merged to one file for loading from huggingface...
Browse files- convert_mvdream_to_diffusers.py +2 -2
- mvdream/models.py → mv_unet.py +483 -12
- mvdream/adaptor.py +0 -113
- mvdream/attention.py +0 -251
- mvdream/util.py +0 -140
- mvdream/pipeline_mvdream.py → pipeline_mvdream.py +1 -2
- run_imagedream.py +3 -2
- run_mvdream.py +1 -1
    	
        convert_mvdream_to_diffusers.py
    CHANGED
    
    | @@ -15,10 +15,10 @@ from diffusers.utils import logging | |
| 15 | 
             
            from typing import Any
         | 
| 16 | 
             
            from accelerate import init_empty_weights
         | 
| 17 | 
             
            from accelerate.utils import set_module_tensor_to_device
         | 
| 18 | 
            -
            from mvdream.models import MultiViewUNetModel
         | 
| 19 | 
            -
            from mvdream.pipeline_mvdream import MVDreamPipeline
         | 
| 20 | 
             
            from transformers import CLIPTextModel, CLIPTokenizer, CLIPVisionModel, CLIPImageProcessor
         | 
| 21 |  | 
|  | |
|  | |
| 22 | 
             
            import kiui
         | 
| 23 |  | 
| 24 | 
             
            logger = logging.get_logger(__name__)
         | 
|  | |
| 15 | 
             
            from typing import Any
         | 
| 16 | 
             
            from accelerate import init_empty_weights
         | 
| 17 | 
             
            from accelerate.utils import set_module_tensor_to_device
         | 
|  | |
|  | |
| 18 | 
             
            from transformers import CLIPTextModel, CLIPTokenizer, CLIPVisionModel, CLIPImageProcessor
         | 
| 19 |  | 
| 20 | 
            +
            from mv_unet import MultiViewUNetModel
         | 
| 21 | 
            +
            from pipeline_mvdream import MVDreamPipeline
         | 
| 22 | 
             
            import kiui
         | 
| 23 |  | 
| 24 | 
             
            logger = logging.get_logger(__name__)
         | 
    	
        mvdream/models.py → mv_unet.py
    RENAMED
    
    | @@ -1,19 +1,490 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 1 | 
             
            import torch
         | 
| 2 | 
             
            import torch.nn as nn
         | 
| 3 | 
             
            import torch.nn.functional as F
         | 
|  | |
|  | |
| 4 | 
             
            from diffusers.configuration_utils import ConfigMixin
         | 
| 5 | 
             
            from diffusers.models.modeling_utils import ModelMixin
         | 
| 6 | 
            -
             | 
| 7 | 
            -
             | 
| 8 | 
            -
             | 
| 9 | 
            -
             | 
| 10 | 
            -
             | 
| 11 | 
            -
             | 
| 12 | 
            -
             | 
| 13 | 
            -
             | 
| 14 | 
            -
             | 
| 15 | 
            -
             | 
| 16 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 17 |  | 
| 18 | 
             
            class CondSequential(nn.Sequential):
         | 
| 19 | 
             
                """
         | 
| @@ -615,4 +1086,4 @@ class MultiViewUNetModel(ModelMixin, ConfigMixin): | |
| 615 | 
             
                    if self.predict_codebook_ids:
         | 
| 616 | 
             
                        return self.id_predictor(h)
         | 
| 617 | 
             
                    else:
         | 
| 618 | 
            -
                        return self.out(h)
         | 
|  | |
| 1 | 
            +
            import math
         | 
| 2 | 
            +
            import numpy as np
         | 
| 3 | 
            +
            from inspect import isfunction
         | 
| 4 | 
            +
            from typing import Optional, Any, List
         | 
| 5 | 
            +
             | 
| 6 | 
             
            import torch
         | 
| 7 | 
             
            import torch.nn as nn
         | 
| 8 | 
             
            import torch.nn.functional as F
         | 
| 9 | 
            +
            from einops import rearrange, repeat
         | 
| 10 | 
            +
             | 
| 11 | 
             
            from diffusers.configuration_utils import ConfigMixin
         | 
| 12 | 
             
            from diffusers.models.modeling_utils import ModelMixin
         | 
| 13 | 
            +
             | 
| 14 | 
            +
            # require xformers!
         | 
| 15 | 
            +
            import xformers
         | 
| 16 | 
            +
            import xformers.ops
         | 
| 17 | 
            +
             | 
| 18 | 
            +
            from kiui.cam import orbit_camera
         | 
| 19 | 
            +
             | 
| 20 | 
            +
            def get_camera(
         | 
| 21 | 
            +
                num_frames, elevation=15, azimuth_start=0, azimuth_span=360, blender_coord=True, extra_view=False,
         | 
| 22 | 
            +
            ):
         | 
| 23 | 
            +
                angle_gap = azimuth_span / num_frames
         | 
| 24 | 
            +
                cameras = []
         | 
| 25 | 
            +
                for azimuth in np.arange(azimuth_start, azimuth_span + azimuth_start, angle_gap):
         | 
| 26 | 
            +
                    
