" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | device = torch.device(f"cuda:{gpu_id}") | 
					
						
						|  |  | 
					
						
						|  | if self.device.type != "cpu": | 
					
						
						|  | self.to("cpu", silence_dtype_warnings=True) | 
					
						
						|  | torch.cuda.empty_cache() | 
					
						
						|  |  | 
					
						
						|  | for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]: | 
					
						
						|  | cpu_offload(cpu_offloaded_model, device) | 
					
						
						|  |  | 
					
						
						|  | def enable_model_cpu_offload(self, gpu_id=0): | 
					
						
						|  | r""" | 
					
						
						|  | Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared | 
					
						
						|  | to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward` | 
					
						
						|  | method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with | 
					
						
						|  | `enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`. | 
					
						
						|  | """ | 
					
						
						|  | if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"): | 
					
						
						|  | from accelerate import cpu_offload_with_hook | 
					
						
						|  | else: | 
					
						
						|  | raise ImportError( | 
					
						
						|  | "`enable_model_offload` requires `accelerate v0.17.0` or higher." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | device = torch.device(f"cuda:{gpu_id}") | 
					
						
						|  |  | 
					
						
						|  | if self.device.type != "cpu": | 
					
						
						|  | self.to("cpu", silence_dtype_warnings=True) | 
					
						
						|  | torch.cuda.empty_cache() | 
					
						
						|  |  | 
					
						
						|  | hook = None | 
					
						
						|  | for cpu_offloaded_model in [self.text_encoder, self.unet, self.vae]: | 
					
						
						|  | _, hook = cpu_offload_with_hook( | 
					
						
						|  | cpu_offloaded_model, device, prev_module_hook=hook | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.final_offload_hook = hook | 
					
						
						|  |  | 
					
						
						|  | @property | 
					
						
						|  | def _execution_device(self): | 
					
						
						|  | r""" | 
					
						
						|  | Returns the device on which the pipeline's models will be executed. After calling | 
					
						
						|  | `pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module | 
					
						
						|  | hooks. | 
					
						
						|  | """ | 
					
						
						|  | if not hasattr(self.unet, "_hf_hook"): | 
					
						
						|  | return self.device | 
					
						
						|  | for module in self.unet.modules(): | 
					
						
						|  | if ( | 
					
						
						|  | hasattr(module, "_hf_hook") | 
					
						
						|  | and hasattr(module._hf_hook, "execution_device") | 
					
						
						|  | and module._hf_hook.execution_device is not None | 
					
						
						|  | ): | 
					
						
						|  | return torch.device(module._hf_hook.execution_device) | 
					
						
						|  | return self.device | 
					
						
						|  |  | 
					
						
						|  | def _encode_prompt( | 
					
						
						|  | self, | 
					
						
						|  | prompt, | 
					
						
						|  | device, | 
					
						
						|  | num_images_per_prompt, | 
					
						
						|  | do_classifier_free_guidance: bool, | 
					
						
						|  | negative_prompt=None, | 
					
						
						|  | ): | 
					
						
						|  | r""" | 
					
						
						|  | Encodes the prompt into text encoder hidden states. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | prompt (`str` or `List[str]`, *optional*): | 
					
						
						|  | prompt to be encoded | 
					
						
						|  | device: (`torch.device`): | 
					
						
						|  | torch device | 
					
						
						|  | num_images_per_prompt (`int`): | 
					
						
						|  | number of images that should be generated per prompt | 
					
						
						|  | do_classifier_free_guidance (`bool`): | 
					
						
						|  | whether to use classifier free guidance or not | 
					
						
						|  | negative_prompt (`str` or `List[str]`, *optional*): | 
					
						
						|  | The prompt or prompts not to guide the image generation. If not defined, one has to pass | 
					
