Abaryan commited on
Commit
44ebb1e
·
verified ·
1 Parent(s): e086f4e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +34 -172
README.md CHANGED
@@ -1,199 +1,61 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
 
 
11
 
12
  ## Model Details
13
 
14
  ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
 
 
 
 
 
 
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
  ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
 
50
- [More Information Needed]
51
 
52
  ### Out-of-Scope Use
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
 
58
  ## Bias, Risks, and Limitations
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
  ## How to Get Started with the Model
71
 
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
 
196
 
197
- ## Model Card Contact
 
 
198
 
199
- [More Information Needed]
 
 
 
 
1
  ---
2
+ license: mit
3
+ datasets:
4
+ - openlifescienceai/medmcqa
5
+ language:
6
+ - en
7
+ base_model:
8
+ - Qwen/Qwen2.5-0.5B-Instruct
9
+ tags:
10
+ - grpo,
11
+ - biomed,reasoning
12
  ---
13
 
14
+ # Model Card for BioXP
 
 
 
15
 
16
+ This model is a 🤗 transformers model, BioXP-0.5B.
17
 
18
  ## Model Details
19
 
20
  ### Model Description
21
 
22
+ This model is a finetuned version of Qwen/Qwen2.5-0.5B-Instruct, a 0.5 billion parameter language model from the Qwen2 family.
23
+ The finetuning was performed using reinforcement learning approach: Group Relative Policy Optimization (GRPO).
 
 
 
 
 
 
 
 
 
 
 
24
 
25
+ - **Developed by:** Qwen (original model), finetuning by rgb2gbr
26
+ - **Funded by :** rgb2bgr
27
+ - **Shared by :** rgb2bgr
28
+ - **Model type:** Causal Language Model
29
+ - **Language(s) (NLP):** English
30
+ - **License:** MIT
31
+ - **Finetuned from model:** Qwen/Qwen2.5-0.5B-Instruct
32
 
 
 
 
33
 
34
  ## Uses
35
 
36
+ The model fine-tuned using grpo method on openlifescienceai/medmcqa, can answer and identify the correct options in dataset with 44.02% accuracy
 
 
 
 
 
 
 
 
 
 
37
 
 
38
 
39
  ### Out-of-Scope Use
40
 
41
+ This model should not be used for generating harmful, biased, or inappropriate content. It's important to be aware of the potential limitations and biases inherited from the base model and the finetuning data.
 
 
42
 
43
  ## Bias, Risks, and Limitations
44
 
45
+ As a large language model, this model may exhibit biases present in the training data. The finetuning process may have amplified or mitigated certain biases. Further evaluation is needed to understand the full extent of these biases and limitations.
 
 
 
 
 
 
 
 
46
 
47
  ## How to Get Started with the Model
48
 
49
+ You can load this model using the `transformers` library in Python:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50
 
51
+ ```python
52
+ from transformers import AutoModelForCausalLM, AutoTokenizer
53
 
54
+ model_id = "rgb2gbr/BioXP-0.5B-MedMCQA"
55
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
56
+ model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", torch_dtype="auto")
57
 
58
+ prompt = "Identify the right answer and elaborate it"
59
+ inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
60
+ outputs = model.generate(**inputs, max_new_tokens=200)
61
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))