         | 
| 27 | 
            +
                    pose = orbit_camera(-elevation, azimuth, radius=1) # kiui's elevation is negated, [4, 4]
         | 
| 28 | 
            +
             | 
| 29 | 
            +
                    # opengl to blender
         | 
| 30 | 
            +
                    if blender_coord:
         | 
| 31 | 
            +
                        pose[2] *= -1
         | 
| 32 | 
            +
                        pose[[1, 2]] = pose[[2, 1]]
         | 
| 33 | 
            +
             | 
| 34 | 
            +
                    cameras.append(pose.flatten())
         | 
| 35 | 
            +
             | 
| 36 | 
            +
                if extra_view:
         | 
| 37 | 
            +
                    cameras.append(np.zeros_like(cameras[0]))
         | 
| 38 | 
            +
             | 
| 39 | 
            +
                return torch.from_numpy(np.stack(cameras, axis=0)).float() # [num_frames, 16]
         | 
| 40 | 
            +
             | 
| 41 | 
            +
             | 
| 42 | 
            +
            def checkpoint(func, inputs, params, flag):
         | 
| 43 | 
            +
                """
         | 
| 44 | 
            +
                Evaluate a function without caching intermediate activations, allowing for
         | 
| 45 | 
            +
                reduced memory at the expense of extra compute in the backward pass.
         | 
| 46 | 
            +
                :param func: the function to evaluate.
         | 
| 47 | 
            +
                :param inputs: the argument sequence to pass to `func`.
         | 
| 48 | 
            +
                :param params: a sequence of parameters `func` depends on but does not
         | 
| 49 | 
            +
                               explicitly take as arguments.
         | 
| 50 | 
            +
                :param flag: if False, disable gradient checkpointing.
         | 
| 51 | 
            +
                """
         | 
| 52 | 
            +
                if flag:
         | 
| 53 | 
            +
                    args = tuple(inputs) + tuple(params)
         | 
| 54 | 
            +
                    return CheckpointFunction.apply(func, len(inputs), *args)
         | 
| 55 | 
            +
                else:
         | 
| 56 | 
            +
                    return func(*inputs)
         | 
| 57 | 
            +
             | 
| 58 | 
            +
             | 
| 59 | 
            +
            class CheckpointFunction(torch.autograd.Function):
         | 
| 60 | 
            +
                @staticmethod
         | 
| 61 | 
            +
                def forward(ctx, run_function, length, *args):
         | 
| 62 | 
            +
                    ctx.run_function = run_function
         | 
| 63 | 
            +
                    ctx.input_tensors = list(args[:length])
         | 
| 64 | 
            +
                    ctx.input_params = list(args[length:])
         | 
| 65 | 
            +
             | 
| 66 | 
            +
                    with torch.no_grad():
         | 
| 67 | 
            +
                        output_tensors = ctx.run_function(*ctx.input_tensors)
         | 
| 68 | 
            +
                    return output_tensors
         | 
| 69 | 
            +
             | 
| 70 | 
            +
                @staticmethod
         | 
| 71 | 
            +
                def backward(ctx, *output_grads):
         | 
| 72 | 
            +
                    ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors]
         | 
| 73 | 
            +
                    with torch.enable_grad():
         | 
| 74 | 
            +
                        # Fixes a bug where the first op in run_function modifies the
         | 
| 75 | 
            +
                        # Tensor storage in place, which is not allowed for detach()'d
         | 
| 76 | 
            +
                        # Tensors.
         | 
| 77 | 
            +
                        shallow_copies = [x.view_as(x) for x in ctx.input_tensors]
         | 
| 78 | 
            +
                        output_tensors = ctx.run_function(*shallow_copies)
         | 
| 79 | 
            +
                    input_grads = torch.autograd.grad(
         | 
| 80 | 
            +
                        output_tensors,
         | 
| 81 | 
            +
                        ctx.input_tensors + ctx.input_params,
         | 
| 82 | 
            +
                        output_grads,
         | 
| 83 | 
            +
                        allow_unused=True,
         | 
| 84 | 
            +
                    )
         | 
| 85 | 
            +
                    del ctx.input_tensors
         | 
| 86 | 
            +
                    del ctx.input_params
         | 
| 87 | 
            +
                    del output_tensors
         | 
| 88 | 
            +
                    return (None, None) + input_grads
         | 
| 89 | 
            +
             | 
| 90 | 
            +
             | 
| 91 | 
            +
            def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False):
         | 
| 92 | 
            +
                """
         | 
| 93 | 
            +
                Create sinusoidal timestep embeddings.
         | 
| 94 | 
            +
                :param timesteps: a 1-D Tensor of N indices, one per batch element.
         | 
| 95 | 
            +
                                  These may be fractional.
         | 
| 96 | 
            +
                :param dim: the dimension of the output.
         | 
| 97 | 
            +
                :param max_period: controls the minimum frequency of the embeddings.
         | 
| 98 | 
            +
                :return: an [N x dim] Tensor of positional embeddings.
         | 
| 99 | 
            +
                """
         | 
| 100 | 
            +
                if not repeat_only:
         | 
| 101 | 
            +
                    half = dim // 2
         | 
| 102 | 
            +
                    freqs = torch.exp(
         | 
| 103 | 
            +
                        -math.log(max_period)
         | 
| 104 | 
            +
                        * torch.arange(start=0, end=half, dtype=torch.float32)
         | 
| 105 | 
            +
                        / half
         | 
| 106 | 
            +
                    ).to(device=timesteps.device)
         | 
| 107 | 
            +
                    args = timesteps[:, None] * freqs[None]
         | 
| 108 | 
            +
                    embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
         | 
| 109 | 
            +
                    if dim % 2:
         | 
| 110 | 
            +
                        embedding = torch.cat(
         | 
| 111 | 
            +
                            [embedding, torch.zeros_like(embedding[:, :1])], dim=-1
         | 
| 112 | 
            +
                        )
         | 
| 113 | 
            +
                else:
         | 
| 114 | 
            +
                    embedding = repeat(timesteps, "b -> b d", d=dim)
         | 
| 115 | 
            +
                # import pdb; pdb.set_trace()
         | 
| 116 | 
            +
                return embedding
         | 
| 117 | 
            +
             | 
| 118 | 
            +
             | 
| 119 | 
            +
            def zero_module(module):
         | 
| 120 | 
            +
                """
         | 
| 121 | 
            +
                Zero out the parameters of a module and return it.
         | 
| 122 | 
            +
                """
         | 
| 123 | 
            +
                for p in module.parameters():
         | 
| 124 | 
            +
                    p.detach().zero_()
         | 
| 125 | 
            +
                return module
         | 
| 126 | 
            +
             | 
| 127 | 
            +
             | 
| 128 | 
            +
            def conv_nd(dims, *args, **kwargs):
         | 
| 129 | 
            +
                """
         | 
| 130 | 
            +
                Create a 1D, 2D, or 3D convolution module.
         | 
| 131 | 
            +
                """
         | 
| 132 | 
            +
                if dims == 1:
         | 
| 133 | 
            +
                    return nn.Conv1d(*args, **kwargs)
         | 
| 134 | 
            +
                elif dims == 2:
         | 
| 135 | 
            +
                    return nn.Conv2d(*args, **kwargs)
         | 
| 136 | 
            +
                elif dims == 3:
         | 
| 137 | 
            +
                    return nn.Conv3d(*args, **kwargs)
         | 
| 138 | 
            +
                raise ValueError(f"unsupported dimensions: {dims}")
         | 
| 139 | 
            +
             | 
| 140 | 
            +
             | 
| 141 | 
            +
            def avg_pool_nd(dims, *args, **kwargs):
         | 
| 142 | 
            +
                """
         | 
| 143 | 
            +
                Create a 1D, 2D, or 3D average pooling module.
         | 
| 144 | 
            +
                """
         | 
| 145 | 
            +
                if dims == 1:
         | 
| 146 | 
            +
                    return nn.AvgPool1d(*args, **kwargs)
         | 
| 147 | 
            +
                elif dims == 2:
         | 
| 148 | 
            +
                    return nn.AvgPool2d(*args, **kwargs)
         | 
| 149 | 
            +
                elif dims == 3:
         | 
| 150 | 
            +
                    return nn.AvgPool3d(*args, **kwargs)
         | 
| 151 | 
            +
                raise ValueError(f"unsupported dimensions: {dims}")
         | 
| 152 | 
            +
             | 
| 153 | 
            +
             | 
| 154 | 
            +
            def default(val, d):
         | 
| 155 | 
            +
                if val is not None:
         | 
| 156 | 
            +
                    return val
         | 
| 157 | 
            +
                return d() if isfunction(d) else d
         | 
| 158 | 
            +
             | 
| 159 | 
            +
             | 
| 160 | 
            +
            class GEGLU(nn.Module):
         | 
| 161 | 
            +
                def __init__(self, dim_in, dim_out):
         | 
| 162 | 
            +
                    super().__init__()
         | 
| 163 | 
            +
                    self.proj = nn.Linear(dim_in, dim_out * 2)
         | 
| 164 | 
            +
             | 
| 165 | 
            +
                def forward(self, x):
         | 
| 166 | 
            +
                    x, gate = self.proj(x).chunk(2, dim=-1)
         | 
| 167 | 
            +
                    return x * F.gelu(gate)
         | 
| 168 | 
            +
             | 
| 169 | 
            +
             | 
| 170 | 
            +
            class FeedForward(nn.Module):
         | 
| 171 | 
            +
                def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.0):
         | 
| 172 | 
            +
                    super().__init__()
         | 
| 173 | 
            +
                    inner_dim = int(dim * mult)
         | 
| 174 | 
            +
                    dim_out = default(dim_out, dim)
         | 
| 175 | 
            +
                    project_in = (
         | 
| 176 | 
            +
                        nn.Sequential(nn.Linear(dim, inner_dim), nn.GELU())
         | 
| 177 | 
            +
                        if not glu
         | 
| 178 | 
            +
                        else GEGLU(dim, inner_dim)
         | 
| 179 | 
            +
                    )
         | 
| 180 | 
            +
             | 
| 181 | 
            +
                    self.net = nn.Sequential(
         | 
| 182 | 
            +
                        project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out)
         | 
| 183 | 
            +
                    )
         | 
| 184 | 
            +
             | 
| 185 | 
            +
                def forward(self, x):
         | 
| 186 | 
            +
                    return self.net(x)
         | 
| 187 | 
            +
             | 
| 188 | 
            +
             | 
| 189 | 
            +
            class MemoryEfficientCrossAttention(nn.Module):
         | 
| 190 | 
            +
                # https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223
         | 
| 191 | 
            +
                def __init__(
         | 
| 192 | 
            +
                        self, 
         | 
| 193 | 
            +
                        query_dim, 
         | 
| 194 | 
            +
                        context_dim=None, 
         | 
| 195 | 
            +
                        heads=8, 
         | 
| 196 | 
            +
                        dim_head=64, 
         | 
| 197 | 
            +
                        dropout=0.0,
         | 
| 198 | 
            +
                        ip_dim=0,
         | 
| 199 | 
            +
                        ip_weight=1,
         | 
| 200 | 
            +
                    ):
         | 
| 201 | 
            +
                    super().__init__()
         | 
| 202 | 
            +
                    