						
						|  | `negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead. | 
					
						
						|  | Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). | 
					
						
						|  | prompt_embeds (`torch.FloatTensor`, *optional*): | 
					
						
						|  | Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | 
					
						
						|  | provided, text embeddings will be generated from `prompt` input argument. | 
					
						
						|  | negative_prompt_embeds (`torch.FloatTensor`, *optional*): | 
					
						
						|  | Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | 
					
						
						|  | weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | 
					
						
						|  | argument. | 
					
						
						|  | """ | 
					
						
						|  | if prompt is not None and isinstance(prompt, str): | 
					
						
						|  | batch_size = 1 | 
					
						
						|  | elif prompt is not None and isinstance(prompt, list): | 
					
						
						|  | batch_size = len(prompt) | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"`prompt` should be either a string or a list of strings, but got {type(prompt)}." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | text_inputs = self.tokenizer( | 
					
						
						|  | prompt, | 
					
						
						|  | padding="max_length", | 
					
						
						|  | max_length=self.tokenizer.model_max_length, | 
					
						
						|  | truncation=True, | 
					
						
						|  | return_tensors="pt", | 
					
						
						|  | ) | 
					
						
						|  | text_input_ids = text_inputs.input_ids | 
					
						
						|  | untruncated_ids = self.tokenizer( | 
					
						
						|  | prompt, padding="longest", return_tensors="pt" | 
					
						
						|  | ).input_ids | 
					
						
						|  |  | 
					
						
						|  | if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( | 
					
						
						|  | text_input_ids, untruncated_ids | 
					
						
						|  | ): | 
					
						
						|  | removed_text = self.tokenizer.batch_decode( | 
					
						
						|  | untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] | 
					
						
						|  | ) | 
					
						
						|  | logger.warning( | 
					
						
						|  | "The following part of your input was truncated because CLIP can only handle sequences up to" | 
					
						
						|  | f" {self.tokenizer.model_max_length} tokens: {removed_text}" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if ( | 
					
						
						|  | hasattr(self.text_encoder.config, "use_attention_mask") | 
					
						
						|  | and self.text_encoder.config.use_attention_mask | 
					
						
						|  | ): | 
					
						
						|  | attention_mask = text_inputs.attention_mask.to(device) | 
					
						
						|  | else: | 
					
						
						|  | attention_mask = None | 
					
						
						|  |  | 
					
						
						|  | prompt_embeds = self.text_encoder( | 
					
						
						|  | text_input_ids.to(device), | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | ) | 
					
						
						|  | prompt_embeds = prompt_embeds[0] | 
					
						
						|  |  | 
					
						
						|  | prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) | 
					
						
						|  |  | 
					
						
						|  | bs_embed, seq_len, _ = prompt_embeds.shape | 
					
						
						|  |  | 
					
						
						|  | prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | 
					
						
						|  | prompt_embeds = prompt_embeds.view( | 
					
						
						|  | bs_embed * num_images_per_prompt, seq_len, -1 | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if do_classifier_free_guidance: | 
					
						
						|  | uncond_tokens: List[str] | 
					
						
						|  | if negative_prompt is None: | 
					
						
						|  | uncond_tokens = [""] * batch_size | 
					
						
						|  | elif type(prompt) is not type(negative_prompt): | 
					
						
						|  | raise TypeError( | 
					
						
						|  | f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | 
					
						
						|  | f" {type(prompt)}." | 
					
						
						|  | ) | 
					
						
						|  | elif isinstance(negative_prompt, str): | 
					
						
						|  | uncond_tokens = [negative_prompt] | 
					
						
						|  | elif batch_size != len(negative_prompt): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | 
					
						
						|  | f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | 
					
						
						|  | " the batch size of `prompt`." | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | uncond_tokens = negative_prompt | 
					
						
						|  |  | 
					
						
						|  | max_length = prompt_embeds.shape[1] | 
					
						
						|  | uncond_input = self.tokenizer( | 
					
						
						|  | uncond_tokens, | 
					
						
						|  | padding="max_length", | 
					
						
						|  | max_length=max_length, | 
					
						
						|  | truncation=True, | 
					
						
						|  | return_tensors="pt", | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if ( | 
					