         | 
| 203 | 
            +
                    inner_dim = dim_head * heads
         | 
| 204 | 
            +
                    context_dim = default(context_dim, query_dim)
         | 
| 205 | 
            +
             | 
| 206 | 
            +
                    self.heads = heads
         | 
| 207 | 
            +
                    self.dim_head = dim_head
         | 
| 208 | 
            +
             | 
| 209 | 
            +
                    self.ip_dim = ip_dim
         | 
| 210 | 
            +
                    self.ip_weight = ip_weight
         | 
| 211 | 
            +
             | 
| 212 | 
            +
                    if self.ip_dim > 0:
         | 
| 213 | 
            +
                        self.to_k_ip = nn.Linear(context_dim, inner_dim, bias=False)
         | 
| 214 | 
            +
                        self.to_v_ip = nn.Linear(context_dim, inner_dim, bias=False)
         | 
| 215 | 
            +
             | 
| 216 | 
            +
                    self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
         | 
| 217 | 
            +
                    self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
         | 
| 218 | 
            +
                    self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
         | 
| 219 | 
            +
             | 
| 220 | 
            +
                    self.to_out = nn.Sequential(
         | 
| 221 | 
            +
                        nn.Linear(inner_dim, query_dim), nn.Dropout(dropout)
         | 
| 222 | 
            +
                    )
         | 
| 223 | 
            +
                    self.attention_op: Optional[Any] = None
         | 
| 224 | 
            +
             | 
| 225 | 
            +
                def forward(self, x, context=None):
         | 
| 226 | 
            +
                    q = self.to_q(x)
         | 
| 227 | 
            +
                    context = default(context, x)
         | 
| 228 | 
            +
             | 
| 229 | 
            +
                    if self.ip_dim > 0:
         | 
| 230 | 
            +
                        # context: [B, 77 + 16(ip), 1024]
         | 
| 231 | 
            +
                        token_len = context.shape[1]
         | 
| 232 | 
            +
                        context_ip = context[:, -self.ip_dim :, :]
         | 
| 233 | 
            +
                        k_ip = self.to_k_ip(context_ip)
         | 
| 234 | 
            +
                        v_ip = self.to_v_ip(context_ip)
         | 
| 235 | 
            +
                        context = context[:, : (token_len - self.ip_dim), :]
         | 
| 236 | 
            +
             | 
| 237 | 
            +
                    k = self.to_k(context)
         | 
| 238 | 
            +
                    v = self.to_v(context)
         | 
| 239 | 
            +
             | 
| 240 | 
            +
                    b, _, _ = q.shape
         | 
| 241 | 
            +
                    q, k, v = map(
         | 
| 242 | 
            +
                        lambda t: t.unsqueeze(3)
         | 
| 243 | 
            +
                        .reshape(b, t.shape[1], self.heads, self.dim_head)
         | 
| 244 | 
            +
                        .permute(0, 2, 1, 3)
         | 
| 245 | 
            +
                        .reshape(b * self.heads, t.shape[1], self.dim_head)
         | 
| 246 | 
            +
                        .contiguous(),
         | 
| 247 | 
            +
                        (q, k, v),
         | 
| 248 | 
            +
                    )
         | 
| 249 | 
            +
             | 
| 250 | 
            +
                    # actually compute the attention, what we cannot get enough of
         | 
| 251 | 
            +
                    out = xformers.ops.memory_efficient_attention(
         | 
| 252 | 
            +
                        q, k, v, attn_bias=None, op=self.attention_op
         | 
| 253 | 
            +
                    )
         | 
| 254 | 
            +
             | 
| 255 | 
            +
                    if self.ip_dim > 0:
         | 
| 256 | 
            +
                        k_ip, v_ip = map(
         | 
| 257 | 
            +
                            lambda t: t.unsqueeze(3)
         | 
| 258 | 
            +
                            .reshape(b, t.shape[1], self.heads, self.dim_head)
         | 
| 259 | 
            +
                            .permute(0, 2, 1, 3)
         | 
| 260 | 
            +
                            .reshape(b * self.heads, t.shape[1], self.dim_head)
         | 
| 261 | 
            +
                            .contiguous(),
         | 
| 262 | 
            +
                            (k_ip, v_ip),
         | 
| 263 | 
            +
                        )
         | 
| 264 | 
            +
                        # actually compute the attention, what we cannot get enough of
         | 
| 265 | 
            +
                        out_ip = xformers.ops.memory_efficient_attention(
         | 
| 266 | 
            +
                            q, k_ip, v_ip, attn_bias=None, op=self.attention_op
         | 
| 267 | 
            +
                        )
         | 
| 268 | 
            +
                        out = out + self.ip_weight * out_ip
         | 
| 269 | 
            +
             | 
| 270 | 
            +
                    out = (
         | 
| 271 | 
            +
                        out.unsqueeze(0)
         | 
| 272 | 
            +
                        .reshape(b, self.heads, out.shape[1], self.dim_head)
         | 
| 273 | 
            +
                        .permute(0, 2, 1, 3)
         | 
| 274 | 
            +
                        .reshape(b, out.shape[1], self.heads * self.dim_head)
         | 
| 275 | 
            +
                    )
         | 
| 276 | 
            +
                    return self.to_out(out)
         | 
| 277 | 
            +
             | 
| 278 | 
            +
             | 
| 279 | 
            +
            class BasicTransformerBlock3D(nn.Module):
         | 
| 280 | 
            +
                
         | 
| 281 | 
            +
                def __init__(
         | 
| 282 | 
            +
                    self,
         | 
| 283 | 
            +
                    dim,
         | 
| 284 | 
            +
                    n_heads,
         | 
| 285 | 
            +
                    d_head,
         | 
| 286 | 
            +
                    context_dim,
         | 
| 287 | 
            +
                    dropout=0.0,
         | 
| 288 | 
            +
                    gated_ff=True,
         | 
| 289 | 
            +
                    checkpoint=True,
         | 
| 290 | 
            +
                    ip_dim=0,
         | 
| 291 | 
            +
                    ip_weight=1,
         | 
| 292 | 
            +
                ):
         | 
| 293 | 
            +
                    super().__init__()
         | 
| 294 | 
            +
             | 
| 295 | 
            +
                    self.attn1 = MemoryEfficientCrossAttention(
         | 
| 296 | 
            +
                        query_dim=dim,
         | 
| 297 | 
            +
                        context_dim=None, # self-attention
         | 
| 298 | 
            +
                        heads=n_heads,
         | 
| 299 | 
            +
                        dim_head=d_head,
         | 
| 300 | 
            +
                        dropout=dropout,
         | 
| 301 | 
            +
                    )
         | 
| 302 | 
            +
                    self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
         | 
| 303 | 
            +
                    self.attn2 = MemoryEfficientCrossAttention(
         | 
| 304 | 
            +
                        query_dim=dim,
         | 
| 305 | 
            +
                        context_dim=context_dim,
         | 
| 306 | 
            +
                        heads=n_heads,
         | 
| 307 | 
            +
                        dim_head=d_head,
         | 
| 308 | 
            +
                        dropout=dropout,
         | 
| 309 | 
            +
                        # ip only applies to cross-attention
         | 
| 310 | 
            +
                        ip_dim=ip_dim,
         | 
| 311 | 
            +
                        ip_weight=ip_weight,
         | 
| 312 | 
            +
                    ) 
         | 
| 313 | 
            +
                    self.norm1 = nn.LayerNorm(dim)
         | 
| 314 | 
            +
                    self.norm2 = nn.LayerNorm(dim)
         | 
| 315 | 
            +
                    self.norm3 = nn.LayerNorm(dim)
         | 
| 316 | 
            +
                    self.checkpoint = checkpoint
         | 
| 317 | 
            +
             | 
| 318 | 
            +
                def forward(self, x, context=None, num_frames=1):
         | 
| 319 | 
            +
                    return checkpoint(
         | 
| 320 | 
            +
                        self._forward, (x, context, num_frames), self.parameters(), self.checkpoint
         | 
| 321 | 
            +
                    )
         | 
| 322 | 
            +
             | 
| 323 | 
            +
                def _forward(self, x, context=None, num_frames=1):
         | 
| 324 | 
            +
                    x = rearrange(x, "(b f) l c -> b (f l) c", f=num_frames).contiguous()
         | 
| 325 | 
            +
                    x = self.attn1(self.norm1(x), context=None) + x
         | 
| 326 | 
            +
                    x = rearrange(x, "b (f l) c -> (b f) l c", f=num_frames).contiguous()
         | 
| 327 | 
            +
                    x = self.attn2(self.norm2(x), context=context) + x
         | 
| 328 | 
            +
                    x = self.ff(self.norm3(x)) + x
         | 
| 329 | 
            +
                    return x
         | 
| 330 | 
            +
             | 
| 331 | 
            +
             | 
| 332 | 
            +
            class SpatialTransformer3D(nn.Module):
         | 
| 333 | 
            +
             | 
| 334 | 
            +
                def __init__(
         | 
| 335 | 
            +
                    self,
         | 
| 336 | 
            +
                    in_channels,
         | 
| 337 | 
            +
                    n_heads,
         | 
| 338 | 
            +
                    d_head,
         | 
| 339 | 
            +
                    context_dim, # cross attention input dim
         | 
| 340 | 
            +
                    depth=1,
         | 
| 341 | 
            +
                    dropout=0.0,
         | 
| 342 | 
            +
                    ip_dim=0,
         | 
| 343 | 
            +
                    ip_weight=1,
         | 
| 344 | 
            +
                    use_checkpoint=True,
         | 
| 345 | 
            +
                ):
         | 
| 346 | 
            +
                    super().__init__()
         | 
| 347 | 
            +
             | 
| 348 | 
            +
                    if not isinstance(context_dim, list):
         | 
| 349 | 
            +
                        context_dim = [context_dim]
         | 
| 350 | 
            +
             | 
| 351 | 
            +
                    self.in_channels = in_channels
         | 
| 352 | 
            +
             | 
| 353 | 
            +
                    inner_dim = n_heads * d_head
         | 
| 354 | 
            +
                    self.norm = nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
         | 
| 355 | 
            +
                    self.proj_in = nn.Linear(in_channels, inner_dim)
         | 
| 356 | 
            +
             | 
| 357 | 
            +
                    self.transformer_blocks = nn.ModuleList(
         | 
| 358 | 
            +
                        [
         | 
| 359 | 
            +
                            BasicTransformerBlock3D(
         | 
| 360 | 
            +
                                inner_dim,
         | 
| 361 | 
            +
                                n_heads,
         | 
| 362 | 
            +
                                d_head,
         | 
| 363 | 
            +
                                context_dim=context_dim[d],
         | 
| 364 | 
            +
                                dropout=dropout,
         | 
| 365 | 
            +
                                checkpoint=use_checkpoint,
         | 
| 366 | 
            +
                                ip_dim=ip_dim,
         | 
| 367 | 
            +
                                ip_weight=ip_weight,
         | 
| 368 | 
            +
                            )
         | 
| 369 | 
            +
                            for d in range(depth)
         | 
| 370 | 
            +
                        ]
         | 
| 371 | 
            +
                    )
         | 
| 372 | 
            +
                    
         | 
| 373 | 
            +
                    self.proj_out = zero_module(nn.Linear(in_channels, inner_dim))
         | 
| 374 | 
            +
                    
         | 
| 375 | 
            +
             | 
| 376 | 
            +
                def forward(self, x, context=None, num_frames=1):
         | 
| 377 | 
            +
                    # note: if no context is given, cross-attention defaults to self-attention
         | 
| 378 | 
            +
                    if not isinstance(context, list):
         | 
| 379 | 
            +
                        context = [context]
         | 
| 380 | 
            +
                    b, c, h, w = x.shape
         | 
| 381 | 
            +
                    x_in = x
         | 
| 382 | 
            +
                    x = self.norm(x)
         | 
| 383 | 
            +
                    x = rearrange(x, "b c h w -> b (h w) c").contiguous()
         | 
| 384 | 
            +
                    x = self.proj_in(x)
         | 
| 385 | 
            +
                    for i, block in enumerate(self.transformer_blocks):
         | 
| 386 | 
            +
                        x = block(x, context=context[i], num_frames=num_frames)
         | 
| 387 | 
            +
                    x = self.proj_out(x)
         | 
| 388 | 
            +
                    x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w).contiguous()
         | 
| 389 | 
            +
                    
         | 
| 390 | 
            +
                    return x + x_in
         | 
| 391 | 
            +
             | 
| 392 | 
            +
             | 
| 393 | 
            +
            class PerceiverAttention(nn.Module):
         | 
| 394 | 
            +
                def __init__(self, *, dim, dim_head=64, heads=8):
         | 
| 395 | 
            +
                    super().__init__()
         | 
| 396 | 
            +
                    self.scale = dim_head ** -0.5
         | 
| 397 | 
            +
                    self.dim_head = dim_head
         | 
| 398 | 
            +
                    self.heads = heads
         | 
| 399 | 
            +
                    inner_dim = dim_head * heads
         | 
| 400 | 
            +
             | 
| 401 | 
            +
                    self.norm1 = nn.LayerNorm(dim)
         | 
| 402 | 
            +
                    self.norm2 = nn.LayerNorm(dim)
         | 
| 403 | 
            +
             | 
| 404 | 
            +
                    self.to_q = nn.Linear(dim, inner_dim, bias=False)
         | 
| 405 | 
            +
                    self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False)
         | 
| 406 | 
            +
                    self.to_out = nn.Linear(inner_dim, dim, bias=False)
         | 
| 407 | 
            +
             | 
| 408 | 
            +
                def forward(self, x, latents):
         | 
| 409 | 
            +
                    """
         | 
| 410 | 
            +
                    Args:
         | 
| 411 | 
            +
                        x (torch.Tensor): image features
         | 
| 412 | 
            +
                            shape (b, n1, D)
         | 
| 413 | 
            +
                        latent (torch.Tensor): latent features
         | 
| 414 | 
            +
                            shape (b, n2, D)
         | 
| 415 | 
            +
                    """
         | 
| 416 | 
            +
                    x = self.norm1(x)
         | 
| 417 | 
            +
                    latents = self.norm2(latents)
         | 
| 418 | 
            +
             | 
| 419 | 
            +
                    b, l, _ = latents.shape
         | 
| 420 | 
            +
             | 
| 421 | 
            +
                    q = self.to_q(latents)
         | 
| 422 | 
            +
                    kv_input = torch.cat((x, latents), dim=-2)
         | 
| 423 | 
            +
                    k, v = self.to_kv(kv_input).chunk(2, dim=-1)
         | 
| 424 | 
            +
             | 
| 425 | 
            +
                    q, k, v = map(
         | 
| 426 | 
            +
                        lambda t: t.reshape(b, t.shape[1], self.heads, -1)
         | 
| 427 | 
            +
                        .transpose(1, 2)
         | 
| 428 | 
            +
                        .reshape(b, self.heads, t.shape[1], -1)
         | 
| 429 | 
            +
                        .contiguous(),
         | 
| 430 | 
            +
                        (q, k, v),
         | 
| 431 | 
            +
                    )
         | 
| 432 | 
            +
             | 
| 433 | 
            +
                    # attention
         | 
| 434 | 
            +
                    scale = 1 / math.sqrt(math.sqrt(self.dim_head))
         | 
| 435 | 
            +
                    weight = (q * scale) @ (k * scale).transpose(-2, -1)  # More stable with f16 than dividing afterwards
         | 
| 436 | 
            +
                    weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
         | 
| 437 | 
            +
                    out = weight @ v
         | 
| 438 | 
            +
             | 
| 439 | 
            +
                    out = out.permute(0, 2, 1, 3).reshape(b, l, -1)
         | 
| 440 | 
            +
             | 
| 441 | 
            +
                    return self.to_out(out)
         | 
| 442 | 
            +
             | 
| 443 | 
            +
             | 
| 444 | 
            +
            class Resampler(nn.Module):
         | 
| 445 | 
            +
                def __init__(
         | 
| 446 | 
            +
                    self,
         | 
| 447 | 
            +
                    dim=1024,
         | 
| 448 | 
            +
                    depth=8,
         | 
| 449 | 
            +
                    dim_head=64,
         | 
| 450 | 
            +
                    heads=16,
         | 
| 451 | 
            +
                    num_queries=8,
         | 
| 452 | 
            +
                    embedding_dim=768,
         | 
| 453 | 
            +
                    output_dim=1024,
         | 
| 454 | 
            +
                    ff_mult=4,
         | 
| 455 | 
            +
                ):
         | 
| 456 | 
            +
                    super().__init__()
         | 
| 457 | 
            +
                    self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim ** 0.5)
         | 
| 458 | 
            +
                    self.proj_in = nn.Linear(embedding_dim, dim)
         | 
| 459 | 
            +
                    self.proj_out = nn.Linear(dim, output_dim)
         | 
| 460 | 
            +
                    self.norm_out = nn.LayerNorm(output_dim)
         | 
| 461 | 
            +
             | 
| 462 | 
            +
                    self.layers = nn.ModuleList([])
         | 
| 463 | 
            +
                    for _ in range(depth):
         | 
| 464 | 
            +
                        self.layers.append(
         | 
| 465 | 
            +
                            nn.ModuleList(
         | 
| 466 | 
            +
                                [
         | 
| 467 | 
            +
                                    PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
         | 
| 468 | 
            +
                                    nn.Sequential(
         | 
| 469 | 
            +
                                        nn.LayerNorm(dim),
         | 
| 470 | 
            +
                                        nn.Linear(dim, dim * ff_mult, bias=False),
         | 
| 471 | 
            +
                                        nn.GELU(),
         | 
| 472 | 
            +
                                        nn.Linear(dim * ff_mult, dim, bias=False),
         | 
| 473 | 
            +
                                    )
         | 
| 474 | 
            +
                                ]
         | 
| 475 | 
            +
                            )
         | 
| 476 | 
            +
                        )
         | 
| 477 | 
            +
             | 
| 478 | 
            +
                def forward(self, x):
         | 
| 479 | 
            +
                    latents = self.latents.repeat(x.size(0), 1, 1)
         | 
| 480 | 
            +
                    x = self.proj_in(x)
         | 
| 481 | 
            +
                    for attn, ff in self.layers:
         | 
| 482 | 
            +
                        latents = attn(x, latents) + latents
         | 
| 483 | 
            +
                        latents = ff(latents) + latents
         | 
| 484 | 
            +
             | 
| 485 | 
            +
                    latents = self.proj_out(latents)
         | 
| 486 | 
            +
                    return self.norm_out(latents)
         | 
| 487 | 
            +
             | 
| 488 |  | 
| 489 | 
             
            class CondSequential(nn.Sequential):
         | 
| 490 | 
             
                """
         | 
|  | |
| 1086 | 
             
                    if self.predict_codebook_ids:
         | 
| 1087 | 
             
                        return self.id_predictor(h)
         | 
| 1088 | 
             
                    else:
         | 
| 1089 | 
            +
                        return self.out(h)
         | 
    	