						
						|  | hasattr(self.text_encoder.config, "use_attention_mask") | 
					
						
						|  | and self.text_encoder.config.use_attention_mask | 
					
						
						|  | ): | 
					
						
						|  | attention_mask = uncond_input.attention_mask.to(device) | 
					
						
						|  | else: | 
					
						
						|  | attention_mask = None | 
					
						
						|  |  | 
					
						
						|  | negative_prompt_embeds = self.text_encoder( | 
					
						
						|  | uncond_input.input_ids.to(device), | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | ) | 
					
						
						|  | negative_prompt_embeds = negative_prompt_embeds[0] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | seq_len = negative_prompt_embeds.shape[1] | 
					
						
						|  |  | 
					
						
						|  | negative_prompt_embeds = negative_prompt_embeds.to( | 
					
						
						|  | dtype=self.text_encoder.dtype, device=device | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | negative_prompt_embeds = negative_prompt_embeds.repeat( | 
					
						
						|  | 1, num_images_per_prompt, 1 | 
					
						
						|  | ) | 
					
						
						|  | negative_prompt_embeds = negative_prompt_embeds.view( | 
					
						
						|  | batch_size * num_images_per_prompt, seq_len, -1 | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) | 
					
						
						|  |  | 
					
						
						|  | return prompt_embeds | 
					
						
						|  |  | 
					
						
						|  | def decode_latents(self, latents): | 
					
						
						|  | latents = 1 / self.vae.config.scaling_factor * latents | 
					
						
						|  | image = self.vae.decode(latents).sample | 
					
						
						|  | image = (image / 2 + 0.5).clamp(0, 1) | 
					
						
						|  |  | 
					
						
						|  | image = image.cpu().permute(0, 2, 3, 1).float().numpy() | 
					
						
						|  | return image | 
					
						
						|  |  | 
					
						
						|  | def prepare_extra_step_kwargs(self, generator, eta): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | accepts_eta = "eta" in set( | 
					
						
						|  | inspect.signature(self.scheduler.step).parameters.keys() | 
					
						
						|  | ) | 
					
						
						|  | extra_step_kwargs = {} | 
					
						
						|  | if accepts_eta: | 
					
						
						|  | extra_step_kwargs["eta"] = eta | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | accepts_generator = "generator" in set( | 
					
						
						|  | inspect.signature(self.scheduler.step).parameters.keys() | 
					
						
						|  | ) | 
					
						
						|  | if accepts_generator: | 
					
						
						|  | extra_step_kwargs["generator"] = generator | 
					
						
						|  | return extra_step_kwargs | 
					
						
						|  |  | 
					
						
						|  | def prepare_latents( | 
					
						
						|  | self, | 
					
						
						|  | batch_size, | 
					
						
						|  | num_channels_latents, | 
					
						
						|  | height, | 
					
						
						|  | width, | 
					
						
						|  | dtype, | 
					
						
						|  | device, | 
					
						
						|  | generator, | 
					
						
						|  | latents=None, | 
					
						
						|  | ): | 
					
						
						|  | shape = ( | 
					
						
						|  | batch_size, | 
					
						
						|  | num_channels_latents, | 
					
						
						|  | height // self.vae_scale_factor, | 
					
						
						|  | width // self.vae_scale_factor, | 
					
						
						|  | ) | 
					
						
						|  | if isinstance(generator, list) and len(generator) != batch_size: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | 
					
						
						|  | f" size of {batch_size}. Make sure the batch size matches the length of the generators." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if latents is None: | 
					
						
						|  | latents = randn_tensor( | 
					
						
						|  | shape, generator=generator, device=device, dtype=dtype | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | latents = latents.to(device) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | latents = latents * self.scheduler.init_noise_sigma | 
					