        mvdream/adaptor.py
    DELETED
    
    | @@ -1,113 +0,0 @@ | |
| 1 | 
            -
            import math
         | 
| 2 | 
            -
            import torch
         | 
| 3 | 
            -
            import torch.nn as nn
         | 
| 4 | 
            -
             | 
| 5 | 
            -
            # FFN
         | 
| 6 | 
            -
            def FeedForward(dim, mult=4):
         | 
| 7 | 
            -
                inner_dim = int(dim * mult)
         | 
| 8 | 
            -
                return nn.Sequential(
         | 
| 9 | 
            -
                    nn.LayerNorm(dim),
         | 
| 10 | 
            -
                    nn.Linear(dim, inner_dim, bias=False),
         | 
| 11 | 
            -
                    nn.GELU(),
         | 
| 12 | 
            -
                    nn.Linear(inner_dim, dim, bias=False),
         | 
| 13 | 
            -
                )
         | 
| 14 | 
            -
             | 
| 15 | 
            -
             | 
| 16 | 
            -
            def reshape_tensor(x, heads):
         | 
| 17 | 
            -
                bs, length, width = x.shape
         | 
| 18 | 
            -
                # (bs, length, width) --> (bs, length, n_heads, dim_per_head)
         | 
| 19 | 
            -
                x = x.view(bs, length, heads, -1)
         | 
| 20 | 
            -
                # (bs, length, n_heads, dim_per_head) --> (bs, n_heads, length, dim_per_head)
         | 
| 21 | 
            -
                x = x.transpose(1, 2)
         | 
| 22 | 
            -
                # (bs, n_heads, length, dim_per_head) --> (bs*n_heads, length, dim_per_head)
         | 
| 23 | 
            -
                x = x.reshape(bs, heads, length, -1)
         | 
| 24 | 
            -
                return x
         | 
| 25 | 
            -
             | 
| 26 | 
            -
             | 
| 27 | 
            -
            class PerceiverAttention(nn.Module):
         | 
| 28 | 
            -
                def __init__(self, *, dim, dim_head=64, heads=8):
         | 
| 29 | 
            -
                    super().__init__()
         | 
| 30 | 
            -
                    self.scale = dim_head ** -0.5
         | 
| 31 | 
            -
                    self.dim_head = dim_head
         | 
| 32 | 
            -
                    self.heads = heads
         | 
| 33 | 
            -
                    inner_dim = dim_head * heads
         | 
| 34 | 
            -
             | 
| 35 | 
            -
                    self.norm1 = nn.LayerNorm(dim)
         | 
| 36 | 
            -
                    self.norm2 = nn.LayerNorm(dim)
         | 
| 37 | 
            -
             | 
| 38 | 
            -
                    self.to_q = nn.Linear(dim, inner_dim, bias=False)
         | 
| 39 | 
            -
                    self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False)
         | 
| 40 | 
            -
                    self.to_out = nn.Linear(inner_dim, dim, bias=False)
         | 
| 41 | 
            -
             | 
| 42 | 
            -
                def forward(self, x, latents):
         | 
| 43 | 
            -
                    """
         | 
| 44 | 
            -
                    Args:
         | 
| 45 | 
            -
                        x (torch.Tensor): image features
         | 
| 46 | 
            -
                            shape (b, n1, D)
         | 
| 47 | 
            -
                        latent (torch.Tensor): latent features
         | 
| 48 | 
            -
                            shape (b, n2, D)
         | 
| 49 | 
            -
                    """
         | 
| 50 | 
            -
                    x = self.norm1(x)
         | 
| 51 | 
            -
                    latents = self.norm2(latents)
         | 
| 52 | 
            -
             | 
| 53 | 
            -
                    b, l, _ = latents.shape
         | 
| 54 | 
            -
             | 
| 55 | 
            -
                    q = self.to_q(latents)
         | 
| 56 | 
            -
                    kv_input = torch.cat((x, latents), dim=-2)
         | 
| 57 | 
            -
                    k, v = self.to_kv(kv_input).chunk(2, dim=-1)
         | 
| 58 | 
            -
             | 
| 59 | 
            -
                    q = reshape_tensor(q, self.heads)
         | 
| 60 | 
            -
                    k = reshape_tensor(k, self.heads)
         | 
| 61 | 
            -
                    v = reshape_tensor(v, self.heads)
         | 
| 62 | 
            -
             | 
| 63 | 
            -
                    # attention
         | 
| 64 | 
            -
                    scale = 1 / math.sqrt(math.sqrt(self.dim_head))
         | 
| 65 | 
            -
                    weight = (q * scale) @ (k * scale).transpose(
         | 
| 66 | 
            -
                        -2, -1
         | 
| 67 | 
            -
                    )  # More stable with f16 than dividing afterwards
         | 
| 68 | 
            -
                    weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
         | 
| 69 | 
            -
                    out = weight @ v
         | 
| 70 | 
            -
             | 
| 71 | 
            -
                    out = out.permute(0, 2, 1, 3).reshape(b, l, -1)
         | 
| 72 | 
            -
             | 
| 73 | 
            -
                    return self.to_out(out)
         | 
| 74 | 
            -
             | 
| 75 | 
            -
             | 
| 76 | 
            -
            class Resampler(nn.Module):
         | 
| 77 | 
            -
                def __init__(
         | 
| 78 | 
            -
                    self,
         | 
| 79 | 
            -
                    dim=1024,
         | 
| 80 | 
            -
                    depth=8,
         | 
| 81 | 
            -
                    dim_head=64,
         | 
| 82 | 
            -
                    heads=16,
         | 
| 83 | 
            -
                    num_queries=8,
         | 
| 84 | 
            -
                    embedding_dim=768,
         | 
| 85 | 
            -
                    output_dim=1024,
         | 
| 86 | 
            -
                    ff_mult=4,
         | 
| 87 | 
            -
                ):
         | 
| 88 | 
            -
                    super().__init__()
         | 
| 89 | 
            -
                    self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim ** 0.5)
         | 
| 90 | 
            -
                    self.proj_in = nn.Linear(embedding_dim, dim)
         | 
| 91 | 
            -
                    self.proj_out = nn.Linear(dim, output_dim)
         | 
| 92 | 
            -
                    self.norm_out = nn.LayerNorm(output_dim)
         | 
| 93 | 
            -
             | 
| 94 | 
            -
                    self.layers = nn.ModuleList([])
         | 
| 95 | 
            -
                    for _ in range(depth):
         | 
| 96 | 
            -
                        self.layers.append(
         | 
| 97 | 
            -
                            nn.ModuleList(
         | 
| 98 | 
            -
                                [
         | 
| 99 | 
            -
                                    PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
         | 
| 100 | 
            -
                                    FeedForward(dim=dim, mult=ff_mult),
         | 
| 101 | 
            -
                                ]
         | 
| 102 | 
            -
                            )
         | 
| 103 | 
            -
                        )
         | 
| 104 | 
            -
             | 
| 105 | 
            -
                def forward(self, x):
         | 
| 106 | 
            -
                    latents = self.latents.repeat(x.size(0), 1, 1)
         | 
| 107 | 
            -
                    x = self.proj_in(x)
         | 
| 108 | 
            -
                    for attn, ff in self.layers:
         | 
| 109 | 
            -
                        latents = attn(x, latents) + latents
         | 
| 110 | 
            -
                        latents = ff(latents) + latents
         | 
| 111 | 
            -
             | 
| 112 | 
            -
                    latents = self.proj_out(latents)
         | 
| 113 | 
            -
                    return self.norm_out(latents)
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
    	
        mvdream/attention.py
    DELETED
    
    | @@ -1,251 +0,0 @@ | |
| 1 | 
            -
            import torch
         | 
| 2 | 
            -
            import torch.nn as nn
         | 
| 3 | 
            -
            import torch.nn.functional as F
         | 
| 4 | 
            -
             | 
| 5 | 
            -
            from inspect import isfunction
         | 
| 6 | 
            -
            from einops import rearrange, repeat
         | 
| 7 | 
            -
            from typing import Optional, Any
         | 
| 8 | 
            -
             | 
| 9 | 
            -
            # require xformers
         | 
| 10 | 
            -
            import xformers  # type: ignore
         | 
| 11 | 
            -
            import xformers.ops  # type: ignore
         | 
| 12 | 
            -
             | 
| 13 | 
            -
            from .util import checkpoint, zero_module
         | 
| 14 | 
            -
             | 
| 15 | 
            -
            def default(val, d):
         | 
| 16 | 
            -
                if val is not None:
         | 
| 17 | 
            -
                    return val
         | 
| 18 | 
            -
                return d() if isfunction(d) else d
         | 
| 19 | 
            -
             | 
| 20 | 
            -
             | 
| 21 | 
            -
            class GEGLU(nn.Module):
         | 
| 22 | 
            -
                def __init__(self, dim_in, dim_out):
         | 
| 23 | 
            -
                    super().__init__()
         | 
| 24 | 
            -
                    self.proj = nn.Linear(dim_in, dim_out * 2)
         | 
| 25 | 
            -
             | 
| 26 | 
            -
                def forward(self, x):
         | 
| 27 | 
            -
                    x, gate = self.proj(x).chunk(2, dim=-1)
         | 
| 28 | 
            -
                    return x * F.gelu(gate)
         | 
| 29 | 
            -
             | 
| 30 | 
            -
             | 
| 31 | 
            -
            class FeedForward(nn.Module):
         | 
| 32 | 
            -
                def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.0):
         | 
| 33 | 
            -
                    super().__init__()
         | 
| 34 | 
            -
                    inner_dim = int(dim * mult)
         | 
| 35 | 
            -
                    dim_out = default(dim_out, dim)
         | 
| 36 | 
            -
                    project_in = (
         | 
| 37 | 
            -
                        nn.Sequential(nn.Linear(dim, inner_dim), nn.GELU())
         | 
| 38 | 
            -
                        if not glu
         | 
| 39 | 
            -
                        else GEGLU(dim, inner_dim)
         | 
| 40 | 
            -
                    )
         | 
| 41 | 
            -
             | 
| 42 | 
            -
                    self.net = nn.Sequential(
         | 
| 43 | 
            -
                        project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out)
         | 
| 44 | 
            -
                    )
         | 
| 45 | 
            -
             | 
| 46 | 
            -
                def forward(self, x):
         | 
| 47 | 
            -
                    return self.net(x)
         | 
| 48 | 
            -
             | 
| 49 | 
            -
             | 
| 50 | 
            -
            class MemoryEfficientCrossAttention(nn.Module):
         | 
| 51 | 
            -
                # https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223
         | 
| 52 | 
            -
                def __init__(
         | 
| 53 | 
            -
                        self, 
         | 
| 54 | 
            -
                        query_dim, 
         | 
| 55 | 
            -
                        context_dim=None, 
         | 
| 56 | 
            -
                        heads=8, 
         | 
| 57 | 
            -
                        dim_head=64, 
         | 
| 58 | 
            -
                        dropout=0.0,
         | 
| 59 | 
            -
                        ip_dim=0,
         | 
| 60 | 
            -
                        ip_weight=1,
         | 
| 61 | 
            -
                    ):
         | 
| 62 | 
            -
                    super().__init__()
         | 
| 63 | 
            -
                    
         | 
| 64 | 
            -
                    inner_dim = dim_head * heads
         | 
| 65 | 
            -
                    context_dim = default(context_dim, query_dim)
         | 
| 66 | 
            -
             | 
| 67 | 
            -
                    self.heads = heads
         | 
| 68 | 
            -
                    self.dim_head = dim_head
         | 
| 69 | 
            -
             | 
| 70 | 
            -
                    self.ip_dim = ip_dim
         | 
| 71 | 
            -
                    self.ip_weight = ip_weight
         | 
| 72 | 
            -
             | 
| 73 | 
            -
                    if self.ip_dim > 0:
         | 
| 74 | 
            -
                        self.to_k_ip = nn.Linear(context_dim, inner_dim, bias=False)
         | 
| 75 | 
            -
                        self.to_v_ip = nn.Linear(context_dim, inner_dim, bias=False)
         | 
| 76 | 
            -
             | 
| 77 | 
            -
                    self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
         | 
| 78 | 
            -
                    self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
         | 
| 79 | 
            -
                    self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
         | 
| 80 | 
            -
             | 
| 81 | 
            -
                    self.to_out = nn.Sequential(
         | 
| 82 | 
            -
                        nn.Linear(inner_dim, query_dim), nn.Dropout(dropout)
         | 
| 83 | 
            -
                    )
         | 
| 84 | 
            -
                    self.attention_op: Optional[Any] = None
         | 
| 85 | 
            -
             | 
| 86 | 
            -
                def forward(self, x, context=None):
         | 
| 87 | 
            -
                    q = self.to_q(x)
         | 
| 88 | 
            -
                    context = default(context, x)
         | 
| 89 | 
            -
             | 
| 90 | 
            -
                    if self.ip_dim > 0:
         | 
| 91 | 
            -
                        # context: [B, 77 + 16(ip), 1024]
         | 
| 92 | 
            -
                        token_len = context.shape[1]
         | 
| 93 | 
            -
                        context_ip = context[:, -self.ip_dim :, :]
         | 
| 94 | 
            -
                        k_ip = self.to_k_ip(context_ip)
         | 
| 95 | 
            -
                        v_ip = self.to_v_ip(context_ip)
         | 
| 96 | 
            -
                        context = context[:, : (token_len - self.ip_dim), :]
         | 
| 97 | 
            -
             | 
| 98 | 
            -
                    k = self.to_k(context)
         | 
| 99 | 
            -
                    v = self.to_v(context)
         | 
| 100 | 
            -
             | 
| 101 | 
            -
                    b, _, _ = q.shape
         | 
| 102 | 
            -
                    q, k, v = map(
         | 
| 103 | 
            -
                        lambda t: t.unsqueeze(3)
         | 
| 104 | 
            -
                        .reshape(b, t.shape[1], self.heads, self.dim_head)
         | 
| 105 | 
            -
                        .permute(0, 2, 1, 3)
         | 
| 106 | 
            -
                        .reshape(b * self.heads, t.shape[1], self.dim_head)
         | 
| 107 | 
            -
                        .contiguous(),
         | 
| 108 | 
            -
                        (q, k, v),
         | 
| 109 | 
            -
                    )
         | 
| 110 | 
            -
             | 
| 111 | 
            -
                    # actually compute the attention, what we cannot get enough of
         | 
| 112 | 
            -
                    out = xformers.ops.memory_efficient_attention(
         | 
| 113 | 
            -
                        q, k, v, attn_bias=None, op=self.attention_op
         | 
| 114 | 
            -
                    )
         | 
| 115 | 
            -
             | 
| 116 | 
            -
                    if self.ip_dim > 0:
         | 
| 117 | 
            -
                        k_ip, v_ip = map(
         | 
| 118 | 
            -
                            lambda t: t.unsqueeze(3)
         | 
| 119 | 
            -
                            .reshape(b, t.shape[1], self.heads, self.dim_head)
         | 
| 120 | 
            -
                            .permute(0, 2, 1, 3)
         | 
| 121 | 
            -
                            .reshape(b * self.heads, t.shape[1], self.dim_head)
         | 
| 122 | 
            -
                            .contiguous(),
         | 
| 123 | 
            -
                            (k_ip, v_ip),
         | 
| 124 | 
            -
                        )
         | 
| 125 | 
            -
                        # actually compute the attention, what we cannot get enough of
         | 
| 126 | 
            -
                        out_ip = xformers.ops.memory_efficient_attention(
         | 
| 127 | 
            -
                            q, k_ip, v_ip, attn_bias=None, op=self.attention_op
         | 
| 128 | 
            -
                        )
         | 
| 129 | 
            -
                        out = out + self.ip_weight * out_ip
         | 
| 130 | 
            -
             | 
| 131 | 
            -
                    out = (
         | 
| 132 | 
            -
                        out.unsqueeze(0)
         | 
| 133 | 
            -
                        .reshape(b, self.heads, out.shape[1], self.dim_head)
         | 
| 134 | 
            -
                        .permute(0, 2, 1, 3)
         | 
| 135 | 
            -
                        .reshape(b, out.shape[1], self.heads * self.dim_head)
         | 
| 136 | 
            -
                    )
         | 
| 137 | 
            -
                    return self.to_out(out)
         | 
| 138 | 
            -
             | 
| 139 | 
            -
             | 
| 140 | 
            -
            class BasicTransformerBlock3D(nn.Module):
         | 
| 141 | 
            -
                