						
						|  | return latents | 
					
						
						|  |  | 
					
						
						|  | def encode_image(self, image, device, num_images_per_prompt): | 
					
						
						|  | dtype = next(self.image_encoder.parameters()).dtype | 
					
						
						|  |  | 
					
						
						|  | if image.dtype == np.float32: | 
					
						
						|  | image = (image * 255).astype(np.uint8) | 
					
						
						|  |  | 
					
						
						|  | image = self.feature_extractor(image, return_tensors="pt").pixel_values | 
					
						
						|  | image = image.to(device=device, dtype=dtype) | 
					
						
						|  |  | 
					
						
						|  | image_embeds = self.image_encoder( | 
					
						
						|  | image, output_hidden_states=True | 
					
						
						|  | ).hidden_states[-2] | 
					
						
						|  | image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) | 
					
						
						|  |  | 
					
						
						|  | return torch.zeros_like(image_embeds), image_embeds | 
					
						
						|  |  | 
					
						
						|  | def encode_image_latents(self, image, device, num_images_per_prompt): | 
					
						
						|  |  | 
					
						
						|  | dtype = next(self.image_encoder.parameters()).dtype | 
					
						
						|  |  | 
					
						
						|  | image = ( | 
					
						
						|  | torch.from_numpy(image).unsqueeze(0).permute(0, 3, 1, 2).to(device=device) | 
					
						
						|  | ) | 
					
						
						|  | image = 2 * image - 1 | 
					
						
						|  | image = F.interpolate(image, (256, 256), mode="bilinear", align_corners=False) | 
					
						
						|  | image = image.to(dtype=dtype) | 
					
						
						|  |  | 
					
						
						|  | posterior = self.vae.encode(image).latent_dist | 
					
						
						|  | latents = posterior.sample() * self.vae.config.scaling_factor | 
					
						
						|  | latents = latents.repeat_interleave(num_images_per_prompt, dim=0) | 
					
						
						|  |  | 
					
						
						|  | return torch.zeros_like(latents), latents | 
					
						
						|  |  | 
					
						
						|  | @torch.no_grad() | 
					
						
						|  | def __call__( | 
					
						
						|  | self, | 
					
						
						|  | prompt: str = "", | 
					
						
						|  | image: Optional[np.ndarray] = None, | 
					
						
						|  | height: int = 256, | 
					
						
						|  | width: int = 256, | 
					
						
						|  | elevation: float = 0, | 
					
						
						|  | num_inference_steps: int = 50, | 
					
						
						|  | guidance_scale: float = 7.0, | 
					
						
						|  | negative_prompt: str = "", | 
					
						
						|  | num_images_per_prompt: int = 1, | 
					
						
						|  | eta: float = 0.0, | 
					
						
						|  | generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | 
					
						
						|  | output_type: Optional[str] = "numpy", | 
					
						
						|  | callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | 
					
						
						|  | callback_steps: int = 1, | 
					
						
						|  | num_frames: int = 4, | 
					
						
						|  | device=torch.device("cuda:0"), | 
					
						
						|  | ): | 
					
						
						|  | self.unet = self.unet.to(device=device) | 
					
						
						|  | self.vae = self.vae.to(device=device) | 
					
						
						|  | self.text_encoder = self.text_encoder.to(device=device) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | do_classifier_free_guidance = guidance_scale > 1.0 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.scheduler.set_timesteps(num_inference_steps, device=device) | 
					
						
						|  | timesteps = self.scheduler.timesteps | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if image is not None: | 
					
						
						|  | assert isinstance(image, np.ndarray) and image.dtype == np.float32 | 
					
						
						|  | self.image_encoder = self.image_encoder.to(device=device) | 
					
						
						|  | image_embeds_neg, image_embeds_pos = self.encode_image( | 
					
						
						|  | image, device, num_images_per_prompt | 
					
						
						|  | ) | 
					
						
						|  | image_latents_neg, image_latents_pos = self.encode_image_latents( | 
					
						
						|  | image, device, num_images_per_prompt | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | _prompt_embeds = self._encode_prompt( | 
					