         | 
| 142 | 
            -
                def __init__(
         | 
| 143 | 
            -
                    self,
         | 
| 144 | 
            -
                    dim,
         | 
| 145 | 
            -
                    n_heads,
         | 
| 146 | 
            -
                    d_head,
         | 
| 147 | 
            -
                    context_dim,
         | 
| 148 | 
            -
                    dropout=0.0,
         | 
| 149 | 
            -
                    gated_ff=True,
         | 
| 150 | 
            -
                    checkpoint=True,
         | 
| 151 | 
            -
                    ip_dim=0,
         | 
| 152 | 
            -
                    ip_weight=1,
         | 
| 153 | 
            -
                ):
         | 
| 154 | 
            -
                    super().__init__()
         | 
| 155 | 
            -
             | 
| 156 | 
            -
                    self.attn1 = MemoryEfficientCrossAttention(
         | 
| 157 | 
            -
                        query_dim=dim,
         | 
| 158 | 
            -
                        context_dim=None, # self-attention
         | 
| 159 | 
            -
                        heads=n_heads,
         | 
| 160 | 
            -
                        dim_head=d_head,
         | 
| 161 | 
            -
                        dropout=dropout,
         | 
| 162 | 
            -
                    )
         | 
| 163 | 
            -
                    self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
         | 
| 164 | 
            -
                    self.attn2 = MemoryEfficientCrossAttention(
         | 
| 165 | 
            -
                        query_dim=dim,
         | 
| 166 | 
            -
                        context_dim=context_dim,
         | 
| 167 | 
            -
                        heads=n_heads,
         | 
| 168 | 
            -
                        dim_head=d_head,
         | 
| 169 | 
            -
                        dropout=dropout,
         | 
| 170 | 
            -
                        # ip only applies to cross-attention
         | 
| 171 | 
            -
                        ip_dim=ip_dim,
         | 
| 172 | 
            -
                        ip_weight=ip_weight,
         | 
| 173 | 
            -
                    ) 
         | 
| 174 | 
            -
                    self.norm1 = nn.LayerNorm(dim)
         | 
| 175 | 
            -
                    self.norm2 = nn.LayerNorm(dim)
         | 
| 176 | 
            -
                    self.norm3 = nn.LayerNorm(dim)
         | 
| 177 | 
            -
                    self.checkpoint = checkpoint
         | 
| 178 | 
            -
             | 
| 179 | 
            -
                def forward(self, x, context=None, num_frames=1):
         | 
| 180 | 
            -
                    return checkpoint(
         | 
| 181 | 
            -
                        self._forward, (x, context, num_frames), self.parameters(), self.checkpoint
         | 
| 182 | 
            -
                    )
         | 
| 183 | 
            -
             | 
| 184 | 
            -
                def _forward(self, x, context=None, num_frames=1):
         | 
| 185 | 
            -
                    x = rearrange(x, "(b f) l c -> b (f l) c", f=num_frames).contiguous()
         | 
| 186 | 
            -
                    x = self.attn1(self.norm1(x), context=None) + x
         | 
| 187 | 
            -
                    x = rearrange(x, "b (f l) c -> (b f) l c", f=num_frames).contiguous()
         | 
| 188 | 
            -
                    x = self.attn2(self.norm2(x), context=context) + x
         | 
| 189 | 
            -
                    x = self.ff(self.norm3(x)) + x
         | 
| 190 | 
            -
                    return x
         | 
| 191 | 
            -
             | 
| 192 | 
            -
             | 
| 193 | 
            -
            class SpatialTransformer3D(nn.Module):
         | 
| 194 | 
            -
             | 
| 195 | 
            -
                def __init__(
         | 
| 196 | 
            -
                    self,
         | 
| 197 | 
            -
                    in_channels,
         | 
| 198 | 
            -
                    n_heads,
         | 
| 199 | 
            -
                    d_head,
         | 
| 200 | 
            -
                    context_dim, # cross attention input dim
         | 
| 201 | 
            -
                    depth=1,
         | 
| 202 | 
            -
                    dropout=0.0,
         | 
| 203 | 
            -
                    ip_dim=0,
         | 
| 204 | 
            -
                    ip_weight=1,
         | 
| 205 | 
            -
                    use_checkpoint=True,
         | 
| 206 | 
            -
                ):
         | 
| 207 | 
            -
                    super().__init__()
         | 
| 208 | 
            -
             | 
| 209 | 
            -
                    if not isinstance(context_dim, list):
         | 
| 210 | 
            -
                        context_dim = [context_dim]
         | 
| 211 | 
            -
             | 
| 212 | 
            -
                    self.in_channels = in_channels
         | 
| 213 | 
            -
             | 
| 214 | 
            -
                    inner_dim = n_heads * d_head
         | 
| 215 | 
            -
                    self.norm = nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
         | 
| 216 | 
            -
                    self.proj_in = nn.Linear(in_channels, inner_dim)
         | 
| 217 | 
            -
             | 
| 218 | 
            -
                    self.transformer_blocks = nn.ModuleList(
         | 
| 219 | 
            -
                        [
         | 
| 220 | 
            -
                            BasicTransformerBlock3D(
         | 
| 221 | 
            -
                                inner_dim,
         | 
| 222 | 
            -
                                n_heads,
         | 
| 223 | 
            -
                                d_head,
         | 
| 224 | 
            -
                                context_dim=context_dim[d],
         | 
| 225 | 
            -
                                dropout=dropout,
         | 
| 226 | 
            -
                                checkpoint=use_checkpoint,
         | 
| 227 | 
            -
                                ip_dim=ip_dim,
         | 
| 228 | 
            -
                                ip_weight=ip_weight,
         | 
| 229 | 
            -
                            )
         | 
| 230 | 
            -
                            for d in range(depth)
         | 
| 231 | 
            -
                        ]
         | 
| 232 | 
            -
                    )
         | 
| 233 | 
            -
                    
         | 
| 234 | 
            -
                    self.proj_out = zero_module(nn.Linear(in_channels, inner_dim))
         | 
| 235 | 
            -
                    
         | 
| 236 | 
            -
             | 
| 237 | 
            -
                def forward(self, x, context=None, num_frames=1):
         | 
| 238 | 
            -
                    # note: if no context is given, cross-attention defaults to self-attention
         | 
| 239 | 
            -
                    if not isinstance(context, list):
         | 
| 240 | 
            -
                        context = [context]
         | 
| 241 | 
            -
                    b, c, h, w = x.shape
         | 
| 242 | 
            -
                    x_in = x
         | 
| 243 | 
            -
                    x = self.norm(x)
         | 
| 244 | 
            -
                    x = rearrange(x, "b c h w -> b (h w) c").contiguous()
         | 
| 245 | 
            -
                    x = self.proj_in(x)
         | 
| 246 | 
            -
                    for i, block in enumerate(self.transformer_blocks):
         | 
| 247 | 
            -
                        x = block(x, context=context[i], num_frames=num_frames)
         | 
| 248 | 
            -
                    x = self.proj_out(x)
         | 
| 249 | 
            -
                    x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w).contiguous()
         | 
| 250 | 
            -
                    
         | 
| 251 | 
            -
                    return x + x_in
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
    	
        mvdream/util.py
    DELETED
    
    | @@ -1,140 +0,0 @@ | |
| 1 | 
            -
            import math
         | 
| 2 | 
            -
            import torch
         | 
| 3 | 
            -
            import torch.nn as nn
         | 
| 4 | 
            -
            import numpy as np
         | 
| 5 | 
            -
            from einops import repeat
         | 
| 6 | 
            -
             | 
| 7 | 
            -
            from kiui.cam import orbit_camera
         | 
| 8 | 
            -
             | 
| 9 | 
            -
            def get_camera(
         | 
| 10 | 
            -
                num_frames, elevation=15, azimuth_start=0, azimuth_span=360, blender_coord=True, extra_view=False,
         | 
| 11 | 
            -
            ):
         | 
| 12 | 
            -
                angle_gap = azimuth_span / num_frames
         | 
| 13 | 
            -
                cameras = []
         | 
| 14 | 
            -
                for azimuth in np.arange(azimuth_start, azimuth_span + azimuth_start, angle_gap):
         | 
| 15 | 
            -
                    