						
						|  | prompt=prompt, | 
					
						
						|  | device=device, | 
					
						
						|  | num_images_per_prompt=num_images_per_prompt, | 
					
						
						|  | do_classifier_free_guidance=do_classifier_free_guidance, | 
					
						
						|  | negative_prompt=negative_prompt, | 
					
						
						|  | ) | 
					
						
						|  | prompt_embeds_neg, prompt_embeds_pos = _prompt_embeds.chunk(2) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | actual_num_frames = num_frames if image is None else num_frames + 1 | 
					
						
						|  | latents: torch.Tensor = self.prepare_latents( | 
					
						
						|  | actual_num_frames * num_images_per_prompt, | 
					
						
						|  | 4, | 
					
						
						|  | height, | 
					
						
						|  | width, | 
					
						
						|  | prompt_embeds_pos.dtype, | 
					
						
						|  | device, | 
					
						
						|  | generator, | 
					
						
						|  | None, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | camera = get_camera( | 
					
						
						|  | num_frames, elevation=elevation, extra_view=(image is not None) | 
					
						
						|  | ).to(dtype=latents.dtype, device=device) | 
					
						
						|  | camera = camera.repeat_interleave(num_images_per_prompt, dim=0) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | 
					
						
						|  | with self.progress_bar(total=num_inference_steps) as progress_bar: | 
					
						
						|  | for i, t in enumerate(timesteps): | 
					
						
						|  |  | 
					
						
						|  | multiplier = 2 if do_classifier_free_guidance else 1 | 
					
						
						|  | latent_model_input = torch.cat([latents] * multiplier) | 
					
						
						|  | latent_model_input = self.scheduler.scale_model_input( | 
					
						
						|  | latent_model_input, t | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | unet_inputs = { | 
					
						
						|  | "x": latent_model_input, | 
					
						
						|  | "timesteps": torch.tensor( | 
					
						
						|  | [t] * actual_num_frames * multiplier, | 
					
						
						|  | dtype=latent_model_input.dtype, | 
					
						
						|  | device=device, | 
					
						
						|  | ), | 
					
						
						|  | "context": torch.cat( | 
					
						
						|  | [prompt_embeds_neg] * actual_num_frames | 
					
						
						|  | + [prompt_embeds_pos] * actual_num_frames | 
					
						
						|  | ), | 
					
						
						|  | "num_frames": actual_num_frames, | 
					
						
						|  | "camera": torch.cat([camera] * multiplier), | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | if image is not None: | 
					
						
						|  | unet_inputs["ip"] = torch.cat( | 
					
						
						|  | [image_embeds_neg] * actual_num_frames | 
					
						
						|  | + [image_embeds_pos] * actual_num_frames | 
					
						
						|  | ) | 
					
						
						|  | unet_inputs["ip_img"] = torch.cat( | 
					
						
						|  | [image_latents_neg] + [image_latents_pos] | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | noise_pred = self.unet.forward(**unet_inputs) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if do_classifier_free_guidance: | 
					
						
						|  | noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | 
					
						
						|  | noise_pred = noise_pred_uncond + guidance_scale * ( | 
					
						
						|  | noise_pred_text - noise_pred_uncond | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | latents: torch.Tensor = self.scheduler.step( | 
					
						
						|  | noise_pred, t, latents, **extra_step_kwargs, return_dict=False | 
					
						
						|  | )[0] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if i == len(timesteps) - 1 or ( | 
					
						
						|  | (i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0 | 
					
						
						|  | ): | 
					
						
						|  | progress_bar.update() | 
					
						
						|  | if callback is not None and i % callback_steps == 0: | 
					
						
						|  | callback(i, t, latents) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if output_type == "latent": | 
					
						
						|  | image = latents | 
					
						
						|  | elif output_type == "pil": | 
					
						
						|  | image = self.decode_latents(latents) | 
					
						
						|  | image = self.numpy_to_pil(image) | 
					
						
						|  | else: | 
					
						
						|  | image = self.decode_latents(latents) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: | 
					
						
						|  | self.final_offload_hook.offload() | 
					
						
						|  |  | 
					
						
						|  | return image | 
					
						
						|  |  |