         | 
| 16 | 
            -
                    pose = orbit_camera(-elevation, azimuth, radius=1) # kiui's elevation is negated, [4, 4]
         | 
| 17 | 
            -
             | 
| 18 | 
            -
                    # opengl to blender
         | 
| 19 | 
            -
                    if blender_coord:
         | 
| 20 | 
            -
                        pose[2] *= -1
         | 
| 21 | 
            -
                        pose[[1, 2]] = pose[[2, 1]]
         | 
| 22 | 
            -
             | 
| 23 | 
            -
                    cameras.append(pose.flatten())
         | 
| 24 | 
            -
             | 
| 25 | 
            -
                if extra_view:
         | 
| 26 | 
            -
                    cameras.append(np.zeros_like(cameras[0]))
         | 
| 27 | 
            -
             | 
| 28 | 
            -
                return torch.from_numpy(np.stack(cameras, axis=0)).float() # [num_frames, 16]
         | 
| 29 | 
            -
             | 
| 30 | 
            -
             | 
| 31 | 
            -
            def checkpoint(func, inputs, params, flag):
         | 
| 32 | 
            -
                """
         | 
| 33 | 
            -
                Evaluate a function without caching intermediate activations, allowing for
         | 
| 34 | 
            -
                reduced memory at the expense of extra compute in the backward pass.
         | 
| 35 | 
            -
                :param func: the function to evaluate.
         | 
| 36 | 
            -
                :param inputs: the argument sequence to pass to `func`.
         | 
| 37 | 
            -
                :param params: a sequence of parameters `func` depends on but does not
         | 
| 38 | 
            -
                               explicitly take as arguments.
         | 
| 39 | 
            -
                :param flag: if False, disable gradient checkpointing.
         | 
| 40 | 
            -
                """
         | 
| 41 | 
            -
                if flag:
         | 
| 42 | 
            -
                    args = tuple(inputs) + tuple(params)
         | 
| 43 | 
            -
                    return CheckpointFunction.apply(func, len(inputs), *args)
         | 
| 44 | 
            -
                else:
         | 
| 45 | 
            -
                    return func(*inputs)
         | 
| 46 | 
            -
             | 
| 47 | 
            -
             | 
| 48 | 
            -
            class CheckpointFunction(torch.autograd.Function):
         | 
| 49 | 
            -
                @staticmethod
         | 
| 50 | 
            -
                def forward(ctx, run_function, length, *args):
         | 
| 51 | 
            -
                    ctx.run_function = run_function
         | 
| 52 | 
            -
                    ctx.input_tensors = list(args[:length])
         | 
| 53 | 
            -
                    ctx.input_params = list(args[length:])
         | 
| 54 | 
            -
             | 
| 55 | 
            -
                    with torch.no_grad():
         | 
| 56 | 
            -
                        output_tensors = ctx.run_function(*ctx.input_tensors)
         | 
| 57 | 
            -
                    return output_tensors
         | 
| 58 | 
            -
             | 
| 59 | 
            -
                @staticmethod
         | 
| 60 | 
            -
                def backward(ctx, *output_grads):
         | 
| 61 | 
            -
                    ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors]
         | 
| 62 | 
            -
                    with torch.enable_grad():
         | 
| 63 | 
            -
                        # Fixes a bug where the first op in run_function modifies the
         | 
| 64 | 
            -
                        # Tensor storage in place, which is not allowed for detach()'d
         | 
| 65 | 
            -
                        # Tensors.
         | 
| 66 | 
            -
                        shallow_copies = [x.view_as(x) for x in ctx.input_tensors]
         | 
| 67 | 
            -
                        output_tensors = ctx.run_function(*shallow_copies)
         | 
| 68 | 
            -
                    input_grads = torch.autograd.grad(
         | 
| 69 | 
            -
                        output_tensors,
         | 
| 70 | 
            -
                        ctx.input_tensors + ctx.input_params,
         | 
| 71 | 
            -
                        output_grads,
         | 
| 72 | 
            -
                        allow_unused=True,
         | 
| 73 | 
            -
                    )
         | 
| 74 | 
            -
                    del ctx.input_tensors
         | 
| 75 | 
            -
                    del ctx.input_params
         | 
| 76 | 
            -
                    del output_tensors
         | 
| 77 | 
            -
                    return (None, None) + input_grads
         | 
| 78 | 
            -
             | 
| 79 | 
            -
             | 
| 80 | 
            -
            def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False):
         | 
| 81 | 
            -
                """
         | 
| 82 | 
            -
                Create sinusoidal timestep embeddings.
         | 
| 83 | 
            -
                :param timesteps: a 1-D Tensor of N indices, one per batch element.
         | 
| 84 | 
            -
                                  These may be fractional.
         | 
| 85 | 
            -
                :param dim: the dimension of the output.
         | 
| 86 | 
            -
                :param max_period: controls the minimum frequency of the embeddings.
         | 
| 87 | 
            -
                :return: an [N x dim] Tensor of positional embeddings.
         | 
| 88 | 
            -
                """
         | 
| 89 | 
            -
                if not repeat_only:
         | 
| 90 | 
            -
                    half = dim // 2
         | 
| 91 | 
            -
                    freqs = torch.exp(
         | 
| 92 | 
            -
                        -math.log(max_period)
         | 
| 93 | 
            -
                        * torch.arange(start=0, end=half, dtype=torch.float32)
         | 
| 94 | 
            -
                        / half
         | 
| 95 | 
            -
                    ).to(device=timesteps.device)
         | 
| 96 | 
            -
                    args = timesteps[:, None] * freqs[None]
         | 
| 97 | 
            -
                    embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
         | 
| 98 | 
            -
                    if dim % 2:
         | 
| 99 | 
            -
                        embedding = torch.cat(
         | 
| 100 | 
            -
                            [embedding, torch.zeros_like(embedding[:, :1])], dim=-1
         | 
| 101 | 
            -
                        )
         | 
| 102 | 
            -
                else:
         | 
| 103 | 
            -
                    embedding = repeat(timesteps, "b -> b d", d=dim)
         | 
| 104 | 
            -
                # import pdb; pdb.set_trace()
         | 
| 105 | 
            -
                return embedding
         | 
| 106 | 
            -
             | 
| 107 | 
            -
             | 
| 108 | 
            -
            def zero_module(module):
         | 
| 109 | 
            -
                """
         | 
| 110 | 
            -
                Zero out the parameters of a module and return it.
         | 
| 111 | 
            -
                """
         | 
| 112 | 
            -
                for p in module.parameters():
         | 
| 113 | 
            -
                    p.detach().zero_()
         | 
| 114 | 
            -
                return module
         | 
| 115 | 
            -
             | 
| 116 | 
            -
             | 
| 117 | 
            -
            def conv_nd(dims, *args, **kwargs):
         | 
| 118 | 
            -
                """
         | 
| 119 | 
            -
                Create a 1D, 2D, or 3D convolution module.
         | 
| 120 | 
            -
                """
         | 
| 121 | 
            -
                if dims == 1:
         | 
| 122 | 
            -
                    return nn.Conv1d(*args, **kwargs)
         | 
| 123 | 
            -
                elif dims == 2:
         | 
| 124 | 
            -
                    return nn.Conv2d(*args, **kwargs)
         | 
| 125 | 
            -
                elif dims == 3:
         | 
| 126 | 
            -
                    return nn.Conv3d(*args, **kwargs)
         | 
| 127 | 
            -
                raise ValueError(f"unsupported dimensions: {dims}")
         | 
| 128 | 
            -
             | 
| 129 | 
            -
             | 
| 130 | 
            -
            def avg_pool_nd(dims, *args, **kwargs):
         | 
| 131 | 
            -
                """
         | 
| 132 | 
            -
                Create a 1D, 2D, or 3D average pooling module.
         | 
| 133 | 
            -
                """
         | 
| 134 | 
            -
                if dims == 1:
         | 
| 135 | 
            -
                    return nn.AvgPool1d(*args, **kwargs)
         | 
| 136 | 
            -
                elif dims == 2:
         | 
| 137 | 
            -
                    return nn.AvgPool2d(*args, **kwargs)
         | 
| 138 | 
            -
                elif dims == 3:
         | 
| 139 | 
            -
                    return nn.AvgPool3d(*args, **kwargs)
         | 
| 140 | 
            -
                raise ValueError(f"unsupported dimensions: {dims}")
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
    	
        mvdream/pipeline_mvdream.py → pipeline_mvdream.py
    RENAMED
    
    | @@ -15,8 +15,7 @@ from diffusers.configuration_utils import FrozenDict | |
| 15 | 
             
            from diffusers.schedulers import DDIMScheduler
         | 
| 16 | 
             
            from diffusers.utils.torch_utils import randn_tensor
         | 
| 17 |  | 
| 18 | 
            -
            from  | 
| 19 | 
            -
            from .util import get_camera
         | 
| 20 |  | 
| 21 | 
             
            logger = logging.get_logger(__name__)  # pylint: disable=invalid-name
         | 
| 22 |  | 
|  | |
| 15 | 
             
            from diffusers.schedulers import DDIMScheduler
         | 
| 16 | 
             
            from diffusers.utils.torch_utils import randn_tensor
         | 
| 17 |  | 
| 18 | 
            +
            from mv_unet import MultiViewUNetModel, get_camera
         | 
|  | |
| 19 |  | 
| 20 | 
             
            logger = logging.get_logger(__name__)  # pylint: disable=invalid-name
         | 
| 21 |  | 
    	
        run_imagedream.py
    CHANGED
    
    | @@ -2,12 +2,13 @@ import torch | |
| 2 | 
             
            import kiui
         | 
| 3 | 
             
            import numpy as np
         | 
| 4 | 
             
            import argparse
         | 
| 5 | 
            -
            from  | 
| 6 |  | 
| 7 | 
             
            pipe = MVDreamPipeline.from_pretrained(
         | 
| 8 | 
             
                "./weights_imagedream", # local weights
         | 
| 9 | 
             
                # "ashawkey/mvdream-sd2.1-diffusers",
         | 
| 10 | 
            -
                torch_dtype=torch.float16
         | 
|  | |
| 11 | 
             
            )
         | 
| 12 | 
             
            pipe = pipe.to("cuda")
         | 
| 13 |  | 
|  | |
| 2 | 
             
            import kiui
         | 
| 3 | 
             
            import numpy as np
         | 
| 4 | 
             
            import argparse
         | 
| 5 | 
            +
            from pipeline_mvdream import MVDreamPipeline
         | 
| 6 |  | 
| 7 | 
             
            pipe = MVDreamPipeline.from_pretrained(
         | 
| 8 | 
             
                "./weights_imagedream", # local weights
         | 
| 9 | 
             
                # "ashawkey/mvdream-sd2.1-diffusers",
         | 
| 10 | 
            +
                torch_dtype=torch.float16,
         | 
| 11 | 
            +
                trust_remote_code=True,
         | 
| 12 | 
             
            )
         | 
| 13 | 
             
            pipe = pipe.to("cuda")
         | 
| 14 |  | 
    	
        run_mvdream.py
    CHANGED
    
    | @@ -2,7 +2,7 @@ import torch | |
| 2 | 
             
            import kiui
         | 
| 3 | 
             
            import numpy as np
         | 
| 4 | 
             
            import argparse
         | 
| 5 | 
            -
            from  | 
| 6 |  | 
| 7 | 
             
            pipe = MVDreamPipeline.from_pretrained(
         | 
| 8 | 
             
                "./weights_mvdream", # local weights
         | 
|  | |
| 2 | 
             
            import kiui
         | 
| 3 | 
             
            import numpy as np
         | 
| 4 | 
             
            import argparse
         | 
| 5 | 
            +
            from pipeline_mvdream import MVDreamPipeline
         | 
| 6 |  | 
| 7 | 
             
            pipe = MVDreamPipeline.from_pretrained(
         | 
| 8 | 
             
                "./weights_mvdream", # local weights
         | 

